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Abstract. While Computerized Tomography (CT) images can help detect disease such as
Covid-19, regular CT machines are large and expensive. Cheaper and more portable machines suffer
from errors in geometry acquisition that downgrades CT image quality. The errors in geometry can
be represented with parameters in the mathematical model for image reconstruction. To obtain a
good image, we formulate a nonlinear least squares problem that simultaneously reconstructs the
image and corrects for errors in the geometry parameters. We develop an accelerated alternating
minimization scheme to reconstruct the image and geometry parameters.
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1. Introduction. Tomography is a technique of displaying representations of
a cross section through an object through the use of some penetrating waves such
as X-ray or ultrasound. In simple words, it allows us to see the inside of an object
without breaking it. Thus, tomography is widely used in medical imaging, seismic
exploration, and material science. In medical imaging, a Computerized Tomography
(CT) Scan creates a cross-sectional image of human body by combining X-ray images
taken from different scanning positions θ.

During a CT scan, the patient lies on a bed that slowly moves through the gantry
while the X-ray tube rotates around the patient and shoots X-ray beams through the
human body, received by a detector. Then, an image of the cross section of the human
body is reconstructed following a mathematical procedure. In this paper, we consider
fan beam tomography where a single light source rotates around an object and emits
in a fan-shaped distribution, as shown in Figure 1.

Although CT images can help doctors diagnose and monitor diseases such as
Covid-19, regular CT machines are heavy and expensive and not widely available in
less developed areas. The goal of this paper is to compensate for cheaper and more
portable machines by solving for geometry parameters such as the source-to-object
distance that may not be calibrated precisely during the imaging process. Related
work in parallel-beam tomography can be found in [1] [5]

Source-to-object distance measures how far away the centroid of the object is
from the X-ray source, as shown in Figure 2. Since the source-to-object distance
may vary at different scanning positions, the reconstructed image will be corrupted if
incorrect values are used, as illustrated in Figure 3. Similar conclusions can be drawn
if incorrect scanning positions are used to reconstruct the image. Our algorithm will
significantly improve image quality by taking into account the variation in geometry
parameters.

For the purpose of this paper, we primarily focus on 2D computed tomography to
simplify notations and to reduce computational costs required to perform a substantial
number of numerical experiments. But the methods discussed in this paper can be
extended to 3D problems. An X-ray imaging problem can be formulated as an inverse
problem in linear algebra:
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Fig. 1. This is a simple illustration of our tomography problem.

Fig. 2. Illustration of source-to-centroid-of-object distance or source-to-object distance in short

Ax = b.

The linear system is generated using the software package AIR Tools II [9] that sim-
ulates a 2D fan-beam CT with a curved detector. b is projection data, also referred
to as a sinogram. Its entries are

bi =
∑
j∈Si

Lijxj

Si is the set of indices to those pixels that are penetrated by the ith ray, Lij is the
length of the ith ray through the jth pixel, and xj is the attenuation coefficient in
pixel j. A is a m× n forward operator, and its entries are defined as

aij =

{
Lij , j ∈ Si

0, otherwise.
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Fig. 3. 32 × 32 true image of a Shepp–Logan phantom (left), image computed by taking into
account the correct source-to-object distance (middle), image computed by using incorrect source-to-
object distance (right)

.
In AIR Tools II [9], it is assumed that the distance from the X-ray source to the

centroid of the object at scanning position θ is dθn, where n
2 is the number of pixels in

the image and dθ ∈ R. d is a vector of distance parameters dθ at all scanning positions.
Since n is fixed, we only need to compute the vector d to recover the source-to-object
distance vector nd for all discrete scanning positions. The forward operator A is
determined by geometry parameters r, a set of general geometry parameter vectors
that can represent the vector d that determines the source-to-object distance and the
vector of errors in scanning positions δθ. A functional representation of the forward
operator in terms of r is not available. We form the following nonlinear least squares
problem:

(1.1) argmin
x,r

||A(r)x− b||22

where x represents the image vector, and A is the forward operator that is a function
of r and maps the true image x to the sinogram b. If we only consider the impact
of source-to-object distance vector nd on the image quality, then r = {d} and our
nonlinear least squares problem becomes:

argmin
x,d

||A(d)x− b||22.

If we want to model the impact of both source-to-object distance and errors in scan-
ning positions δθ on reconstructed image, r = {d, δθ}, then the least squares problem
becomes:

argmin
x,d,δθ

||A(d, δθ)x− b||22.

Thus, the conclusions we make about r also apply to both d and δθ. This approach
can also allow us to add more geometry parameter vectors that potentially have impact
on the imaging quality. In this paper, we show that Equation 1 can be solved using
an accelerated Block Coordinate Descent method. In addition to incorporating an
acceleration scheme, we also exploit separability to further reduce the computational
cost.

