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Abstract

This paper introduces a novel packing feature called resiliency. A sphere packing is consid-
ered resilient if the packing remains jammed even after several spheres are removed. Resilient
jammed packings have various applications, such as in shipping, where a resilient jammed pack-
ing ensures the safety of the item being shipped even if some of the packing material breaks.
In 2D, we prove that (1) a minimum of two disks must be removed to unjam the hexagonal
packing, and (2) any other lattice packing can be unjammed after one disk is removed. In 3D,
we prove that (1) a minimum of three spheres must be removed to unjam the face-centered cubic
packing, and (2) any other lattice packing can be unjammed by removing at most two spheres.
These results imply that the hexagonal packing is the most resilient 2D lattice packing and the
face-centered cubic packing is the most resilient 3D lattice packing.

1 Introduction

A packing of spheres involves the placement of spheres into the space without overlap. For hundreds
of years, some of the greatest scientists of all time, including Newton, Kepler, and Gauss, have all
worked on the sphere packing problem. However, many key problems still remain open today,
and some major breakthroughs have only been achieved recently. For example, the famous Kepler
conjecture states that the face-centered cubic packing (along with an infinite number of other
similar configurations, including the hexagonal close packing) is the densest 3D sphere packing (see
Figure 1a for the face-centered cubic packing). This centuries old conjecture was only proved in
1998 by T. C. Hales [8], using a computer aided proof.

A typical sphere packing problem involves the study of certain packing properties, such as the
packing density or the order metric. One important topic in sphere packing is jammed packing,
where informally, jammed means that each sphere cannot be moved. Formally, a packing is defined
as locally jammed if each sphere in the packing cannot be moved while the positions of all other
spheres in the packing are fixed [15].

The field of jammed packing is an active area of research today in physics and chemistry since
it is directly connected to the understanding of various structures, such as crystals, glasses, liquids,
colloidal suspensions, granular and random media, and even some biological systems [7, 12, 15].
Beyond physics and chemistry, the packing problem in general has applications in transportation,
packaging, and communication, since an efficient and optimal packing saves valuable material [4, 11].
Recently, extensive research has been done in search of low density jammed packings in order to
find a stable structure that uses as little material as possible. So far, the lowest known density of
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(a) Face-centered cubic packing (b) Jammed lattice packing (c) Non-jammed lattice packing

Figure 1: Lattice packings: in 3D and 2D

a collectively jammed packing (a different type of jammed packing where no subset of spheres can
be moved simultaneously) in 3D is 49%, which is derived from the 3D honeycomb structure [16].
For mathematical studies on the stability of sphere packings, see [1, 2, 5, 6] for examples.

This paper introduces and studies a novel feature of jammed packings – the resiliency of a
jammed packing. Generally, a packing is deemed resilient if the minimum number of spheres
that have to be removed to unjam the packing is large. We define a packing to be unjammed if it
is not locally jammed. When comparing packings, we will say that packing A is more resilient than
packing B if the minimum number of spheres we need to remove to unjam packing A is greater
than the minimum number of spheres we need to remove to unjam packing B.

The concept of resiliency has real world applications. For example, in shipping boxes, various
packing materials are often placed around the item being shipped in order to protect it. However,
fragile items still often break during shipping because the packing material around it is often prone
to breaking itself. A packing with a high resiliency would be useful in packaging since it would
ensure the safety of the item being shipped, even if some of the packing material breaks. Many
shipping companies today use sealed air (plastic containers of air) to fill up empty space in shipping
boxes, and these materials are often spherical and can be modeled by sphere packings.

In general, building blocks in packings that are studied in physics and chemistry tend to follow
certain repeated patterns similar to lattice packings. A lattice packing is defined as a packing
of congruent spheres in which the centers of the spheres form a lattice.1 An example of a jammed
lattice packing is shown in Figure 1b. Also note that not all lattice packings are jammed, such as
the one shown in Figure 1c. However, we will not study non-jammed lattice packings because they
are not resilient.

