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Abstract. To analyze the abundance of multidimensional data, tensor-based frameworks have been developed.
Traditionally, the matrix singular value decomposition (SVD) is used to extract the most dominant
features from a matrix containing the vectorized data. While the SVD is highly useful for data
that can be appropriately represented as a matrix, this step of vectorization causes us to lose the
high-dimensional relationships intrinsic to the data. To facilitate e�cient multidimensional feature
extraction, we utilize a projection-based classification algorithm using the t-SVDM, a tensor analog
of the matrix SVD. Our work extends the t-SVDM framework and the classification algorithm,
both initially proposed for tensors of order 3, to any number of dimensions. We then apply this
algorithm to a classification task using the StarPlus fMRI dataset. Our numerical experiments
demonstrate that for this fMRI classification task, the t-SVDM-based algorithm obtains noticeably
superior performance when compared to the best possible equivalent matrix-based approach. Our
results illustrate the advantages of our chosen tensor framework, provide insight into beneficial
choices of parameters, and could be further developed for classification of more complex imaging
data. We provide our Python implementation at https://github.com/elizabethnewman/tensor-fmri.

1. Introduction. High-dimensional data has become increasingly prevalent in various
fields such as video, semantic indexing, and chemistry [12]. One such area is medical imaging,
in which the high-dimensional data of interest are medical images obtained using a modality
such as functional Magnetic Resonance Imaging (fMRI). A single patient’s fMRI scan can be
thought of as a series of three-dimensional scans over time [1, 2].

fMRI data can serve an important role in disease detection, with applications ranging from
Alzheimer’s to depression [5, 15]. Human medical professionals can be trained to interpret
fMRI scans and make diagnostic decisions based on visual inspection. Various researchers have
investigated the viability of utilizing mathematical methods to automate this classification
process. The key to classification algorithms is to extract meaningful features from training
data belonging to a certain class. The Singular Value Decomposition (SVD) is one popular
method that accomplishes this task successfully in various data analysis contexts. However,
it requires that all of the input data is reshaped into a two-dimensional form.

A tensor is a higher-dimensional analog to a matrix. Unlike a matrix in traditional linear
algebra, where all information is indexed according to two possible axes (rows and columns),
a tensor can have arbitrarily many dimensions. The mathematical foundations of algebra
using tensors have been well-developed; [12] provides some useful background on this subject.
In order to identify dominant features from inherently multidimensional data such as fMRI
scans, tensor-based SVD analogs have been developed that allow the data to retain its mul-
tidimensional form throughout the classification process [8], avoiding the pitfalls that occur
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with vectorizing such data.
We focus on the t-SVDM framework, a tensor SVD approach proposed in [10]. This par-

ticular framework not only allows for a kind of multiplication between tensors that appears
similar to traditional matrix multiplication, but also can provide representations of multidi-
mensional data that are provably better than representing the data in vectorized form as a
matrix. In order to determine its viability in more complicated medical diagnostic classifica-
tion tasks, we apply this framework to a classification task of determining whether or not a
human subject is reading a sentence or viewing a picture. We illustrate that this t-SVDM
classification algorithm successfully beats its matrix counterpart. Our results also shed some
light on the potential limitations of this method.

In our paper, we illustrate an extension of the t-SVDM framework, describe how it can
be used for a classification algorithm based on [18], and we apply this algorithm to the afore-
mentioned fMRI classification task. The main extensions and contributions of our work are
the following:

• Dimension Extension: The original t-SVDM framework is proposed for only three-
dimensions. Our paper provides definitions for a p-dimensional tensor and illustrates
the usability of this framework for a five-dimensional fMRI dataset.

• Transformation Choices: We select the t-SVDM not only for its ability to process
high-dimensional data, but also for the flexibility that the framework introduces via the
?M-product, which enables one to strategically choose a mathematical transformation
based on the nature of the data being analyzed.

• Algorithm Flexibility: The t-SVDM and our proposed classification procedure is
a mathematically defined and highly flexible framework that can be applied to any
labeled high-dimensional data. Thus, all of the methods described in our paper can
easily be extended to other similar classification tasks with labeled data.

• Region of Interest Implications: When incorporating knowledge about specific
regions of the brain into our classification procedure, we discovered that the most
impactful regions vary between human subjects. This could illustrate the anatomi-
cal di↵erences between humans when completing cognitive tasks and highlights the
challenge of constructing the di�culty of creating a universal basis that represents all
subjects with consistent accuracy.

The paper is organized as follows: Section 2 describes necessary background notations,
the ?M-product and the algebraic framework it gives rise to, and the t-SVDM. Section 3 de-
scribes the local tensor SVD approaches specifically for classification and provides an intuition
example to provide more explanation. Section 4 first describes specific choices of transforma-
tion matrices, and then examines numerical results from applying the classification algorithm
to the StarPlus fMRI dataset. Finally, Section 5 concludes the paper and proposes some
potential future directions.

2. Background and Preliminaries. In this paper, a tensor, denoted with a capital cali-
graphic letter A, is a multidimensional array. The order of a tensor is the number of dimen-
sions it has; if A is a tensor of order-p, then the size of A is n1 ⇥ n2 ⇥  · · ·  ⇥ np. We assume
tensors are real-valued; that is, A 2 Rn1⇥n2⇥···⇥np . A matrix (order-2 tensor) is denoted with 
a bold capital letter, A 2 Rn1⇥n2 , a vector (order-1 tensor) is denoted with a bold lowercase
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letter, a 2 Rn1 , and a scalar (order-0 tensor) is denoted by a lowercase letter, a 2 R. To pro-
vide relevant information needed to understand the t-SVDM framework, we will first denote
the basic notation and definitions used within this paper. Next, we will introduce tensor prod-
ucts, including the ?M-product. This notation and terminology will then equip us with the
tools needed to explain the t-SVDM and the important properties it o↵ers for classification.
For simplicity, we only consider real-valued tensors, but the definitions and theory presented
can be extended to complex-valued tensors as well.

2.1. Notation. Consider that an m⇥n matrix is structured with m rows and n columns.
Using Matlab notation, A(i, :) denotes the i-th row and A(:, j) denotes the j-th column. We
can similarly describe the structure of a tensor. These analogs of matrix concepts to tensors
are introduced and developed in [11] and [8]. We extend these definitions such that they
describe any finite-dimensional tensor of order p.