2. Alternating Minimization Scheme. In order to solve the nonlinear least
squares problem, an intuitive approach to consider is the Block Coordinate Descent 
(BCD) algorithm. In this section, we discuss the linear and nonlinear least squares
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problem involved in BCD. We also briefly discuss the variable projection approach
and argue the advantage of BCD over variable projection for our problem.

2.1. Block Coordinate Descent. Block Coordinate Descent is a simple ap-
proach to solve an optimization problem. Its idea is based on the general Coordinate
Descent (CD) algorithm. Because of its lack of sophistication, most optimization re-
searchers have not focused on this approach until recently when CD approaches were
found to be computationally competitive to other reputable alternatives in various
applications such as machine learning [17]. Since we are able to exploit separability
in the geometry parameters, the BCD method, which is given in Algorithm 2.1, is
worth investigating for tomographic reconstruction.

Algorithm 2.1 BCD to Reconstruct Geometry and Image Parameters

1: Input: r0 ∈ R
NA , x0 ∈ R

n

2: for k = 1, 2, . . . until a stopping criterion holds do
3: rk = argmin

r
||A(r)xk−1 − b||22

4: xk = argmin
x

||A(rk)x− b||22
5: end for

In Algorithm 2.1, n is the length of the image vector and NA denotes the number of
sets of scanning positions in which errors are assumed to be constant. For simplicity,
we refer to NA as “number of angles”. More explanation about NA will be given in
the following discussion on partitioning matrix A into blocks. Note that in practice an
initial estimate r0 is given. With this information, we can easily obtain x0 by solving
the linear least squares problem,

x0 = argmin
x

||A(r0)x− b||22.

We remark that for ill-posed problems, computing x0 and Step 4 of Algorithm 2.1
typically requires incorporating regularization procedures to avoid amplifying noise
when solving the linear least squares problems. This is discussed further in section
2.2.1. There is another property in our matrix that makes this alternating minimiza-
tion scheme favorable. The matrix A and vector b can be partitioned into block of
rows as

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1(r
(1))
...

Ai(r
(i))
...

ANA
(r(NA))

⎤
⎥⎥⎥⎥⎥⎥⎦

b =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1
...
bi
...

bNA

⎤
⎥⎥⎥⎥⎥⎥⎦

where errors in geometry parameters associated with rows in each [Ai(r
(i)), bi] block 

are assumed constant. For example, if we collect projections at 0, 1, 2, . . . , 359 degrees 
around the center of the object, and NA = 10, then an error is introduced into the 
geometry parameters once every 36 degrees. In reality, NA = 360, but if some of the 
errors are small enough to ignore, using a smaller NA can reduce the computational 
cost. The choice of NA is discussed further in Section 4.3.
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The separability of the geometry parameters allows us to solve for a set of much
smaller systems at Step 3 in Algorithm 2.1, namely,

r
(i)
k = argmin

r
||Ai(r)xk−1 − bi||22, i = 1, 2, . . . , NA

and then

rk =

⎡
⎢⎢⎣

r
(1)
k
...

r
(NA)
k

⎤
⎥⎥⎦ .

Note that parameters in the vector rk are completely independent, so they can be
updated simultaneously on a parallel computing architecture, which could dramati-
cally lower the computing time. In fact, if we only consider source-to-object distance
as geometry parameters, the dimension of the parameter r(i) is one. Comparing to
this alternating minimization scheme, Variable Projection [11][12] cannot utilize this
matrix property because its matrix multiplication process would take away the separa-
bility property. Thus, it makes this alternating minimization scheme more worthwhile
to investigate.

Next, we discuss linear least squares solvers and nonlinear least squares solvers
respectively.

2.2. Linear Least Squares Problem. In this subsection, we consider the linear
least squares problem in Step 4 of Algorithm 2.1, min

x
||Ax − b||22, where we assume

matrix A is fixed, e.g. A = A(rk).

2.2.1. Regularization. Typically in inverse problems, the data we obtain is not
the exact data. This is also the case in our X-ray tomography problem, even in the
case when geometry parameters, and hence matrix A, are known exactly. Ideally, we
want to solve Axtrue = btrue but the linear system that we actually solve is:

(2.1) Ax = b = btrue + η

where η is the noise in our measurement data, btrue is the noise-free data, A ∈ R
m×n,

and b ∈ R
m.