In this paper, we focus our study on the resiliency of lattice packings in both 2D and 3D. In 2D,
we prove that (1) a minimum of two disks must be removed to unjam the hexagonal packing, and
(2) any other lattice packing becomes unjammed after just one disk is removed. In 3D, we prove
that (1) a minimum of three spheres must be removed to unjam the face-centered cubic packing,
and (2) any other lattice packing can be unjammed after two spheres are removed. These results
imply that the hexagonal packing is the most resilient 2D lattice packing and the face-centered
cubic packing is the most resilient 3D lattice packing.

We would like to point out that establishing the results for 3D is much more involved than for
the 2D case. As an example of how difficult it can become to study 3D packing problems in general,

1For non-lattice packings, some mathematically intriguing structures have been discovered. For example, the
density of locally jammed packings can be arbitrarily close to zero [3, 10].
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we would like to refer to the famous “Problem of 13 Spheres.” In a recorded debate between David
Gregory and Isaac Newton, Newton claimed that it was impossible for one sphere to touch 13 other
spheres simultaneously, while Gregory thought that it was possible. In 2D, it is easy to see that
the maximum number of disks that can touch a central disk is 6, but Newton’s conjecture for the
3D case was only proved in the 1950s (see [14] for the first proof, and [13] for a literature review).
We formally state this result below for future reference.

Proposition 1 It is impossible for one sphere to touch 13 other congruent spheres simultaneously
in 3D.

2 Main Results

As mentioned in the introduction, a lattice packing is defined as a packing in which the centers of
the spheres form a lattice. In d dimensions, the lattice formed by the centers of the spheres can be
described using integer linear combinations of the basis vectors v1, v2, · · · vd, where all of the vectors
are linearly independent. That is, the set of points {a1v1 +a2v2 + · · · advd, ai is an integer ∀1 ≤ i ≤
d} is precisely the set of sphere centers in the packing. In both the 2D and 3D subsections, each
sphere will be referred to by either its center or the coordinates of its center (e.g., av1 + bv2 + cv3).

One important aspect of lattice packings that should be emphasized is that any property de-
duced about one sphere in the packing holds for all spheres in the packing. The reason for this is
that any lattice packing remains the same after being transformed, in the sense of both distance
and direction, by a1v1 + a2v2 + · · ·+ advd for any integers ai (i = 1, · · · , d). Because of this, we will
only analyze the property of the center sphere (i.e., the sphere centered at the origin) in the proof
of each theorem. Moreover, any two packings that are equivalent after a congruence transformation
will be considered the same.

Since the spheres we study are all congruent, we can assume without loss of generality that
all of the spheres have a radius of r = 1 in all of our proofs. Since the packings are all
non-overlapping, the distance between the centers of any 2 spheres is at least 2. If a packing is a
candidate for a resilient jammed packing, it must be jammed to begin with. Thus, we will assume
in our proofs that each sphere is locally jammed to begin with. In addition, all referenced
vectors originate from the origin unless stated otherwise. We first make one observation regarding
the conditions for local jamming [15].

Observation 1 In any d-dimensional packing, a sphere is unjammed if and only if it contains
a hemisphere (excluding its boundary) with no touching points at all. That is, a d-dimensional
packing is locally jammed if and only if each sphere in the packing has at least d+ 1 touching points
on its surface that do not all lie in the same hemisphere (including its boundary).

2.1 Results for 2D

In this section, we will determine the most resilient jammed 2D lattice packing. First, consider a
given jammed 2D lattice packing. Note that disks touch the center disk (the disk centered at the
origin) in pairs because a disk av1 + bv2 touches the center disk if and only if −(av1 + bv2) also
touches the center disk. From Observation 1, we also know that the center disk must touch at least
three disks in order for it to be jammed. In addition, it is well known that a disk can only touch a
maximum of 6 other congruent disks in 2D (this can be derived from Lemma 1 below). Combining
these two restrictions with the fact that disks touch the center disk in pairs, we can conclude that
the center disk must touch either 4 or 6 disks.
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We will now consider the two cases separately. If the center disk touches 4 disks, then those 4
disks must have centers of the form a1v1+a2v2, −(a1v1+a2v2), b1v1+b2v2, −(b1v1+b2v2) since disks
touch the center disk in pairs. We know that disks a1v1 +a2v2 and −(a1v1 +a2v2) touch the center
disk at points (a1v1 + a2v2)/2 and −(a1v1 + a2v2)/2, respectively, which are diametrically opposite
points on the center disk. We will call these two touching points A and B, respectively. Now
consider the diameter AB. Since the other two touching points on the center disk ((b1v1 + b2v2)/2,
−(b1v1 + b2v2)/2) are also diametrically opposite, they must lie on opposite sides of diameter AB.
This means that if we remove the disk that touches the center disk at a point above AB, then the
semicircle that lies above diameter AB must have no touching points on its perimeter (excluding
points A and B). Thus, from Observation 1, the center disk must be unjammed, which means
that we can unjam any jammed lattice packing in which the center disk touches 4 other disks by
removing just one disk.