Definition 2.1 (mode-k fibers). Fibers are sections of a tensor A such that all but the k-th
dimension are fixed.

tensor
A

mode-1 fibers mode-2 fibers mode-3 fibers mode-4 fibers
A(:, i2, i3, i4) A(i1, :, i3, i4) A(i1, i2, :, i4) A(i1, i2, i3, :)
A:,i2,i3,i4 Ai1,:,i3,i4 Ai1,i2,:,i4 Ai1,i2,i3,:

Figure 1: Visualization of a 4D tensor, its mode-1, 2, 3, and 4 fibers. For illustrative purposes,
we only show a mode-4 fiber for 1 ⇥ 1 ⇥ n3 ⇥ n4 tensor. In other words, the mode-4 fiber is
composed of each of the frontmost blue elements. In general, we can visualize a fourth-order
tensor of size n1 ⇥ n2 ⇥ n3 ⇥ n4 as an array of n4 third-order tensors of size n1 ⇥ n2 ⇥ n3.
A mode-4 fiber chooses the same entry in each of the third-order tensors by fixing the index
(i1, i2, i3), resulting in an one-dimensional array with n4 entries.

Definition 2.2 (lateral slices, frontal slices, and tubes). For a p-dimensional tensor A, we
denote lateral slices as ~Ai2 = A(:, i2, :, . . . , :), and frontal slices as A(:, :, i3, i4, . . . , ip). We
denote tubes, or 1⇥ 1⇥ n3 ⇥ · · ·⇥ np tensors, as ai1,i2 = A(i1, i2, :, . . . , :).

272



K. KEEGAN, T. VISHWANATH, AND Y. XU

Figure 2 visualizes a tensor of order 4, its lateral and frontal slices, and tubes.

lateral slices frontal slices tubes
~Ai2 = A(:, i2, :, :) A(:, :, i3, i4) A(i1, i2, :, :)

A:,i2,... A:,:,i3,i4 ai1,i2

Figure 2: Visualization of a 4D tensor, its lateral slices, frontal slices, and tubes. Notice that
lateral slices fix the second dimension, frontal slices fix all dimensions except the first two,
and tubes fix the first two dimensions.

Definition 2.3 (vectorize). Matrix vectorization is the process of converting a matrix of
values into a column vector. For example, for a matrix A 2 Rn1⇥n2, we have

vec(A) = vec
�⇥
A:,1 · · · A:,n2

⇤�
=

2

64
A:,1
...

A:,n2

3

75 .

Tensor vectorization follows a similar recursive pattern.

vec(A) =

2

64
vec(A:,:,1)

...
vec(A:,:,n3)

3

75 , where A 2 Rn1⇥n2⇥n3 .

vec(A) =

2

64
vec(A:,...,:,1)

...
vec(A:,...,:,np)

3

75 , where A 2 Rn1⇥n2⇥···⇥np .

Just as multiplication can be accomplished between matrices, one can also define mul-
tiplication between a tensor with a matrix. Definition 2.4 and Definition 2.5 describe this
process.

Definition 2.4 (mode-k unfolding/folding). A mode-k unfolding of a tensor A 2 Rn1⇥···⇥np

results in a matrix denoted by A(k) 2 Rnk⇥(n1...nk�1nk+1...np) such that the mode-k fibers are
the columns of the resultant matrix. A mode-k folding is the reverse of this process.

Definition 2.5 (mode-k product). The mode-k product of a tensor A 2 Rn1⇥···⇥np with a
matrix M 2 Rd⇥nk results in a tensor whose mode-k unfolding is M multiplied with the mode-k
unfolding of A, such that:

A⇥k M = fold(MA(k)),

with fold(MA(k)) 2 Rn1⇥···⇥nk�1⇥d⇥nk+1⇥np.
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Definition 2.6 (Frobenius norm). The Frobenius norm of an order-p tensor A 2 Rn1⇥···⇥np

is given by kAkF =
qPn1

i=11

Pn2
i2=1

· · ·
Pnp

ip=1
|Ai1,i2,...,ip |2.

Definition 2.7 (f -diagonal). A tensor is said to be facewise-diagonal, or f -diagonal, if any
nonzero entries only lie along the diagonal of its frontal slices.

2.2. Tensor-Tensor Products. In this section, we introduce the ?M-product and describe
its flexibility, which gives rise to tensor analogies to various familiar matrix concepts such as the
transpose, the identity, and orthogonality under ?M-product. Kilmer and Martin originated
the method of multiplying matrices for the t-product in [11], and Kernfeld et al. extended
this to the ?M-product in [8]. We describe the key definitions from these works for order-p
tensors.

Definition 2.8 (Facewise Product). The facewise product multiplies each of the frontal
slices of two tensors in the transform domain in parallel. Given A 2 Rn1⇥m⇥n3⇥···⇥np, and
B 2 Rm⇥n2⇥n3⇥···⇥np, the facewise product of A and B, denoted using “4” can be written as
follows:

C = A4B,

where for each frontal slice of C,

C(:, :, i3, i4, . . . , ip) = A(:, :, i3, i4, . . . , ip) ·B(:, :, i3, i4, . . . , ip),

for ik = 1, . . . , nk, where k = 3, . . . , p.

Now that we have defined both the mode-k product and the facewise product, we can
introduce the ?M-product. Definition 2.9 defines the ?M-product, Algorithm 2.1 demonstrates
its computation, Figure 3 demonstrates the product’s computation for fourth-order tensors,
and Example 2.10 illustrates a simple third-order example of computing the ?M-product.

Definition 2.9 (?M-product). Given A 2 Rn1⇥m⇥n3⇥···⇥np, and B 2 Rm⇥n2⇥n3⇥···⇥np,
with invertible matrices M3 2 Rn3⇥n3 , . . . ,Mp 2 Rnp⇥np, define C 2 Rn1⇥n2⇥···⇥np to be the
?M-product of A and B such that

C = A?MB = (Â4B̂)⇥3 M
�1

3
⇥ · · ·⇥p M

�1

p ,

where

Â = A⇥3 M3 ⇥4 M4 ⇥ · · ·⇥p Mp.

Similar to how applying the Fourier Transform to a matrix of data will decouple rela-
tionships into frequencies, the purpose of the matrices M3, . . . ,Mp is to place a tensor in a 
transform domain where the higher-order relationships after the second dimension have been 
decoupled. The choice of M is left as a selectable parameter in the ?M-product. This in-
troduces a means of flexibility into the framework in which one can strategically choose a 
transformation based on the nature of the data (e.g. the Discrete Fourier Transform for time 
series data). An additional important detail is that under the ?M-product, the lateral slices 
of a tensor are analogous to the columns of a matrix, and tubes are analogous to scalars.
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Algorithm 2.1 ?M-product

1: Inputs: A 2 Rn1⇥m⇥n3⇥···⇥np ,B 2 Rm⇥n2⇥n3⇥···⇥np , invertible M3 2 Rn3⇥n3 , . . . ,Mp 2
Rnp⇥np

2: Â = A⇥3 M3 ⇥4 M4 ⇥5 · · ·⇥p Mp

3: B̂ = B ⇥3 M3 ⇥4 M4 ⇥5 · · ·⇥p Mp

4: Ĉ = (Â4B̂)
5: C = Ĉ ⇥3 M

�1

3
⇥4 M

�1

4
⇥5 · · ·⇥p M�1

p

6: Outputs: C 2 Rn1⇥n2⇥···⇥np

A ‹M

Spatial domain

B ˆ3M3 ˆ4 M4 pA Ÿ

Transform domain

pB ˆ3M´1
3 ˆ4 M´1

4 C

Spatial domain

Figure 3: Visualization of ?M-product for 4D tensors

Example 2.10. Let A 2 R2⇥2⇥2 and ~B 2 R2⇥1⇥2 where

A(:, :, 1) =


1 2
0 �1

�
, ~B(:, :, 1) =


�1
1

�
,

A(:, :, 2) =


�1 1
1 1

�
, ~B(:, :, 2) =


0
1

�
.