By using the full SVD of A = UΣV T where U is m × m, Σ is m × n, and V
is n × n. σi is the ith singular value and ui, vi are the ith column of the left and
right orthogonal matrices U and V . Let r be the rank of A 1. We first recall that
Avi = σiui, and we note that we can find scalars αi and ηi such that

xtrue =
n∑

i=1

αivi
and

η =
m∑
i=1

ηiui

Using these relations, we obtain

b =
m∑
i=1

(αiσi + ηi)ui,(2.2)

1We admit an ambiguous use of notation here, using r to denote rank of matrix A and to denote 
the set of geometry parameter vectors. Outside Sections 2.2.1 and 2.2.2, we use r exclusively to 
denote the set of geometry parameters. We hope this ambiguity is not too confusing, and that the 
two usages are clear from the context.
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where αiσi = 0, ∀i > r. Then, notice that

A†ui = V Σ†UTui

=

{
1
σi
vi, i ≤ r

0, i > r

(2.3)

A† is the pseudo-inverse of A, and Σ† is n × m matrix whose first r entries on the
main diagonal are respectively 1

σ1
, . . . , 1

σr
. The rest of the entries of Σ† are zero.

Thus,

x = A†b

=
r∑

i=1

(
αi +

ηi
σi

)
vi

(2.4)

From this result we observe that the noise in the data is magnified by the small
singular values. Since σ1 � σ2 � ... � σr � 0, larger indices correspond to smaller
singular values. The computed solution is dominated by noise amplified by division
of small singular values. Thus, we need regularization schemes to filter out this noise.
In particular, a regularized solution can be written as:

(2.5) xreg =
r∑

i=1

φi

(
αi +

ηi
σi

)
vi

where the scalar 0 � φi � 1 is called a filter factor. As σi decreases, the filter factors
should approach zero so that the noise contributed by the small singular values are
filtered out.

Truncated Singular Value Decomposition. Since the noise is magnified by small
singular values, the most intuitive approach is to cut off the small singular values
by setting them to zero. This is called Truncated SVD regularization. The TSVD
solution to the inverse problem is given by

(2.6) xreg =
k∑

i=1

bTui

σi
vi

where k � n. The critical part in the TSVD is identifying the threshold k. One
approach is choosing k at a significant drop-off of singular values, as illustrated by
Figure 4.

In this case, k = 9 can be easily identified as the threshold for the TSVD approach.
However, typically in inverse problems, singular values decay smoothly, as illustrated
by Figure 5. In cases like Figure 5, a reliable cut-off threshold for singular values
is hard to find. Note that k = 250 is not a good choice for the cut-off because
the singular values are very close to zero for smaller indices k (e.g. σ200 ≈ 10−8).
Therefore, we need more advanced regularization techniques to deal with smoothly
decaying singular values.

Tikhonov Regularization. Classical Tikhonov Regularization can be used to solve
ill-posed problems. The regularized solution xreg is the unique solution to the follow-
ing:

(2.7) min
x

||Ax− b||22 + λ2||x||22
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Fig. 4. The singular values plot of a 10× 10 diagonal matrix whose singular values are respec-
tively 99, 98 ... 91, and 1

Fig. 5. The singular values of the 256 × 256 test problem heat generated from Regularization
Tools in MATLAB

where λ is the regularization parameter that controls the smoothness of the regularized
solution. The above equation is equivalent to the following:

(2.8) min
x

∥∥∥∥
[
A
λI

]
x−

[
b
0

]∥∥∥∥
2

2

Then the normal equations for this least squares problem can be written as:

(2.9) (ATA+ λ2I)xreg = AT b.

From the normal equations, we obtain the following:

xreg = (ATA+ λ2I)−1AT b

=
r∑

i=1

φi
bTui

σi
vi

(2.10)

where the filter factor is φi =
σ2
i

σ2
i+λ2 . The modified Tikhonov regularization is not

too much different from the classical Tikhonov except that it uses the 2-norm of Lx
instead of x in Equation 2.7, where L is a p× n matrix with p � n.

min
x

||Ax− b||22 + λ2||Lx||22
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In contrast to TSVD where singular values after σk are cut off, the Tikhonov
regularization applies a smoother filter to all the singular values. Given a good regu-
larization parameter, the large singular values would not be affected too much whereas
the small values would be gradually filtered more as they approach zero. The quality
of the filtering depends on how we choose the regularization parameter. If λ = 0,
then all φi = 1 and we are directly calculating the inverse (or pseudo-inverse) solu-
tion. If we select a very large λ � σ1, all φi would approach zero and we would have
over-smoothed the solution.