Next, we will tackle the case in which the center disk (along with all other disks) touches 6
other disks. First, we will introduce the following lemma regarding touching points:

Lemma 1 Let C1 be an arbitrary disk with center O1 in a 2D lattice packing. Then for any two
touching points A and B on C1, ∠AO1B ≥ 60◦.

Proof: Let C2 and C3 be the disks that touch C1 at A and B, respectively (see Figure 2). Let
the centers of C2 and C3 be O2 and O3, respectively. First note that O1AO2 and O1BO3 are both
straight lines, so ∠AO1B = ∠O2O1O3. Thus, we only need to show that ∠O2O1O3 ≥ 60◦. Consider
triangle ∆O2O1O3. Since O2O1 and O3O1 both have a fixed length of 2, ∠O2O1O3 is minimized
when O2O3 is minimized. The minimal length of O2O3 is 2, and in this case, triangle ∆O2O1O3 is
equilateral, so ∠O2O1O3 = 60◦. This means that ∠O2O1O3 ≥ 60◦ in general. �

Figure 2: For Lemma 1

Now consider a packing in which every disk touches 6 other disks. Since touching points on a
disk must be at least 60◦ away from each other (Lemma 1) and there are only 360◦ in a circle, the
6 touching points on every disk must be evenly spaced on the disk’s perimeter and form a regular
hexagon. This means that the centers of the 6 disks that touch any given disk also form a regular
hexagon, so the set of all disk centers must be the hexagonal lattice. Therefore, any packing in
which every disk touches 6 other disks must be the hexagonal packing, which is indeed a lattice
packing.
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We will now show that it is impossible to unjam the hexagonal packing by removing one disk.
If one disk is removed, then all disks in the packing must still touch at least 5 other disks. From
Lemma 1, we know that any two touching points on a disk must be at least 60◦ apart, which means
that it is impossible for the 5 or 6 touching points on any one disk to all lie on the same hemisphere
(semicircle in 2D). Thus, based on Observation 1, we can conclude that no disk in the packing can
be unjammed.

Finally, we will show that it is possible to unjam the hexagonal packing by removing two disks.
From Lemma 1, we know that the 6 touching points on the center disk must be spaced evenly on
its perimeter, with 60◦ between adjacent touching points. Thus, if we remove any two disks that
touch the center disk at points 60◦ apart from each other, the remaining four touching points on
the center disk will all lie in one semicircle, because the furthest remaining touching points are only
180◦ apart from each other. Now Observation 1 implies that the center disk must be unjammed.
We have now established our main theorem regarding the resiliency of disk packings in 2D:

Theorem 1 (1) The hexagonal packing can be unjammed by removing two adjacent disks, but it is
impossible to unjam the packing by removing just one disk. (2) Any other 2D lattice packing can
be unjammed by removing one disk.

2.2 Results for 3D

The main goal of this section is to find the most resilient jammed 3D lattice packing. Again, we
will only consider whether the center sphere (i.e., the sphere centered at the origin) is unjammed,
because any property regarding the center sphere also holds for every single sphere in the packing.

To establish the main theorem, we need to prove a few lemmas, and we begin by establishing
the following lemma regarding the basis vectors of a jammed lattice packing.

Lemma 2 Any jammed 3D lattice packing can be represented using a set of basis vectors v1, v2, v3
with |v1| = |v2| = |v3| = 2.

Proof: First observe that a sphere av1 + bv2 + cv3 touches the center sphere if and only if |av1 +
bv2 + cv3| = 2. Also, note that spheres touch the center sphere in pairs. That is, av1 + bv2 + cv3
touches the center sphere if and only if −(av1 + bv2 + cv3) also does.