We choose the following M:

M =


3 2
1 1

�
, M�1 =


1 �2
�1 3

�
.

We then move each tensor into the transform domain by taking the the mode-3 product of A
and ~B with M; that is, Â = A⇥3 M and ~̂B = ~B ⇥3 M, which are

Â(:, :, 1) =


1 8
2 �1

�
, ~̂B(:, :, 1) =


�3
5

�
,

Â(:, :, 2) =


0 3
1 0

�
, ~̂B(:, :, 2) =


�1
2

�
.

Now, we can take the facewise product of the two tensors to produce ~̂C = Â4~̂B. The
frontal slices obtained by computing this facewise product are described below:

275



A TENSOR SVD-BASED CLASSIFICATION ALGORITHM APPLIED TO FMRI DATA

~̂C(:, :, 1) =

37
�11

�
, ~̂C(:, :, 2) =


6
�1

�
.

Finally, we take the mode-3 product of M�1 with the tensor we computed above in order
to obtain our final tensor C = Ĉ ⇥3 M�1, which is described below:

C(:, :, 1) =

25
�9

�
, C(:, :, 2) =


�19
8

�
.

We also provide definitions of the ?M-transpose, the ?M-identity, and the notion of ?M-
orthogonality. Note that these concepts arise directly from the ?M-product and are thus
unique to this tensor framework.

Definition 2.11 (?M-transpose). A> 2 Rn2⇥n1⇥···⇥np of A 2 Rn1⇥n2⇥···⇥np is formed by
transposing the frontal slices of A in the transform domain, or

(Â>
)(:, :, i3, ..., ip) =

⇣
Â(:, :, i3, ..., ip)

⌘>
for ik = 1, . . . , nk, where k = 3, . . . , p.

Definition 2.12 (?M-identity). The identity tensor I 2 Rn⇥n⇥···⇥np is the tensor such that
for any tensor A,

A?MI = I?MA = A.

Note that in the transform domain, we have

bI(:,:,i3,...,ip) = I for ik = 1, . . . , nk , where k = 3, . . . , p.

Definition 2.13 (?M-orthogonality). A tensor Q 2 Rn⇥n⇥···⇥np is orthogonal if

Q>?MQ = Q?MQ> = I.

2.3. t-SVDM. From the concepts defined in Subsection 2.1 and Subsection 2.2, we can
introduce the t-SVDM, a higher-dimensional analog of the SVD based upon the ?M-product.
The t-SVDM and its properties are described in [10] for third-order tensors. In this section, we
first provide the mathematical definition of the t-SVDM for tensors of order p and describe
its computation. We then highlight the important properties o↵ered by the t-SVDM that
make it ideal for the analysis of multidimensional data, similar to the benefits o↵ered by the
traditional SVD for matrix data.

First, we define the matrix SVD, which is described in further detail in [21].

Definition 2.14 (SVD). For a matrix A 2 Rn1⇥n2, the SVD is given by the decomposition

A = U⌃V>,

where U 2 Rn1⇥n1 and V 2 Rn2⇥n2 are orthogonal and ⌃ 2 Rn1⇥n2 is a diagonal matrix 
with all positive entries �i for i = 1, ..., r, where r is the rank of the matrix A. These entries
lie along the diagonal in descending order such that �1 � �2 �  · · · �  �r > 0, where r is the 
number of nonzero singular values.
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If we know that the matrix A is of rank r, then we can also express this decomposition as
the sum of r rank-1 matrices formed from the SVD matrices. Here, ui and vi represent the
i-th column of U and i-th column of V, respectively.

A =
rX

i=1

�iuiv
>
i

Now that we have reviewed the SVD for matrices, we can introduce the t-SVDM.

Definition 2.15 (t-SVDM). For a tensor A 2 Rn1⇥n2⇥···⇥np, the t-SVDM is given by the
decomposition

A = U?MS?MV>,

where U 2 Rn1⇥n1⇥n3⇥···⇥np and V 2 Rn2⇥n2⇥n3⇥···⇥np are ?M-orthogonal, and
S 2 Rn1⇥n2⇥n3⇥···⇥np is f-diagonal. We denote a singular tube si as the (i,i)-tube of S and let
r be the number of nonzero singular tubes. The tubes lie in descending magnitude such that
ks1kF � ks2kF � · · · � ksrkF > 0.

A visualization of the t-SVDM for a third-order tensor is provided in Figure 4.

Figure 4: t-SVDM for third-order tensors

The t-SVDM also gives us a notion of rank for tensors, which we define in Definition 2.16.

Definition 2.16 (t-rank). Let A 2 Rn1⇥n2⇥···⇥np, with its t-SVDM given by U?MS?MV>.
We say that the t-rank of A is equal to the number of nonzero tubes in S, and we denote the
t-rank as r.

Suppose that A has t-rank-r. Then, similar to the matrix SVD case, we can rewrite A
using the t-SVDM tensors as the sum of r t-rank-1 tensors formed from the lateral slices of
U and V and the tubes of S:

A =
rX

i=1

~U i?Msii?M~V>
i .

We visualize this expansion and its relation to the t-SVDM tensors in Figure 5.
We then introduce the implementation of t-SVDM in Algorithm 2.2. Apart from the flex-

ible choices of transformation matrices M as mentioned when discussing the ?M-product, the 
algorithm also has the advantage of allowing parallel computation as matrix SVD computa-
tions are not reliant on each other. This allows us to break the t-SVDM computation into 
smaller pieces.

The many useful properties of the matrix SVD are well-understood and documented [21]. 
We now highlight some similar beneficial properties o↵ered by the t-SVDM.