2.2.2. Parameter Choice Methods. The choice of regularization parameter
is critical to the quality of the regularized solution. Parameter choice methods can
usually be divided into two classes depending on their assumption about error norm
||η||22 = ||b − btrue||22 where b is the measured data and btrue is the noise free data
[8]. The first class contains methods based on a good estimate of ||η||22. The second
class includes methods that are not based on a good estimate of ||η||22, but seek to
extract this information from the given right hand side b. In this section, we introduce
the Generalized Cross-Validation method (GCV) which is a popular method in the
second class. The underlying idea of GCV is that a good regularization parameter
should predict missing values. For example, if some data point bi is missing in the
right hand side, the regularized solution should predict this missing value well. GCV
can be written as:

(2.11) G(λ) =
||Axreg − b||22

trace(Im −AA†
F )

2

where xreg is the regularized solution, A†
F = (ATA+ λ2I)−1AT is the pseudo-inverse

of

[
A
λI

]
. The goal is to find λ such that G(λ) is minimized. Now we simplify the

numerator and the denominator of G(λ) respectively:

||Axreg − b||22 = ||ΣV Txreg − UT b||22
= ||(ΣΣ†

F − I)UT b||22

trace(Im −AA†
F ) = trace((Im − UΣΣ†

FU
T ))

= trace(Im − ΣΣ†
F )

Thus, G(λ) becomes:

(2.12) G(λ) =
||(ΣΣ†

F − I)UT b||22
trace(Im − ΣΣ†

F )

Then we can write G(λ) in the case of Tikhonov regularization as:

(2.13) G(λ) =

∑r
i=1(

λ2b̃2i
λ2+σ2

i
+

∑m
i=r+1 b̃

2
i )

(m− r) +
∑r

i=1
λ2

λ2+σ2
i

where b̂ = UT b. We can solve for λ by using the function fminbnd in MATLAB 
which is based on golden section search and parabolic interpolation. In practical ap-
plications, several studies have found that occasionally GCV would drastically under-
smooth the solution by choosing the regularization parameter too small [4] [6] [15]. In
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[2], GCV has been found to over-smooth the solution in the Lanczos-hybrid methods,
discussed in the next subsection. To alleviate this difficulty, it was proposed to use
the weighted GCV method:

(2.14) G(w, λ) =
||Axreg − b||22

trace(Im − wAA†
F )

2

where w is the weight parameter that determines the function G(w, λ) along with λ.
When w = 1, we have the non-weighted version of GCV like in Equation 2.12. When
w > 1, the solution is smoother. When w < 1, the solution is less smooth. We use a
weighted-GCV approach to choose the weight adaptively. More details can be found
in [2]

2.2.3. Hybrid LSQR. We have so far discussed regularization and parameter
choice methods using the SVD. For large-scale problems, such as in image reconstruc-
tion, directly applying SVD based methods is not computationally feasible. In this
subsection we describe a hybrid LSQR scheme that combines an efficient iterative
method with SVD based approaches that enforce regularization on small projected
sub-problems. LSQR is an iterative conjugate gradient method to solve least squares
problems [13]. A hybrid approach, called hybrid LSQR in [2] and implemented as
IRhybrid lsqr in IR Tools [7] solves the Tikhonov regularized least squares problem,
and is able to adaptively estimate regularization parameters at each iteration using
a weighted generalized cross validation (GCV) method. For implementation details,
see [7].

The standard LSQR algorithm projects the linear least squares problem onto
a sequence of Krylov subspace of small and increasing dimensions. The best ap-
proximation xk to the least squares problem in the Krylov subspace Kk is given by
xk = Vkyk, where Vk is a n × k matrix with orthonormal columns at the kth step of
the Golub-Kahan bidiagonalization process [13]. yk can be solved by

yk = argmin
yk

||Bkyk − β1e1||2

where Bk is the bidiagonal matrix at the kth step of the Golub-Kahan bidiagonaliza-
tion process, β is a scalar, and e1 is the standard basis vector. When being applied
to ill-posed problems, LSQR exhibits a semi-convergence behavior which means that
early iterations construct information related to the solution while later iterations
construct information related to noise [2].

This can be compensated by applying a direct regularization method such as
Tikhonov or TSVD, which can be solved cheaply on a small scale problem of the
reduced linear least squares in the Krylov subspace. So, we can write the Hybrid
LSQR using Tikhonov regularization as:

min
yk

||Bkyk − β1e1||22 + λ2
k||yk||22

where λk is a regularization parameter chosen at the kth iteration using the weighted 
GCV method discussed in Section 2.2.2. A method like GCV can be used to choose 
a stopping iteration so that k will not be too large. details can be found in [2].

Comparing to LSQR, this hybrid method can effectively stabilize the iterations 
[2]. Although at each iteration a new regularization parameter must be chosen, it is 
not computationally expensive for the projected problem.
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To summarize the method, the hybrid LSQR method projects the large scale
linear least squares problem onto a low-dimensional Krylov subspace where we can
inexpensively apply a direct regularization method like the adaptive weighted-GCV.