Now, let the basis vectors of a jammed 3D lattice packing be vi, vj , vk, with |vi|, |vj |, |vk| not
necessarily equal to 2. Because the packing is jammed, by Observation 1, the center sphere must
have at least 4 touching points on its surface. Therefore, there must exist at least 4 spheres that
are a distance of exactly 2 away from the origin. Let two of those spheres be ±(a1vi +a2vj +a3vk),
and the other two spheres be ±(b1vi+b2vj +b3vk), for some integers ai and bi. However, the centers
of the 4 spheres listed above all lie in the plane P formed by a1vi + a2vj + a3vk, b1vi + b2vj + b3vk,
and the origin. This means that the center sphere cannot be jammed if those 4 spheres are the only
ones touching it (by Observation 1). Thus, there must also exist a third pair of spheres (whose
centers are not in plane P ) ±(c1vi + c2vj + c3vk), for some integers ci, that touch the center sphere.

Now let v1 = a1vi + a2vj + a3vk, v2 = b1vi + b2vj + b3vk, v3 = c1vi + c2vj + c3vk, and so
|v1| = |v2| = |v3| = 2 since each of the spheres touches the center sphere. We will show that
the lattice packing G′ represented by vi, vj , vk is the same as the lattice packing G represented by
v1, v2, v3 by showing that G ⊆ G′ and G′ ⊆ G.

First, note that v1, v2, and v3 are linearly independent since a1vi+a2vj +a3vk 6= ±(b1vi+b2vj +
b3vk) and c1vi + c2vj + c3vk does not lie in plane P . Clearly, every sphere in the packing G is in the
packing G′, since every integer linear combination of v1, v2, v3 is also an integer linear combination
of vi, vj , vk. We now must show that G′ ⊆ G.
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We will prove this by showing that for any point u that is not in the lattice L formed by
v1, v2, v3, there exists a point in L that is a distance of less than two away from u. This will show
that G′ ⊆ G since if there exists a sphere in G′ but not in G, then its center (not in L) must be a
distance of at least two away from all points in L.

Assume for contradiction that there exists a point u not in lattice L that is a distance of at
least two away from all points in L. Because v1, v2, v3 are linearly independent, we can write u in
the form u = k1v1 + k2v2 + k3v3 for some real numbers k1, k2, k3 (not all integers because u is not
in L). Without loss of generality, let v1 and v2 be in the xy plane and v3 = (x0, y0, z0) with z0 > 0.
Let Q be the plane defined by the equation z = [k3]z0, where [k3] denotes the integer closest to k3
(with 0.5 rounded up). See Figure 3 for an illustration, and note that Q is parallel to the xy plane.

Figure 3: For Lemma 2

Then, we have

distance(u,Q) = |k3z0 − [k3]z0| ≤
1

2
|z0| ≤

1

2
· 2 = 1, (1)

where the last inequality holds because |v3| = 2. Let u′ be the projection of u onto plane Q. Note
that for any integers a and b, the point av1 + bv2 + [k3]v3 (which is in L) is in plane Q. This means
that there exists a lattice point A = n1v1 + n2v2 + [k3]v3 for some integers n1 and n2 such that u′

is contained in the rhombus formed by the points A,B = A+v1, C = A+v1 +v2, D = A+v2, with
A,B,C,D all being points in L. Note that the quadrilateral formed by A,B,C,D is a rhombus
because |v1| = |v2| = 2. Since the distance from u to plane Q is at most 1 (Inequality 1) and
the distances from u to A,B,C,D must each be at least 2 based on our assumption, the distances
from point u′ to A,B,C,D must each be at least

√
3 (from the Pythagorean Theorem). Now let

θ = max(∠Au′B,∠Bu′C,∠Cu′D,∠Du′A), so 90◦ ≤ θ ≤ 180◦. Then by the law of cosines, one of
the lengths AB,BC,CD,DA must be at least√√

3
2

+
√

3
2 − 2

√
3
√

3 cos(θ) ≥
√

6.

