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Executive Summary

Computational science uses math and computing 
to advance science and engineering. It is a core 
part of most scientific fields and underpins much of 
the modern world. Computational science enables 
the development of novel industrial products, the 
design of new drugs, weather and climate prediction, 
the protection of national security, forecasts of and 
responses to natural disasters, and much, much more. 
Computational science is on the cusp of making major 
advances and dramatic new impacts by leveraging 
recent progress in computing and applied mathematics. 
But the field also faces significant headwinds from 
hardware and workforce challenges.

Advances in artificial intelligence, powerful new 
computing platforms, and an increasingly complex 
landscape for future computing hardware represent 
both new opportunities and new challenges. These 
developments place computational science at an 
inflection point. At this time of simultaneous promise 
and challenge, the Society for Industrial and Applied 
Mathematics (SIAM) commissioned a task force on the 
future of computational science. SIAM is the primary 
professional society for computational science. 
It is a 14,000-member organization representing 
applied mathematicians, computational scientists, 
data scientists, and engineers. Members come from 
many different disciplines, but all share an interest in 
applying and developing state-of-the-art techniques 
of mathematics and computational science to solve 
real-world problems. The goal of this task force was to 
assess this complex landscape and to craft a strategic 
vision for the field for the next 15 years. The members 
of the task force were selected to represent a broad 
range of scientific backgrounds and perspectives, and 
included members from academia, national labs, and 
industry. This report is the result of their deliberations 
and assessments.

Future advances in computational science promise 
to pay dividends in sectors as diverse as healthcare, 

energy, science, resilience, and defense. Reaping 
these dividends will require a clear-eyed strategy and 
investment that enables progress across application 
areas while enabling new core capabilities such as 
digital twins, artificial intelligence-driven modeling, and 
real-time decision making. Changes in the computing 
landscape will add to the challenges as historical 
drivers for improvement in computer performance 
have run their course. Future advances in computer 
performance and power efficiency will require 
heterogeneous platforms with specialized hardware 
and exotic accelerators like quantum processors. Thus, 
as the Exascale Computing Project nears completion at 
the U.S. Department of Energy, this is no time to scale 
back investment. We have just begun to realize the 
power of exascale computing and much more research 
and development is needed to fully realize its benefits, 
let alone to prepare for post-exascale technologies. 
International competitors are investing strongly in 
computational science, challenging the United States 
to sustain and improve its lead in the underlying 
computing technologies and their uses across the 
application space. U.S. national security and economic 
competitiveness depend on continued leadership in 
computational science and that leadership can only 
be maintained through investments in applications, 
algorithms, and co-development with hardware 
vendors of the optimum combinations of hardware and 
computational science methods.

The SIAM Task Force on the Future of Computational 
Science articulated one overarching national priority.

Computational science is essential: 
Computational science plays a crucial role in 
scientific discovery, the economy, and national 
security, but U.S. leadership is under threat. 
Investments that ensure continued U.S. leadership 
should be a high national priority.

Continued leadership will require overcoming 
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significant challenges. The Task force identified two 
major impediments to further progress in the field.

Future high performance computers will be 
challenging to design and difficult to program: 
Since the 1960s, device engineers have made 
continuous progress on smaller and more 
energy efficient transistors. This has enabled 
exponential growth in computer performance, 
enabling many of the impacts of computational 
science. However, without significant hardware 
and software advances, future progress in 
computational science will be made at a much 
slower rate. Performance improvements in 
future computers will require new architectures 
that are significantly more energy-efficient than 
present supercomputers. Exotic technologies 
like quantum accelerators may be part of future, 
more heterogeneous supercomputers. These 
architectural changes will be highly disruptive to 
the applications, algorithms, and software used 
for computational science today. Significant new 
investments are needed to ensure that modeling, 
data science, simulation, and other activities can 
be adapted to the promising but challenging new 
computing environments just over the horizon.

Existing approaches for attracting and preparing 
the future computational science workforce are 
insufficient: The opportunities and challenges 
facing computational science can be addressed 
only through the efforts of a large, highly skilled 
workforce. Computational science is inherently 
interdisciplinary, and there is already a shortage of 
expertise. New approaches are needed to widen 
and deepen pathways into computational science 
fields and to ensure that the broad research 
community obtains the skills needed across all 
disciplines to advance increasingly complex 
computational efforts.