2.3. Nonlinear Least Squares. In our alternating minimization scheme, we
iteratively solve the image and the geometry parameters. While we have discussed
methods to solve the linear least squares problem in the previous section, we need
other tools to solve the nonlinear least squares problem:

(2.15) min
r

||A(r)x− b||2

where x is approximated by the linear least squares solution we obtained by using
hybrid LSQR in Section 2.3.

We utilize the implicit filtering method which solves the bound-constraint opti-
mization problem for which the derivative information is not available [10]. Since
we do not have the derivative information of our objective function and a reasonable
bound can be established for the geometry parameters in our tomographic reconstruc-
tion problem, implicit filtering serves as a good tool to solve our problem. Implicit
filtering builds the local model of the objective function using a quasi-Newton method.

In our numerical experiments, we compare implicit filtering to the MATLAB
function fminbnd.

3. Acceleration Algorithms. In the previous section, we have introduced the
alternating minimization scheme and the methods we use to solve least squares prob-
lems. In this section, we introduce methods that will accelerate the convergence of
our minimization scheme.

3.1. Accelerated Block Coordinate Descent. Since we can divide variables
in our least squares problem into two blocks – geometry parameters r and image x, it
makes sense for us to directly investigate methods that accelerate the BCD algorithm.
We implemented Accelerated Block Coordinate Descent (ABCD). This method
can be applied to a four-block problem by dividing it into two larger blocks, but in our
problem we do not have to do so. Theoretically, the proposed acceleration method in
[3] has a complexity of O( 1

k2 ). In our implementation, we simplify the algorithm as
Algorithm 3.1.

Algorithm 3.1 Accelerated Block Coordinate Descent

1: Inputs: t0 = 1, r0 ∈ R
NA and x0 ∈ R

n

2: for k = 1, 2, . . . until a stopping criterion holds do
3: r̃k = argmin

r
||A(r)xk−1 − b||22

x̃k = argmin
x

||A(r̃k)x− b||22 + λ2||x||22
4: w̃k = (x̃k, r̃k)

tk = 1
2 (1 +

√
1 + 4t2k−1)

wk = w̃k−1 +
tk−1

tk+1
(w̃k − w̃k−1), where wk = (xk, rk)

5: end for

NA denotes the number of angles, and n is the length of the image vector. We remark 
that we can exploit separability when solving for r̃k, as discussed in Section 2.1. As
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mentioned in Algorithm 2.1, since r0 is given,

x0 = argmin
x

||A(r0)x− b||22 + λ2||x||22.

The Tikhonov regularized least squares problems for x0 and x̃k are solved using
the hybrid scheme IRhybrid lsqr provided in IRTools[7] in MATLAB. The non-
linear least squares problem for r̃k is solved using a MATLAB package called imfil
[10]. We have found that accelerating the solution vector x alone has yielded stabler
results with slightly better accuracy than performing acceleration on both x and r.
We show the numerical experiments in section 4.

3.2. Anderson Acceleration. Anderson Acceleration, also called Anderson
mixing, is a method used to accelerate the convergence of fixed point iteration. Note
that we can write out alternating minimization scheme as a fixed point iteration, where

Algorithm 3.2 Fixed point iteration of the image vector

1: Input: xk ∈ R
n, Output: xk+1 = g(xk)

2: rk+1 = argmin
r

||A(r)xk − b||22
3: xk+1 = argmin

x
||A(rk+1)x− b||22 + λ2||x||22

g : Rn → R
n is the fixed point iteration of image vector x, as shown in Algorithm 3.2.

For this fixed point iteration, the general form of Anderson Acceleration is formed
as the following:

Algorithm 3.3 Anderson Acceleration

1: Inputs: x0 and m � 1
2: Set x1 = g(x0), using Algorithm 3.2
3: for k = 1, 2, . . . until a stopping criterion holds do
4: mk = min(m, k)
5: Set Fk = (fk−mk

, ..., fk), where fi = gi(xi)−xi and gi(xi) comes from Algorithm
3.2

6: Determine α(k) = (α
(k)
0 , ..., α

(k)
mk)

T that solves
min
α

||Fkα||2 s.t
∑mk

i=0 αi = 1

7: Set xk+1 =
∑mk

i=0 α
(k)
i g(xk−mk+i), where g(xk−mk+i) is from Algorithm 3.2

8: end for

We can cast the linear constrained optimization problem in Step 7 of Algorithm
3.3 into an unconstrained form which is straightforward to solve and convenient for
efficient implementation [16].