277



A TENSOR SVD-BASED CLASSIFICATION ALGORITHM APPLIED TO FMRI DATA

Figure 5: Expansion of t-rank-1 tensors derived from slices of U and V with diagonal tubes
of S

Algorithm 2.2 t-SVDM

1: Input: A 2 Rn1⇥n2⇥···⇥np , invertible M3 2 Rn3⇥n3 , ...,Mp 2 Rnp⇥np

2: Move into transform domain: Â A
3: Concatenate frontal slices along third dimension: Â = reshape(Â, [n1, n2, n3n4 · · ·np])
4: for i = 1, . . . , (n3n4 · · ·np) do

5: Compute matrix SVD: Â(:, :, i) = Û(:, :, i) · Ŝ(:, :, i) · V̂(:, :, i)>

6: end for
7: Reshape into p-dimensional tensors:

Û = reshape(Û , [n1, n1, n3..., np])

Ŝ = reshape(Ŝ, [n1, n2, n3..., np])

V̂ = reshape(V̂ , [n2, n2, n3..., np])

8: Move back to original domain: U  Û ,V  V̂ ,S  Ŝ
9: Output: U 2 Rn1⇥n1⇥···⇥np , V 2 Rn2⇥n2⇥···⇥np , S 2 Rn1⇥n2⇥···⇥np

Basis: For matrices, one can take a linear combination of basis vectors to produce a new
vector. In the matrix SVD, the columns of U form a basis for the range or column space of
A. This means that for each column j, we can find scalars c1, ..., cr 2 R such that

A(:, j) = c1U(:, 1) + · · ·+ crU(:, r).

As mentioned earlier, the tensor analogs for columns and vectors are the lateral slices. The lat-
eral slices of U (the ~U i slices) form a basis for approximating the original tensor A. The lateral
slices of A can be obtained by taking a tensor linear combination (or t-linear combination),
in which one computes the ?M-product of the lateral slices with tubes (the analog to scalars
in the ?M-framework) [9]. For each lateral slice j, we can find tubes c1, ..., cr 2 R1⇥1⇥n3⇥···⇥np

such that

~Aj = ~U1?Mc1 + · · ·+ ~Ur?Mcr.

Eckart-Young Theorem in ?M-framework: The Eckart-Young theorem [21] states
that the rank-k truncated matrix SVD, denoted Ak, is the best rank-k approximation to the
original matrix A; that is, for any matrix B with rank k, we have kA�AkkF  kA�BkF . An 
extension of the Eckart-Young theorem also exists for t-rank-k approximations obtained using
the t-SVDM. Note that the following theorem simply extends work that have been provided 
in [10] to tensors of order-p rather than third order.
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Theorem 2.17 (Eckart-Young for higher-order ?M-product). Let A 2 Rn1⇥n2⇥···⇥np be a
order-p tensor with the full t-SVDM A = U?MS?MV> where the ?M-product consists of
only multiples of orthogonal transformations. Define Ak = Uk?MSk?MV>

k as the t-rank-k
approximation of A obtained through truncation. Then,

Ak = argmin
B2Rn1⇥n2⇥···⇥np

kA�BkF s. t. t-rank(B) = k.

Furthermore, the squared error is given by

kA�Akk2F =
rX

i=k+1

ksik2F

where si is the (i, i)-tube of S and r is the t-rank of A.

Proof. See Appendix A.1.

Optimal t-rank-k Tensor Representation over rank-k Matrix Representation: 
Another important property is the provable optimality of a t-rank-k approximation of a tensor
A obtained using the t-SVDM compared to a rank-k approximation obtained from a matrix 
A containing the vectorized information of A, or

kA � AkkF  kA � AkkF .

Here, Ak and Ak represent a t-rank-k tensor and a rank-k matrix, respectively. The proof 
for this is provided in [10] and relies upon the Eckart-Young theorem for tensors as defined
earlier. For our work, this fact illustrates that representing inherently high-dimensional data 
as a tensor is provably optimal to the corresponding matrix representation. In the following
section, we introduce a classification approach based upon the U obtained using the t-SVDM.

3. Local Tensor SVD Approaches for Classification. Classification tasks rely on two 
basic assumptions: data from the same class share common features and data from distinct 
classes have di↵erent fundamental features. The crux of classification algorithms is the method 
by which one extracts meaningful features from the data. In this work, we consider supervised 
classification tasks, where the class labels are known a priori. In our case, the class labels 
are whether the subject is viewing a picture or reading a sentence. We assume that fMRI 
trials with either one of these class labels share some fundamental commonalities, i.e. that 
brains viewing a picture are responding in a distinct way from which they would respond 
while reading a sentence. We also assume that such di↵erences are detectable using fMRI.

3.1. Algorithm Overview. Our work uses a projection-based classification approach as 
presented in [19]. We generalize this approach to higher-order tensors and a family of tensor-
tensor products. This approach begins by extracting features from our training data through 
building a local basis for each class. Then, we orthogonally project a test image onto the spaces
spanned by each local basis, as illustrated in Figure 6 in R3. We make a classification decision 
based on the class of the local basis for which the projection produces the smallest norm 
di↵erence with the original test image. The key to successful projection-based classification
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colpUq

UUJb

pI ´ UUJqb

b

colpU1q colpU2q

pI ´ U2U
J
2 qb

pI ´ U1U
J
1 qb

b

Figure 6: Illustration of a single orthogonal projection in R3 (left) and using orthogonal
projections in R3 to classify (right). In the left illustration, assume U is a matrix with
orthonormal columns. The projection (blue solid), UU>b, lies in the column space of U and
the error (blue dashed), (I�UU>)b, is orthogonal to the projection. In the right illustration,
the vector b is orthogonally projected onto the column spaces of U1 and U2 respectively. The
vector b lies more in col(U2) than in col(U1). Hence, b would be classified as belonging to
the subspace spanned by U2.

is finding a representative basis for each class that simultaneously captures the fundamental
features of the class and distinguishes between distinct classes.

Due to its provably optimal representation and the flexible choice of transformation, we
propose forming local bases and projections using the t-SVDM. Specifically, let Ai contain
the fMRI data for the i-th class as lateral slices of Ai; that is, Ai is a fifth-order tensor of size
(x, trialsi, y, z, time) where x, y, and z correspond to the spatial dimensions1. We compute its
t-SVDM

Ai = U i?MSi?MV>
i .

We choose the second dimension to be the trials so that each lateral slice of Ai is one
fMRI image. Hence, the lateral slices of U i form an orthonormal basis which contain the most
important features of the fMRI data across the trials.

To obtain features that are representative of class i, but distinguishable from other classes,
we truncate the t-SVDM to k terms, 2

Ai ⇡ U i,k?MSi,k?MV>
i,k,

where U i,k contains the first k lateral slices and Si,k and V i,k are truncated accordingly. The
truncated t-SVDM will be the best t-rank-k approximation to Ai (see Theorem 2.17) and
hence the local basis U i,k is the best set of k lateral slices to describe class i.

Suppose we have c classes. We form class tensors A0, . . . ,Ac�1 and local bases
U0,k1 , . . . ,U c�1,kc�1 where each class can have its own truncation and choice of transforma-
tion. We orthogonally project a test fMRI image (i.e., an image not contained in the class

1Note we can permute the dimensions of the class tensor freely as long as the second dimension corresponds
to the number of images.

2Note that we can also select a di↵erent truncation parameter k for each class i.
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tensors) stored as a lateral slice (x, 1, y, z, time) onto each of the class spaces via

~P i = U i,ki?MU>
i,ki?M

~T .