However, AB = BC = CD = DA = 2 since |v1| = |v2| = 2, so we have a contradiction. �
Having proven Lemma 2, we will now classify all future jammed lattice packings by using a set

of basis vectors v1, v2, v3 satisfying |v1| = |v2| = |v3| = 2.
The most resilient 3D lattice packing is found by determining whether or not a packing is

actually jammed after several spheres are removed. Using Observation 1, we can see that in order
to determine a packing’s resiliency, we must first identify the set of spheres that either touch or
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may touch the center sphere. That is, we want to find all possible triples (a, b, c) such that it is
possible for av1 + bv2 + cv3 to touch the center sphere. In order to do so, we need to first introduce
two more lemmas.

Lemma 3 Let va be a vector with |va| = 2, vb be an arbitrary non-zero vector, v′a be the projection
of va onto a plane P containing vb, and α be the angle between v′a and vb. Then 2|v′a| cos(α) ≤ |vb|
if |va − vb| ≥ 2.

Proof: Let plane P be the xy plane, and the z-coordinate of va be za. Then,

|v′a|2 + z2a = 4 from |va| = 2, (2)

|v′a − vb|2 + z2a ≥ 4 from |va − vb| ≥ 2, and (3)

|v′a − vb|2 = |vb|2 + |v′a|2 − 2|vb||v′a| cos(α) by law of cosines. (4)

Plugging Equations 2 and 4 into Inequality 3 gives |vb|2− 2|vb||v′a| cos(α) ≥ 0 or 2|v′a| cos(α) ≤ |vb|,
as desired. �

Lemma 4 Let v1, v2, and v3 be the basis vectors of a lattice packing (not necessarily jammed) such
that |vi| = 2 for all i. Then the distance between any one of the vectors and the plane containing
the other two vectors is at least

√
2.

Proof: We will only show that v3 is a distance of at least
√

2 away from the plane containing
vectors v1 and v2. Without loss of generality, let v1 = (2, 0, 0) and v2 = (2 cos(θ), 2 sin(θ), 0), with
60◦ ≤ θ ≤ 120◦ (θ must satisfy these bounds because of Lemma 1). Let the projection of v3 onto
the xy plane be v′3. Then, without loss of generality, assume that v′3 lies between v1 and v2 (if it
does not, we can change one or both of the basis vectors to −v1 or −v2 instead). If it can be shown
that |v′3| ≤

√
2, then the z coordinate of v3 must be at least

√
2 (since |v′3|2 + z23 = 4, where z3 is

the z coordinate of v3), which will conclude the proof.
Let O be the origin, and α = min(∠v′3Ov1,∠v

′
3Ov2) (see Figure 4). Then α satisfies α ≤ θ/2.

Without loss of generality, let v′3 be closer to v1 than to v2 (the other case is symmetrical). Applying
Lemma 3 with va = v3 and vb = v1 (note that |v3−v1| ≥ 2 since spheres v3 and v1 cannot overlap),
we have

2|v′3| cos(α) ≤ |v1| = 2. (5)

Applying Lemma 3 with va = v3 and vb = v1 + v2 (again note that |v3 − v1 − v2| ≥ 2), we have

2|v′3| cos(θ/2− α) ≤ |v1 + v2| = 4 cos(θ/2), (6)

where the equality holds because ∠v1O(v1 + v2) = θ/2 in the rhombus formed by the vertices
O, v1, v2, v1 + v2 (i.e., v1 + v2 bisects ∠v1Ov2) and the inequality holds because ∠v′3O(v1 + v2) =
θ/2− α.

Inequalities 5 and 6 imply that

|v′3| ≤ min

(
1

cos(α)
,

2 cos(θ/2)

cos(θ/2− α)

)
.

We will show that at least one of the terms in the expression on the right-hand-side must be less
than or equal to

√
2 at all times by considering two cases based on the value of α.

Case 1: If α < 45◦, then |v′3| ≤ 1/ cos(α) <
√

2, as claimed.

7
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Figure 4: For Lemma 4

Case 2: If α ≥ 45◦, then we need to show that

2 cos(θ/2)

cos(θ/2− α)
≤
√

2.