We define ∇fi = fi+1 − fi for each i and set ∇F = (∇fk−mk
, ...,∇fk−1). Then

the least squares problem is equivalent to

min
γ=(γ0,...γmk−1)T

||fk − Fkγ||2,

where α0 = γ0 and αi = γi − γi−1, for 1 � i � mk − 1 and αmk = 1 − γmk−1.
This unconstrained least squares problem leads to a modified version of Anderson 

Acceleration in Algorithm 3.4,
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Algorithm 3.4 Modified Anderson Acceleration

1: Given x0 and m � 1
2: Set x1 = g(x0), using Algorithm 3.2
3: for k=1,2,... do
4: mk = min(m, k)

5: Determine γ(k) = (γ
(k)
0 , ..., γ

(k)
mk−1)

T that solves
min

γ=(γ0,...γmk−1)T
||fk − Fkγ||2

6: Set xk+1 = g(xk)−Gkγ
(k), where g(xk) comes from Algorithm 3.2

7: end for

where

xk+1 = g(xk)−
mk−1∑
i=1

γ
(k)
i [g(xk−mk+i+1)− g(xk−mk+i)] = g(xk)−Gkγ

(k)

with G = (∇gk−mk
, ...,∇gk−1), ∇gi = g(xi+1)− g(xi).

Homer Walker proposed implementation that efficiently updates the QR factors
in the decomposition Fk = QkRk [16]. The basic logic is the following: every Fk is
obtained from Fk−1 with a column added on the right. If the resulting matrix has
more columns than m, then delete one from the left. The column addition can be
achieved by a modified Gram–Schmidt process. The deletion process is a little more
complicated. We delete the first column on the left when mk−1 = m. If Fk−1 = QR,
then Fk−1(:, 2 : m) = QR(:, 2 : m), where R(:, 2 : m) is upper-Hessenberg. Then, we
can determine m Givens rotations to cancel out the entries in the sub-diagonal.

4. Numerical Experiments. In this section, we make a few comparisons of
different methods to solve the X-ray tomography problem. Firstly, we compare the
speed of BCD exploiting the separability of geometry (BCDS) and the speed of regular
BCD. Secondly, we compare results produced from function evaluation budget in
implicit filtering. Thirdly, we test how BCDS works when different “numer of angles”
are used. Fourthly, we compare acceleration schemes. Fifthly, different regularization
parameters in the linear least squares solvers are compared. Lastly, we show our
algorithm works for both geometry parameters d and δθ. For experiments 1-5, we
solve problems with only unknown source-to-object distance nd. Since image size n
is fixed, we only need to solve for geometry parameters vector r = {d}. For the last
experiment, r = {d, δθ}. Comparisons in all experiments are made about geometry
errors and reconstruction errors. Geometry errors are defined as the relative errors of

geometry parameters, ||r−rtrue||2
||rtrue||2 . For experiment 1-5, where r = {d}, geometry errors

are ||d−dtrue||2
||dtrue||2 . For experiment 6, where r = {d, δθ} geometry errors are represented

by both ||d−dtrue||2
||dtrue||2 and ||δθ−δθtrue||2

||δθtrue||2 . The reconstruction errors are defined as the

relative errors of the image, ||x−xtrue||2
||xtrue||2 .

We use fan-beam projection for all our tomography problems for the sake of 
consistency. Note that we can also easily adapt our code to solve parallel beam 
projection problems by using the IRtools [7] and AIR Tools [9] MATLAB packages. 

In practice, good initial guesses of geometry parameters r are available and prior 
knowledge can help us set the bounds for them. For the source-to-object distance d, 
we generate a test problem where true d values, dtrue, are random numbers (chosen 
from a uniform distribution) between 1.5 and 2.5. We use a constant initial guess of
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d = 2 for all scanning positions and set the bounds for d from 1.5 to 2.5. For the errors
in scanning positions δθ, we assume for each set of scanning positions the error bound
is from 0 to 5. The test image we use is the Shepp-Logan Phantom [14]. The image
size is 32 × 32 in the first two experiments – efficient BCD algorithm that exploits
separability and function evaluation budget in the nonlinear least squares solver. In
the first experiment, we want to demonstrate the advantage of BCDS over BCD in
terms of computing time. In the second experiment, we want to empirically show
what a good parameter is so that we can use it for larger tests later. For the rest of

the experiments, we use image size 128× 128. The noise level is ||η||2
||b||2 = 0.01, where η

is a vector with random entries chosen from a normal distribution. Budget is a hyper-
parameter in imfil that stands for the maximum number of function evaluations in
the nonlinear least squares solver. Moreover, 0th iteration is included in the relative
errors figures below. This represents the relative error of the initial guesses with
regard to the true solution.