The projection ~P i is a t-linear combination of the lateral slices contained in U i,ki , and hence

lies in the span of U i,ki ; see [9, 8] for details. Analogous to the matrix case, ~P i is the closest

image lying in the span of U i,ki to the original image ~T . Here, closeness is measured in the
Frobenius norm, although other norms can also be utilized.

After projecting the test image onto each of the spaces spanned by the local bases, we
classify based on the projection that was closest to the original image; that is,

i⇤ = argmin
i=0,...,c�1

k~T � ~P ikF .

Here, i⇤ is the predicted class.
The t-SVDM projection-based classification algorithm o↵ers several advantages. First, 

the projection-based method is simple and e�cient to implement. The local bases are pre-
computed and can be formed in parallel because the class tensors are distinct. Second, the 
proposed algorithm is a direct method. We do not form a parameterized decision boundary 
and hence there is no training process to adjust parameters. Third, our method is flexible. We 
extend the original work in [19] to a more general family of tensor-tensor products based on 
the choice of M. In doing so, we o↵er many choices of transformations that, when well-chosen, 
can improve the classification results. Fourth, this algorithm is based upon a rigorous tensor
algebraic framework created by the ?M-product and is therefore mathematically justified. As 
seen in Theorem 2.17, the t-SVDM satisfies an Eckart-Young-like Theorem, hence the local 
bases we form are in some sense optimal. This also gives us a natural analog to projections 
in multidimensional space.

3.2. Intuition Example for Algorithm. This following example is intended to serve as a 
stepping stone towards understanding this t-SVDM classification algorithm before we proceed 
to describing our application to fMRI data. The MNIST database consists of 70,000 grayscale
images of size 28 ⇥ 28 where each contains one digit between 0 and 9, resulting in 10 possible 
classes [13]. For illustrative purposes, we apply the local t-SVDM algorithm using only the
first two classes (digits 0 and 1).

Figure 7 provides an illustration of how classification via local tensor SVD (Subsection 3.1)
is accomplished using MNIST data. Here, we select a small truncation value k = 2  to  build
a basis and utilize the t-product (or Discrete Foureir Transform) as our transformation. U0,2 
and U1,2 both look very similar to the original digits, which capture the features of digits. U0,2

exhibits the roundness of digit 0, and U1,2 shows the vertical characteristics of digit 1. Shift 
of digits is also caught in the truncated basis because of our specific transformation choice.
Since P0 is the projection of the test image T onto the space spanned by the lateral slices of 
U0,2, we visually observe that the projection is blurred, and it seemed to have characteristics 
of both digit 0 and digit 1. Conversely, P1 is the projection of T to U1,2 (the true class to 
which it belongs), and we see that P1 only retains the characteristics of digit 1. Consequently,

281



A TENSOR SVD-BASED CLASSIFICATION ALGORITHM APPLIED TO FMRI DATA

A0 A1

U0,2 U1,2

P0 |T �P0| T P1 |T �P1|

Figure 7: Illustration of applying local t-SVDM classification algorithm on MNIST database.
We compute the t-SVDM of two class tensors A0 (representing digits consisting of 0) and A1

(representing digits consisting of 1), both with dimension (x, trials, y) = (28, 100, 28). Bases
U0,2 and U1,2 are generated by class 0 and class 1 respectively. T represents the test image,
which belongs to class A1. We project T onto the spaces spanned by U0,2 and U1,2 and
obtain projections P0 and P1 respectively. Absolute di↵erence images |T �P0| and |T �P1|
are generated by the absolute pixel di↵erence between T and P0, and T and P1.

the test image looks the most similar to P1, which also means that the underlying formation
of the test image comes from the U1,2 basis, and thus can be classified as digit 1.

Numerically, using Definition 2.6, the classification procedure makes the following calcu-
lation: kT � P0kF ⇡ 0.0263 > kT � P1kF ⇡ 0.0089. From this, we would categorize the test 
image as a digit 1. One can also make similar qualitative conclusions by visually observing
|T �P0| and |T �P1|. The bright pixels seen in |T �P0| illustrate stark di↵erences in pixel
values, whereas the more consistent dark coloring in |T � P1| indicates that the pixels are 
more similar.

4. Numerical Experiments. Our numerical experiments aim to understand how our al-
gorithm performs for our classification task under di↵erent choices of transformations and 
di↵erent truncations of the basis elements. We include an overview of the choices of trans-
formation M that we experiment with in Subsection 4.1 and describe our application of the 
algorithm and its performance on fMRI data in Subsection 4.2. Related code can be found
at https://github.com/elizabethnewman/tensor-fmri.

4.1. Choices of M. The choice of ?M-product transformations can significantly impact 
the extracted features of the tensor. In our experiments, we implement three invertible trans-
formation matrices to three dimensions when computing the ?M-product in t-SVDM.
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• Discrete Fourier Transform (t-product): Based on the work in [11], we apply
the one-dimensional fast Fourier transform [4] along a mode of A. This specific choice
of transformation can decompose signals to several separate frequencies and capture
the sensitive shift of matrices in the spatial dimension.

• Discrete Cosine Transform (c-product): Based on the work in [8], we apply
the one-dimensional discrete cosine transform [16] along a mode of A. This is a
more e�cient implementation than explicitly forming the full discrete cosine transform
matrix. By transforming the signal from the spatial and temporal domain to the
frequency domain, the DCT helps to separate data into parts of di↵erent importance.
For this reason, the DCT is also often used in image compression domains [23][20].

• Haar Matrix: Introduced in [6], the Haar wavelet transformation is adept at dealing
with abrupt transitions of signals [14]. Our implementation adopts the normalized
version to ensure the matrix is orthogonal. One limitation of our implementation is
that the dimensions of our matrix must be a power of two, i.e., 2n⇥2n for n = 1, 2, . . . .

• Banded Matrix: We apply the lower-triangular banded matrix defined in [17]. This
matrix was originally proposed for dynamic graphs, or graphs in which the nodes are
fixed but edges and features can change in time. Since fMRI images are related at
adjacent time points, the banded matrix could be an appropriate M for the temporal
dimension of our data.

• Random Orthogonal Matrix: We construct the random orthogonal matrix by re-
trieving the orthogonal matrix from the QR decomposition of a n ⇥ n matrix with
entries sampled from a univariate Gaussian distribution of random floats with mean 0
and variance 1. No data structure is assumed when applying the random orthogonal
matrix, giving it little advantage over other transformations that do assume and in-
corporate some kind of structure. However, we still choose to incorporate this matrix
into our experiments and compare its performance to that of other choices of M.

• Data Dependent Matrix: For a transformation along the k-th dimension, the data
dependent matrix Mk is computed via the following:

A(k) = U⌃V> and Mk = U>

The advantage of this Mk is that it can capture structure specific to the data, despite
not having the same physical features with other choices of M. Such matrices are often
used for e�cient representations in transformations including Higher Order Singular
Value Decomposition (HOSVD) [12].