First note that θ/2 ≥ α, so we have 90◦ ≤ θ ≤ 120◦ and α ≤ 60◦. We will now look for the
maximum of the left-hand-side in the range 90◦ ≤ θ ≤ 120◦, 45◦ ≤ α ≤ 60◦. Ignore the constraint
θ/2 ≥ α for now, and consider the expression on the left-hand-side for a fixed θ. The expression
is maximized when the denominator is minimized, or when θ/2 − α is as close to 90◦ as possible.
Since 0 ≤ θ/2−α ≤ 90◦, this is equivalent to maximizing θ/2−α, or minimizing α. The minimum
of α is 45◦ in the case under study, so the expression becomes 2 cos(θ/2)/ cos(θ/2 − 45◦). If we
let f(x) = 2 cos(x)/ cos(x− 45◦), then f ′(x) = 2 sin(−45◦)/ cos2(x− 45◦). In the given range of θ,
f ′(x) < 0. Thus, the maximum of 2 cos(θ/2)/ cos(θ/2− 45◦) is

√
2 when θ = 90◦, as desired. �

We will now limit the possible triples (a, b, c) such that av1 + bv2 + cv3 may touch the center
sphere. Consider any sphere av1 + bv2 + cv3, with at least one of |a|, |b|, or |c| being an integer
strictly greater than 1. Without loss of generality, let us assume that |a| > 1. Then, using Lemma 4,
we can conclude that the distance between av1 and the plane containing vectors v2 and v3 is at
least 2

√
2, so the distance between av1 + bv2 + cv3 and the plane containing vectors v2 and v3 is

at least 2
√

2. Since the origin lies in the plane containing vectors v2 and v3, the distance between
av1 + bv2 + cv3 and the origin must be at least 2

√
2, so av1 + bv2 + cv3 cannot touch the center

sphere. This means that if av1 + bv2 + cv3 touches the center sphere, then |a|, |b|, |c| ≤ 1. Using
|a|, |b|, |c| ≤ 1, we can now list in the following lemma the spheres that may touch the center sphere.
Note that ±v1,±v2,±v3 always touch the center sphere because |vi| = 2.

Lemma 5 The only possible spheres that can touch the center sphere are ±vi (3 pairs of spheres
with i = 1, 2, 3), ±(vi − vj) (3 pairs of spheres with i 6= j and i, j = 1, 2, 3), ±(vi + vj) (3 pairs
of spheres with i 6= j and i, j = 1, 2, 3), ±(vi + vj − vk) (3 pairs of spheres with i 6= j 6= k and
i, j, k = 1, 2, 3), and ±(vi + vj + vk) (1 pair of spheres with i 6= j 6= k and i, j, k = 1, 2, 3).

We will now introduce another lemma that further limits the possible pairs of spheres that can
touch the center sphere.

Lemma 6 At most one pair of spheres from {±(vi + vj − vk),±(vi + vj + vk), with i, j, k =
1, 2, 3 and i 6= j 6= k} (4 pairs total) can touch the center sphere at once.

Proof: We will prove the lemma by contradiction through 2 cases.
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Case 1: Assume for contradiction that both the pair of spheres ±(vi + vj − vk) and the pair
of spheres ±(vi − vj + vk) (for some i, j, k) touch the center sphere. Then |vi + vj − vk| = 2 and
|vj − vi− vk| = 2. The first equality implies that the distance between vi + vj and vk is 2, while the
second equality implies that the distance between vj − vi and vk is 2. However, since vi + vj and
vj − vi are a distance of 4 apart, any point that is a distance of 2 away from both points must lie
on the midpoint of vi +vj and vj−vi, which is vj . But this means vk = vj , which is a contradiction
since the vectors must be linearly independent.

Case 2: Assume again for contradiction that both the pair of spheres ±(vi + vj − vk) and the
pair of spheres ±(vi +vj +vk) (for some i, j, k) touch the center sphere. Then the distance between
vi + vj and vk is 2, and the distance between vi + vj and −vk is 2. Since vk and −vk are a distance
of 4 apart, any point that is a distance of 2 away from both points is the midpoint of vk and −vk,
which is 0. This means that vi + vj = 0, which again is a contradiction. �

With these lemmas, we are now ready to prove Theorem 2, which identifies the most resilient
jammed 3D lattice packing.