4.1. BCD Exploiting Separability vs BCD. To distinguish from the regular
BCD method, we refer to our BCD algorithm that exploits the separability of the
geometry parameters as BCDS. The “S” here stands for separability. In this section,
we compare the running time of BCD and that of BCDS. In this numerical experiment,
budget = 1000 (used in imfil to put a limit on the number of function evaluations),
and NA = 10. As we see in Figure 6, BCDS dramatically speeds up the convergence
because the separability allows us to solve a much smaller problem independently for
one r(i) at a time. The average running time of image reconstruction using BCD
is 12.8s, around the same as BCDS’s 12.6s. The time of geometry reconstruction
using BCD is 1857.5s, more then ten times longer than BCDS’s 157.1s. This is also
the reason BCDS is discussed first in this section. In the remaining experiments, we
always use the BCDS to reduce the running time. Moreover, the geometry errors and
reconstruction errors of BCDS are both better than that of BCD. In Figure 7, the
phantom reconstructed by BCDS is much closer to the true image than the one from
BCD.

Fig. 6. Comparison between BCD and BCDS.

A typical CT image using fan beam x-ray sources collects data at scanning po-
sitions of one degree increment, from 0 to 359 degrees. In a perfect machine, the 
geometry parameters are precisely known each time the source is rotated to a new 
scanning position. In our experimental scenario, we assume the geometry parameters
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Fig. 7. Comparison of 32×32 Shepp-Logan phantom: true image (left), BCDS image (middle), 
BCD image (right).

are only known approximately. To experiment with various scenarios, we assume that 
errors are introduced into the geometry parameters once every 360 degrees. That is,

NA

with NA = 10, errors occur once every 36 degrees.
Partially, NA depends on the precision of machine calibration. For a good ma-

chine, NA may be small. Also, NA may depend on how precise we measure the data. 
For example, two geometry parameters that are different in terms of double precision 
may be rounded to the same number in single precision. In this scenario, the differ-
ence could be small enough that we can treat the two geometry parameters as being 
equal.

If the number of angles is larger than the true number of angles, we may end up 
solving a larger problem than we need. For example, if for every 36 degrees only one
geometry error is introduced, then NAtrue = 10. If we assume NA = 20, the average 
of the two geometry errors per 36 degrees would approximate the one true geometry 
error introduced in that set of scanning positions. If the number of angles is smaller 
than the true number of angles, we end up solving a low dimension approximation. We 
do not seek to solve for the image exactly but aim to compute good approximations 
that yield much better results than not considering geometry parameters at all. In 
practice, we can consider the number of angles as a hyper-parameter that practitioners 
can set based on their expertise and knowledge of the machine calibration. In our 
problems, we assume to know the number of angles NA.

4.2. Imfil Budget. We explore the effect of evaluation budgets in the nonlinear 
least squares solver on the geometry and reconstruction errors. We set NA = 10, and 
use budget = 10, 100, 1000, 10000. Since the budget size may greatly affect the nonlin-
ear least squares solutions, we explore its effects on BCDS without any acceleration.

As we can see in Figure 8, 100, 1000, and 10000 are equally good. Both geometry 
and reconstruction errors are very small when 100, 1000, 10000 are used. Thus, 100 
is the best budget out of the four because any more evaluation beyond 100 does not 
make the solution better. When budget is 1000 and 10000 respectively, we wasted 
many evaluations without making any progress. When 10 is used, even though we get 
convergent results earlier, the small budget causes the algorithm to terminate before 
it finds a better solution.

4.3. Number of Angles. We test our algorithm when the number of angles 
NA is 5, 10, and 20 respectively. budget = 100. We want to explore the differences in 
relative error of r, relative error of x, the convergence, and the image quality.

Both geometry and image parameters converge for all three different number of 
angles, as shown in Figure 9. Although the errors when NA = 10 are not as low as 
when NA = 5, the reconstruction errors when NA = 10 still have a 40% reduction

This manuscript is for review purposes only.
90



Fig. 8. Comparison of budgets: geometry errors (left), reconstruction errors (right)
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Fig. 9. Comparison of number of angles NA: geometry errors (left), reconstruction errors (right)

comparing to its initial error level. Although the initial reconstruction error was close 
to 1, our algorithm converges and has error reduction for the CT image for at least 
40% when NA = 5, 10, 20 respectively.

4.4. Acceleration. In this section, we compare BCDS with no acceleration, 
ABCDS, and Anderson acceleration. ABCDS refers to the Accelerated Block Co-
ordinate Descent algorithm that exploits separability of geometry parameters. The 
number of columns of the matrix Fk , also referred to as memory size in this paper, in 
Algorithm 3.4 is m = 5. Since the linear least squares problem at Step 5 of Algorithm 
3.4 is relatively small, we directly use the MATLAB backslash operator to solve it.