4.2. fMRI Results. In this section, we provide our results when applying the t-SVDM 
classification procedure using various combinations of parameters to a classification task uti-
lizing the StarPlus fMRI dataset. These results demonstrate the superiority of the t-SVDM 
method compared to the best possible equivalent matrix-based method, and also illustrate 
how incorporating knowledge about the data (such as time series information or annotated 
regions of interest) into our choice of transformation can impact performance.

4.2.1. Data Setup. For our experiments, we use the StarPlus fMRI dataset [7], which 
is a publicly available dataset from Carnegie Mellon University’s Center for Cognitive Brain 
Imaging. The StarPlus fMRI dataset is organized as follows: for a single human subject, 80
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trials are completed where each trial corresponds to the subject either reading a sentence or
viewing a picture. Each trial is composed of a series of fMRI scans over a period of 16 time
intervals spaced out over 500 milliseconds. The fMRI scan taken at each time point is three-
dimensional, with 8 axial slices that are 64 by 64 pixels. For additional information about
the conditions under which the trials were obtained, see [7]. The three spatial dimensions,
time dimension, and trials are concatenated to form a single five-dimensional tensor, which is
visualized in Figure 8.

Figure 8: Visualization of data with dimensional shape (x, y, z, time, trials)

We orient the tensor such that the the trials are indexed in the second dimension, giving 
us the following new dimensions: (x, trials, y, z, time) = (64, 480, 64, 8, 16). Similar to how 
a sample of data is usually represented as a vector, we permute the tensor such that the 
second dimension contains trial information, allowing each trial to be stored as a lateral slice 
(analogous to vectors or columns) of the data tensor.

The comparable matrix-based approach would be to vectorize (Definition 2.3) our high-
dimensional data into a matrix. This is accomplished by unraveling all of the data corre-
sponding to a single trial into one long column. These columns are then placed side-by-side 
to form a two-dimensional matrix where each column contains all of the spatial and time
information for a single trial. The vectorized matrix shape is (x ⇥ y ⇥ z ⇥ time, trials) = 
(64 ⇥ 64 ⇥ 8 ⇥ 16, 480) = (524288, 480)

4.2.2. Test Accuracy Results. In this experiment, we use data from all six human sub-
jects provided in the StarPlus dataset, resulting in a total of 480 trials. From these trials, 
we split the data such that 67% of the trials are used for training and the remaining 33% of 
the trials are used as test data. We divide the training trials based on labels so that we can 
construct two class tensors and compute local bases as described in Subsection 3.1. Test data 
is stored as a tensor, and we project each lateral slice to local bases we produced on the last 
step.

The matrix method would involve vectorizing the images as described earlier, computing 
the local SVD, and using the matrix version of projection and distance metric to make classi-
fication. We monitor the performance of our classification procedure by measuring how many
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test trials it was able to correctly classify. To compute this test accuracy, we calculate

test accuracy =
number of correctly classified images

number of images
.

Figure 9 illustrates the relationship between the number of basis elements and the test accuracy
for various M.

Figure 9: Test accuracy with respect to number of basis elements with varying M. Most 
tensor-based methods implement the same M for all transformed dimensions, except for the 
Haar-banded tensor method which implements banded matrix in the temporal dimension, and 
Haar matrix in the other dimensions. All methods are implemented for k = 1, . . . , 12. We see 
a rise of the accuracy for the matrix method when k approaches 12, so we extend k to 18 for 
the matrix method. To give a complete comparison, the t-product is also run for k = 1, . . . , 18. 
We observe that for k = 1, . . . , 18, the t-product yields a higher experimental test accuracy 
than the matrix method.

The main takeaways, as described below, are that our tensor-based method demonstrates 
superior performance over the traditional matrix-based approach; di↵erent transformation 
matrices provides di↵erent accuracies; the optimal truncation parameter also impacts results. 

Tensor or Matrix. We know from Subsection 2.3 that representing high-dimensional data as
a tensor is provably optimal to its vectorized matrix form. Our results quantitatively illustrate 
that this optimal tensor representation also carries over into classification performance. The 
tensor method outperforms the matrix method in terms of test accuracy in the following ways. 
First, with appropriate choice of transformation as will be described in the following point, 
the test accuracy is consistently higher than the matrix method for all choices of k. Second, 

we observe that tensor-based methods tend to start o↵ well with a limited number of basis
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elements (which aligns with Theorem 2.17), despite having the same storage cost for both
matrix and tensor methods. Another computational benefit can be seen in Algorithm 2.2,
which shows that the t-SVDM o↵ers potential for parallelization as well as only computing
the SVD on relatively small frontal slice.

Specific choices of M. Figure 9 demonstrates how di↵erent transformations significantly
a↵ect the resulting test accuracies. For example, at 10 basis elements (k = 10), the t-product
provides over a 75% test accuracy. In contrast, choosing the the Haar product provides under
65% accuracy and the facewise product under 60%. Below, we discuss a few choices of M and
their advantages or disadvantages for our particular dataset and task.

1. Facewise Product: The facewise product multiplies frontal slices of the data and
does not transform the data. As such, it does not account for spatial and temporal
changes within the fMRI images. This suggests why its test accuracy is consistently
the lowest in our experiment.

2. Haar-Banded: When we use the banded matrix for the temporal dimension and
the Haar matrix for all other transformations, we observe a consistently higher test
accuracy than using the Haar transformation for all dimensions. This makes sense
since there is a time relationship in fMRI data that we can exploit. This illustrates
the advantages of choosing di↵erent M that are optimal for the nature of information
being stored in a specific dimension.

3. Discrete Fourier Transform (t-product): The t-product applies the Discrete
Fourier Transform (DFT) matrix along the tubes3. The transform domain is more
commonly known as the frequency domain in the t-product case. This frequency in-
terpretation is powerful for fMRI data. Typically, fMRI data consists of reasonably
steady temporal and spatial frequencies (resting) with occasional spikes when activity
occurs (e.g., seeing an image or a sentence). The t-product can capture these spikes in
frequency and, crucially, the di↵erent types of spikes for the two separate fMRI tasks.
The ability of the t-product to e↵ectively capture the signal shifts leads to the highest
accuracy in our experiment.

Low vs. High Representation Power. The larger the number of basis elements, the more
expressive our truncated basis U i,k will be. However, an overly expressive basis may represent
classes equally well. Likewise, keeping too few basis elements could result in our basis U i,k

failing to properly represent the most important features for a particular class. For example,
as shown in Figure 9, some choices of transformations including Haar matrix and c-product
demonstrate a trend of a brief increase followed by a decrease once the number of basis
elements becomes too high.