Theorem 2 (1) It is possible to unjam the face-centered cubic packing by removing 3 spheres,
but impossible to unjam the packing by removing 2 spheres. (2) Any other lattice packing can be
unjammed by removing at most 2 spheres.

Proof: First, we will show that it is impossible to unjam the face-centered cubic packing, in which
the center sphere touches 12 other spheres, by removing 2 spheres. Assume for contradiction that
it is possible to unjam the center sphere by removing 2 spheres. By Observation 1, this means
that there must exist a hemisphere on the center sphere that contains at most 2 touching points
excluding the hemisphere’s boundary. By symmetry, there must be at most 2 touching points on
the corresponding complement hemisphere, excluding its boundary. This means that there are at
least 8 touching points on the boundary of the original hemisphere described above. However, this
is impossible, since a disk can only touch a maximum of 6 other disks in 2D.

Second, we will show that it is possible to unjam the face-centered cubic packing by removing 3
spheres. One possible set of basis vectors for the face-centered cubic packing is v1 = (2, 0, 0), v2 =

(1,
√

3, 0), v3 = (1,
√
3
3 ,

2
√
6

3 ). Using this set of basis vectors, it is easy to see that in the face-centered
cubic packing, there are 6 spheres that touch the center sphere in the xy plane. Hence, removing all
3 spheres that touch the center sphere at points strictly above the xy plane will unjam the center
sphere.

Next, we will prove the 2nd statement of the theorem. By Proposition 1, we know that a
sphere may touch at most 12 other spheres in a lattice packing. Moreover, Hales proved in [9]
that in any packing of congruent spheres (lattice or not) where each sphere touches exactly 12
spheres, the 12 spheres touching any one sphere have to be arranged in either the face-centered
cubic or the hexagonal close packing configuration. Because the properties of each sphere in a
lattice packing have to be the same, if each sphere in a lattice packing has 12 touching points, the
packing as a whole has to be either the face-centered cubic packing or the hexagonal close packing,
but not a combination of both. Moreover, it is well known that the hexagonal close packing is
non-lattice. To see this, we note that the centers of the spheres in the hexagonal close packing

can be written as
(

2i+ ((j + k) (mod 2)),
√

3
[
j + 1

3(k (mod 2))
]
, 2
√
6

3 k
)

, where i, j, and k are

integers. We can observe that the sphere with center (0, 0, 0), the sphere with center (1,
√
3
3 ,

2
√
6

3 )

(let i = 0, j = 0, k = 1), and the sphere with center (2, 0, 4
√
6

3 ) (let i = 1, j = 0, k = 2) are all
in the packing. If the hexagonal close packing were to be a lattice packing, then the sphere with

center 2(1,
√
3
3 ,

2
√
6

3 ) would also have to be in the packing, but it overlaps with the sphere centered
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at (2, 0, 4
√
6

3 ). Therefore, the hexagonal close packing is not a lattice packing.
Thus, we have established that the face-centered cubic packing is the only lattice packing in

which the center sphere touches 12 other spheres.2 This means that in order to prove statement 2,
we only need to show that any lattice packing in which the center sphere touches 10 spheres or less
can be unjammed by removing 2 spheres (the center sphere cannot touch exactly 11 spheres since
11 is not an even number). We will now consider two cases.

Case 1: The center sphere touches 10 spheres. Since the center sphere always touches ±vi,±vj ,
and ±vk (with i 6= j 6= k and i, j, k = 1, 2, 3), by Lemma 5, it has to touch 2 more pairs of spheres
from ±(vi − vj), ±(vi + vj), ±(vi + vj − vk), and ±(vi + vj + vk).

From Lemma 6, at most one pair of spheres from ±(vi + vj − vk) and ±(vi + vj + vk) can touch
the center sphere at one time, so at least one other pair of spheres has to come from ±(vi − vj) or
±(vi + vj). This means that the center sphere has to have at least 6 of its touching points in the
plane that contains vectors vi and vj , where the possible candidates are in the set of {±vi,±vj ,
±(vi − vj), ±(vi + vj)}. Since the center sphere has a total of 10 touching points on its surface,
it must have at most 2 of its touching points strictly above the plane containing vectors vi and
vj , and at most 2 touching points strictly below the plane. As a result, we can unjam the center
sphere by removing the 2 (at most) spheres that touch the center sphere strictly above the plane.