In Figure 10, geometry errors and reconstruction errors converge for all three 
methods, however the error reduction in Anderson acceleration is very small. While 
Anderson acceleration does perform well in some other numerical experiments, we 
found it to be less consistent in achieving good error reduction as ABCDS as shown 
in Figure 10. ABCDS converges much faster than BCDS at around 30th iteration, 
while BCDS slowly improves and ends up achieving 10% better error reduction in this 
experiment

4.5. Regularization. In this section, we compare BCDS with different regular-
ization parameters: no regularization, GCV, and weighted-GCV, as shown in Figure
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Fig. 10. Comparison of BCDS, ABCDS, and Anderson: geometry errors (left), reconstruction
errors (right)

11. The reason we use BCDS without the acceleration methods is that we want to see
the direct impact of regularization on the alternating minimization scheme. In this
experiment, NA = 10 and budget = 100.
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Fig. 11. Comparison of regularization: geometry errors (left), reconstruction errors (right)

When there is no regularization, IRhybrid lsqr is essentially an LSQR algo-
rithm. Since the geometry error converges at 18th iteration, the linear system arising
from the geometry parameters stays the same after that, and results in a constant
reconstruction error. GCV and weighted-GCV result in much better error reduction
than when no regularization is used, while weighted-GCV produces slightly better
error reduction than GCV.

4.6. Geometry Parameters: d and δθ. We show that our alternating scheme
as well as the accelerated version can also be applied to the case when geometry
parameters r = (d, δθ).The nonlinear least squares problem becomes:

argmin
x,δθ,d

||A(δθ, d)x− b||.

In all previous experiments we assume there was no error introduced in scanning 
positions. If the scanning positions contain errors as well, the image quality could
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also be affected, as illustrated in Figure 12. Since there is noise in the data vector
b, we cannot obtain the true image even if we use the true geometry parameters.
The images in the top middle and top right are obtained from ABCDS and BCDS
respectively. We can see that there is virtually no difference between them except
the image from ABCDS has a shade of blue that is closer to the best possible image.
The bottom left image is obtained from BCDS when assuming there is no error in
the scanning position. The color of this image is not as close to the best possible
image as the previous two. Also, the image is more blurry. In Figure 13, we provide
numerical evidence for the image comparison in Figure 12. In Figure 13, ABCDS
produces the best results for all three parameter; BCDS that models only the source-
to-object distance and ignores the errors in scanning position has the worst image
reconstruction errors; ABCDS also converges faster and reaches better approximation
for errors in “angles” or scanning positions.

Fig. 12. Best image possible (top left), image obtained by considering both δθ and d using
ABCDS (top middle) , image obtained by considering both δθ and d using BCDS (top right), image
obtained by using correct d but incorrect δθ (bottom left), image obtained by using incorrect geometry
parameters d and δθ (bottom right).
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Fig. 13. Comparison of ABCDS, BCDS, and BCDS that assumes geometry errors only include
errors in source-to-object distance: geometry errors (left), reconstruction errors (middle), errors in
scanning positions (right)

5. Conclusion. In this paper, we propose an accelerated alternating minimiza-
tion scheme to solve X-ray tomography problems. The linear least squares problem 
is solved by a weighted hybrid LSQR algorithm with Tikhonov regularization. The
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nonlinear least squares problem is solved by implicit filtering. We also investigated
ABCDS and Anderson mixing to accelerate convergence. We have the following find-
ings:

1. BCDS runs faster than the normal BCD because the separability of param-
eters allow us to solve each entry of r independently. Also, since solving for
each parameter separately makes the nonlinear least squares problem much
easier than solving all parameters at once, BCDS is faster at finding a good
solution and converge faster than BCD.

2. Choosing an appropriate budget for implicit filtering is important. When the
budget is chosen too small, better solutions are not explored. When bud-
get is chosen too big, many function evaluations are wasted without making
progress. A suggested number in the imfil documentation is 10N2, where
N is the number of geometry parameters. We found this formula does not
always give the appropriate budget. Since we solve for each geometry param-
eter using separability, the dimension of each small problem is one. But, we
have found 100 to be the best budget for 32× 32 test problem with NA = 10.

3. ABCDS is much less computationally costly than BCDS with Anderson accel-
eration because Anderson acceleration requires solving a linear least squares
problem in each iteration when choosing the weight. Although both methods
converge, ABCDS have better acceleration effects than Anderson accelera-
tion.

4. The weighted-GCV approach seems to be the best among the parameter
choice methods we compared. It achieves the best geometry error and recon-
struction error based on our numerical experiments.

5. When we introduce errors in both scanning positions and source-to-object
distance, ABCDS produces the closest approximation of the best possible
image obtained by using the true geometry parameters. In practice, we could
account for other geometry errors by adding nonlinear parameters in the least
squares problem.

The ABCDS method has shown its success in our tomographic reconstruction
problems. We believe this algorithm can be used to effectively solve X-ray tomography
problems that have variations in the geometry parameter. A future direction towards
more improvement would be adapting, applying, and advancing this algorithm on
X-ray images produced in clinical trials.
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