This experiment provides compelling empirical evidence that tensor-based approaches with
well-chosen transformations can yield higher accuracy for fMRI classification. We note that
while numerical results do not serve as formal proof, the theory outlined in subsection 4.1
and subsection 2.3 provides insight into the results. Essentially, each class basis formed
using tensors is more representative of the class data than bases formed by matrices. As our
numerical results show, this can yield better accuracy, particularly for smaller bases (k small).

3When implementing the t-product, we use the fast Fourier transform (fft) routine for e�ciency.
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4.2.3. Utilizing Regions of Interest. The StarPlus dataset is marked with 25-30 regions
of interest, or ROIs, corresponding to anatomically defined regions of the brain. Figure 10
shows an example of how the ROIs are provided for each image, with points on the colorbar
associated with specific ROIs in the brain. For more information on the meanings of these
abbreviated ROIs, please see Appendix A.2.

Figure 10: Regions of interest for 3D fMRI scan at a single time point

To determine if incorporating knowledge about these anatomically-defined regions of in-
terests impacts classification performance, we develop a transformation matrix that is formu-
lated using the provided ROI data markups. To form this transformation, we use the following
process. Let A 2 Rn1⇥n2⇥···⇥np and let R 2 Rn1⇥n2⇥···⇥np . Each entry of R is an integer that
indicates the region of interest at that voxel.

Let mk = n1n2 · · ·nk�1nk+1 · · ·np be the number of columns of the unfolded tensor R(k) 2
Rnk⇥mk . Let 1  j1 < j2 < · · · < jq  mk be the set of indices of columns of R(k) that contain
a particular ROI label. Recall that since the columns of R(k) are vectorized mode-k fibers,
these columns contain fibers that cross through the desired region of interest. Form the ROI
selection matrix PROI

k 2 Rmk⇥q that selects the columns of R(k) that contain the desired

region of interest via matrix multiplication from the right; that is, R(k)P
ROI

k 2 Rmk⇥q. Here,

each column of PROI

k contains columns from an mk ⇥mk identity matrix:

PROI

k (:, `) = ej` for ` = 1, . . . , q.

To form the ROI data-dependent matrices, we take the following steps for k =
n3, n4, . . . , np:

AROI

(k) = A(k)P
ROI

k = U⌃V> MROI

k = U>.

We use the ROI-dependent transformation to transform the data into a domain that is 
created from the anatomical structure according to a specific brain region. We hypothesize 
that the ROIs from which a better-performing transformation is created might also be regions 
that are known to be associated with vision or language. We repeat each of these experiments
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for three human subjects. Figure 11 displays results obtained when using an ROI-dependent
M.

(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 11: Results when using ROI-dependent M for M3, M4, and M5 with k = 4 for all 
dimensions

From these results, we can see that there do exist choices of ROI’s from which we can 
construct a M, it is possible that o↵ers improved classification accuracy over some of the 
choices of M illustrated in Figure 9. For example, for Subjects 2 and 3, there are multiple 
ROIs for which test accuracy exceeds 90%, an accuracy which was never reached in any of 
our earlier experiments. However, it is also clear that there does not exist a specific ROI 
that consistently improves the accuracy across all subjects. Note that we only construct the 
ROI-dependent M from the data of a single subject. Therefore, it makes sense that the 
performance using that M will vary drastically from subject to subject.

Our interpretation of these results is that the regions that are most impactful for classifi-
cation must be di↵erent depending on the human subject. Since individuals might cognitively 
experience the tasks of reading a sentence or viewing a picture di↵erently, making generaliza-
tions about how all humans process these kinds of information is di�cult. This observation 
gives insight into the challenges of constructing a t-SVDM approach that is su�ciently gen-
eralized to work for various brains but specific enough to produce accurate predictions.

It is also possible that our dataset, while large in the sense that numerous trials are 
conducted for each subject, provides information from too few subjects. This would make 
it di�cult to identify brain regions that would be universally impactful in the classification 
process. After all, six human subjects are hardly a representative sample of how all human 
brains work. There may actually be underlying universal similarities that could be detected by 
utilizing a dataset with more subjects. On the other hand, the variability introduced through 
the inclusion of more human subjects may make it more di�cult for our multilinear approach 
to construct a good local basis.

Another potential culprit for the dramatic di↵erences in accuracy among subjects could 
be some registration issues inherent in the StarPlus data. For example, if the MRI machine 
is oriented slightly di↵erently the day that data was being collected for Subject 2 than it was 
for Subject 1, then our framework would not be able to fully execute the classification task to
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its best potential. This could perhaps be remedied by utilizing image registration techniques
[25] to standardize our data.

We also recognize that our inability to construct an ROI-dependent transformation that
produces consistently improved results across all subjects may simply represent an intrinsic
limitation of our method. Brain activity is inherently nonlinear, produced through the dis-
continuous firing of neurons, and so the data that is obtained through monitoring this brain
activity using fMRI would be representing nonlinear structure. Our methods in this study
rely only on t-linear transformations and are not able to fully capture the nonlinear data
structure.

5. Conclusions and Future Work. Based on tensor notations and ?M-product, we extend
the t-SVDM framework to p-dimensional tensors and use this to describe a local truncated
t-SVDM approach for image classification, which can theoretically be applied to any high-
dimensional labeled datasets. In our numerical experiments, we have been able to show that
there does exist a t-SVDM approach that outperforms the best equivalent matrix-based SVD
approach in terms of test accuracy, which quantitatively demonstrates the advantage of using
tensor methods that preserve multilinear structure. Moreover, we find noticeable di↵erences in
accuracy depending on the choices of transformation matrices (see Figure 8), which encourages
intentional product selections and requires understanding of the data. We also explore the
implications of region of interests in the brain. Our success could further the development
of future tensor-based approaches for classification that are better able to accommodate the
complexity of high-dimensional data.

We acknowledge that while we have been able to achieve success with applying the t-SVDM
to the StarPlus dataset, there are some intrinsic mathematical limitations that may have
inhibited its performance. First, we only extract multilinear features via the t-SVDM. While
this is an improvement over extracting linear features via the matrix SVD, fMRI data may
have more complex relationships (e.g., nonlinear) that our framework cannot easily exploit.
This could be remedied by combining our approach with a nonlinear classification method,
such as neural networks. Second, our method is orientation-dependent: we treat the frontal
slices di↵erently than the other slices, hence the way we orient the data is crucial. However,
while other tensor-based approaches are orientation-independent, they do not have a natural
analogy to projections like the ?M-framework does. This motivates future methodological
work of defining an orientation-independent approach in the ?M-framework (see [10, Sec.
7]) and a local bases classification approach for other tensor frameworks (e.g., Higher-Order
SVD [12] and Tensor-Train [24]) that are less dependent on orientation. Third, we focus on
a binary classification task, only paying attention to the di↵erences captured between how
human brains perceive picture or sentences. Our proposed classification procedure is defined
in Subsection 3.1 for any number of classes, and so we are also interested in exploring how
classification using the t-SVDM framework could be applied to tasks with more than two
classes (e.g. more complex dataset described in [22]). Fourth, we hope to further develop
these results to identify an approach that would be useful for medical diagnostic classification
tasks. Using the local t-SVDM classification algorithm, we could analyze fMRI data for more
significant medical challenges such as disease prediction and prevention.