Case 2: The center sphere touches 6 or 8 other spheres. In this case, the center sphere touches
at least the 4 spheres ±vi,±vj in the plane containing vectors vi and vj . This means that there
are either 1 or 2 touching points on the center sphere strictly above the plane, and 1 or 2 touching
points strictly below the plane. If all spheres that touch the center sphere strictly above the plane
(at most 2) are removed, then the center sphere is unjammed. �

3 Discussion and Future Work

In this paper, we have introduced the concept of resiliency, which is motivated by real world
applications such as shipping and packaging. In this context, as undesirable as it may be for some
packing material to become “loose,” unjamming is even more damaging if the item being shipped
becomes loose. Motivated by this consideration, we define a packing to be globally unjammed if
every single sphere in the packing can be moved (not necessarily all at once). In contrast to local
unjamming, where the protected item may or may not be affected, global unjamming is completely
unacceptable because everything, including the protected item, can move and therefore be damaged.

As a natural extension to the results derived so far, we have determined the most resilient
jammed lattice packing regarding global unjamming for the 2D case. The exact results are stated
in the following proposition, and detailed proofs are available upon request.

Proposition 2 (1) In the hexagonal packing, it is impossible to globally unjam the packing by
removing one disk, but removing two adjacent disks globally unjams the packing. (2) In all other
2D lattice packings, removing any one disk globally unjams the packing.

Note that the most resilient jammed packing in 2D is the same for both local and global
unjamming, and the number of disks we need to remove is also the same for both local and global
unjamming. However, the latter fact is simply a coincidence. In fact, our proof for global unjamming
in 2D is quite different than the one for local unjamming, because we need to carefully show that
every disk can move an explicit distance in order to achieve global unjamming.

2In an earlier version of this paper, I proved this statement as a lemma, independent of Hales’ result. One of the
referees pointed out that the lemma is a corollary of Hales’ more general result, which considers both lattice and
non-lattice packings.
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Moreover, for the 3D case, removing 3 mutually tangent spheres can locally unjam the face-
centered cubic packing, but we believe that it does not globally unjam the packing. We now present
an informal argument as follows:

If we want to unjam the center sphere in the face-centered cubic packing by removing three
spheres, we must remove three mutually tangent spheres (call these three spheres A, B, and C) that
all touch the center sphere. This statement can be formally justified by considering the definition
of the face-centered cubic packing in the coordinate system. Our claim now is that after spheres
A, B, and C are removed, only the center sphere will be unjammed. For simplicity, we will remove
the center sphere as well and show that no remaining spheres are unjammed. Now assume for the
sake of contradiction that there is another sphere S that is unjammed. Clearly, sphere S cannot
touch all of the four spheres A,B,C, and the center sphere. This means that there must be a set
of three mutually tangent spheres which originally all touched sphere S that were removed. Since
there are only four spheres that have been removed in total, there are only four subsets of three
removed spheres that exist. First consider the subset of A, B, and C. Because in the face-centered
cubic packing the only sphere that originally touched A, B, and C is the center sphere, the removal
of A, B, and C cannot be the reason why sphere S is unjammed. Note that there is no sphere
located where the reflection of the center sphere across the plane containing the centers of A, B,
and C is, because if there were, the packing would be non-lattice. Similarly, the only sphere that
touched the set of spheres A, B, and the center sphere is sphere C, the only sphere that touched
A, C, and the center sphere is sphere B, and the only sphere that touched B, C, and the center
sphere is sphere A. This means the removal of spheres A, B, C, and the center sphere cannot have
caused sphere S to become unjammed, which is a contradiction.

Even though the number of spheres we need to remove to globally unjam the face-centered
cubic packing is greater than the number needed to locally unjam it, we still conjecture that the
face-centered cubic packing is the most resilient when it comes to global unjamming.

Conjecture 1 The minimum number of spheres that have to be removed to globally unjam the
face-centered cubic packing is 5, and any other 3D lattice packing can be globally unjammed by
removing fewer spheres.
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