Finally, it may also be useful to explore methods of strengthening the theoretical founda-
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tion for why specific transformations have distinct e↵ects on accuracy. A primary challenge
in obtaining a theoretical justification for our method is how not all transformations result
in better accuracy than the matrix approach. Instead, as seen in Figure 9, only specific
transformations appropriate for the data result in the high performance (e.g. the t-product).
Future work could involve a theoretical investigation into how one can identify an optimal
transformation given a specific tensor of data.
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Appendix A. Appendix.

A.1. Proofs for the Eckart-Young Theorem for Order-p Tensors.

Lemma A.1 (Tensor Orthogonal Invariance under ?M-product). Let M3 2 Rn3⇥n3 , ...,Mp 2
npRnp⇥ be chosen such that each Mi is an invertible non-zero scalar multiple of an orthog-

onal matrix Wi with scalars ci 6= 0  2 R and ?M-orthogonal Q 2 Rn⇥n⇥···⇥np . Then, for 
A 2 Rn⇥`⇥···⇥np , we have kQ?MAkF = ckAkF , with c 2 R. Likewise, if A 2 R`⇥n⇥···⇥np ,
kA?MQkF = ckAkF .

Proof. Let A 2 Rn⇥`⇥···⇥np . First, we show that the norm of A is preserved (up to scalar
multiplication) in the transform domain. From [10], we know that kA ⇥3 M3kF = c3kAkF . 
This generalizes to the mode-k product as follows. Assume Mk = ckWk where Wk 2 Rnk⇥nk
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is orthogonal. Then,

kA⇥k MkkF = kMkA(k)kF = kckWkA(k)kF = ckkA(k)kF = ckkAkF .

If we apply multiple transformation matrices to each dimension from 3 to p, we obtain the
following:

kÂkF = kA⇥3 M3 · · ·⇥p MpkF
= kMp(A⇥3 M3 · · ·⇥p�1 Mp�1)(p)kF
= kcpWp(A⇥3 M3 · · ·⇥p�1 Mp�1)(p)kF
= cpkA⇥3 M3 · · ·⇥p�1 Mp�1kF
...

= ckAkF where c = c3c4 · · · cp.

We now show the norm-invariance of the ?M-product when multiplying by an orthogonal
tensor. Let Q be orthogonal and C = Q?MA. Then,

kAk2F =
1

c2
kÂk2F

=
1

c2

n3X

i3=1

· · ·
npX

ip=1

kA:,:,i3,...,ipk2F

=
1

c2

n3X

i3=1

· · ·
npX

ip=1

kQ̂:,:,i3,...,ipÂ:,:,i3,...,ipk2F since frontal slices of Q̂ are orthogonal

=
1

c2
kĈkF

= kCkF .

The other direction is similarand relies on the known orthogonal invariance of the Frobenius
norm when multiplied from the right by an orthogonal matrix.

Lemma A.2 (Ordering of Singular Tubes). Given the t-SVDM of A where A is of t-
rank-r, we have kAk2F = kSk2F =

Pr
i=1
ksik2F where si is the (i, i)-tube of S. Moreover,

ks1kF � ks2kF � · · · � ksrkF > 0.

Proof. We know that U and V> are ?M-orthogonal and the only entries of S lie along the
diagonal of its frontal slices. By results shown in [10], we have

kAk2F = kU?MS?MV>k2F = kSk2F =
rX

i=1

ksik2F .

We now prove the second part. From Lemma A.1, we have

ksik2F =
1

c2
kŝik2F =

1

c2

n3X

i3=1

· · ·
npX

ip=1

�̂2

i,i,i3,...,ip
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where �̂
(i3,...,ip)
i is the i-th largest singular value in the transform domain located at the

frontal slice along fixed indices i3, ..., ip. By the definition of the matrix SVD, we know that

�̂
(i3,...,ip)
i � �̂

(i3,...,ip)
i+1

, or that the singular values lie along the diagonal of the singular value
matrix in descending order of magnitude. Thus, we have

ksikF � ksi+1kF .

Hence, the norm of the singular tubes is ordered.

The proof of the Eckart-Young-like Theorem 2.17 is provided below.

Proof. We first obtain a formulation for the error. We know that for the matrix SVD, we
have kA�Akk2F =

Pr
i=k+1

�2

i [21]. Thus, we have

kA�Akk2F =
1

c2
kÂ� Âkk2F

=
1

c2

n3X

i3=1

· · ·
npX

ip=1

kÂ:,:,i3,...,ip � Â:,1:k,i3,...,ipk2F

=
1

c2

n3X

i3=1

· · ·
npX

ip=1

rX

i=k+1

�̂2

i,i,i3,...,ip (Lemma A.2)

=
1

c2

rX

i=k+1

ksik2F .

Let B be a tensor of t-rank-k. Then, using the fact that the SVD produces the best possible
rank-k approximation of a matrix, we have

kA�Bk2F =
1

c2
kÂ� B̂k2F (Lemma A.1)

=
1

c2
k reshape(Â, [n1, n2, n3n4 · · ·np])� reshape(B̂, [n1, n2, n3n4 · · ·np])k2F

� 1

c2
k reshape(Â, [n1, n2, n3n4 · · ·np])� reshape(Âk, [n1, n2, n3n4 · · ·np])k2F

= kA�Akk2F .

ˆWhen we compute reshape(B, [n1, n2, n3n4 · · ·np]), we are concatenating the decoupled 
frontal slices in the transform domain into a third-order tensor. Thus, we can use the results
from [10] and immediately obtain the inequality above.

A.2. Additional Descriptions for Regions of Interest. To clarify some of the abbreviated 
ROIs referenced in Subsection 4.2.3, we provide the full names of each of the ROIs in the below 
table.
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Abbreviation Name

LTRIA/RTRIA Left/Right Triangularis
LIT/RIT Left/Right Inferior Temporal Lobe
LIPS/RIPS Left/Right Intraparietal Sulcus
LSGA/RSGA Left/Right Supramarginal Gyrus
LT/RT Left/Right Temporal Lobe
LOPER/ROBER Left/Right Opercularis
LSPL/RSPL Left Superior Parietal Lobe
LPPREC/RPPREC Left/Right Posterior Precentral Sulcus
LDLPFC/RDLPFC Left/Right Dorsolateral Prefrontal Cortex
CALC Calcarine Sulcus

The above terms, along with more detailed explanations of each of these regions, can be
found in [3]. Our initial hypothesis was that regions known to be associated with vision and
language (e.g. the left temporal lobe, which is associated with language skills) might have
a greater role in improving accuracy when utilized as an ROI-dependent M as described in
Subsection 4.2.3.
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