The Task Force identified three areas in which the 
scientific landscape is changing dramatically, and 
computational science has the opportunity to make 

transformative progress for the betterment of science 
and society.

Exascale computing will enable unprecedented 
science: With the arrival of the Frontier 
supercomputer at Oak Ridge National Laboratory, 
we have entered the exascale era (1018 operations 
per second). Two more exascale machines 
will be standing up in the coming months. The 
Department of Energy’s Exascale Computing 
Project (ECP) has created a large corpus of 
exascale-ready software ranging from tools and 
libraries to a diverse suite of applications. Never 
before has the community had a common core 
of high-quality software to build upon. ECP has 
built the tools, and now additional investments are 
needed to sustain, grow, and apply the software 
base to ensure the full promise of these machines 
in enabling new scientific discoveries and 
technological advancements.

Science increasingly relies on large and complex 
data streams: While modeling and simulation 
have been at the heart of computational science 
for many decades, in recent years, data science 
has become central to scientific progress. 
Scientific research is awash in data from high-
throughput experiments, ubiquitous sensors, and 
simulations themselves. Investments to support 
research and development are needed to create a 
wide range of data management, data processing, 
and data analysis capabilities for scientific 
applications. In addition, much more research is 
needed to integrate data science with simulation 
and artificial intelligence.

Artificial intelligence will create entirely new 
ways to do computational science: In just the 
last few years, artificial intelligence (AI) and 
machine learning (ML) have begun to transform 
broad swaths of commerce and society. These 
technologies are beginning to have major benefits 
for science and engineering as well, but the 
field is still young. AI is being used to accelerate 
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simulations, to combine experiments with 
simulations, to automate workflows, to propose 
new hypotheses, and much more. This rapidly 
developing area will be a major driver of scientific 
progress for the foreseeable future, but only if 
investments are made to ensure that existing or 
new AI technologies are appropriately reliable 
and trustworthy for scientific and engineering 
applications.

We offer this one-two-three framework as a constructive 
way to think about the most important decadal priorities 
in the field and the investments that must be made to 

address them. In meeting these challenges and seizing 
these opportunities, we will be creating the capabilities 
that enable critical future progress against problems that 
cannot be addressed today. Examples include cloud-
resolving climate models, quantum-accurate electronic 
structure, materials-by-design, personalized healthcare, 
and numerous other applications that will create 
strategic and economic opportunities tomorrow. These 
applications require new mathematics, algorithms, and 
computer science, running on post-exascale computers. 
Without appropriate investments, the U.S. will lose 
leadership in this critical area and cede the technological 
advances of tomorrow to others.
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1. Introduction

Computational science is the discipline focused on the 
development and use of mathematics and computing 
to support and advance the frontiers of science and 
engineering. Driven by improvements in algorithms and 
vast increases in computer performance, computational 
science is now central to nearly all branches of science 
and engineering, and enables the development of 
novel industrial products, the design of new drugs, 
weather and climate prediction, enhancements to 
national security, forecasts of and responses to natural 
disasters, and much, much more. Computational 
science is poised to deliver further breakthroughs 
that will advance knowledge, create industrial 
advantage, and ensure national security. But the field 
is also experiencing unprecedented headwinds due 
to changes in computing technologies and a lack of 
workforce to meet future needs. 

As the field enters an era of simultaneous promise 
and challenge, the Society for Industrial and Applied 
Mathematics (SIAM) commissioned a task force on the 
future of computational science. SIAM is the primary 
professional society for computational science. 
It is a 14,000-member organization representing 
applied mathematicians, computational scientists, 
data scientists, and engineers. Members come from 
many different disciplines, but all share an interest in 
applying and developing state-of-the-art techniques 
of mathematics and computational science to solve 
real-world problems. The goal of this task force was to 
assess this complex landscape and to craft a strategic 
vision for the field for the next 15 years. The members 
of the task force were selected to represent a broad 
range of scientific backgrounds and perspectives, to 
span from early career to senior researchers, and to 
reflect a breadth of professional affiliations including 
universities, national labs, and industry. The task force 
conducted its work through a series of emails and 
virtual meetings, and a two-day gathering facilitated by 
Lewis-Burke Associates. This report is the result of their 
deliberations and assessments.

As illustrated by the examples on p.5, computational 
science underpins much of our modern economy, 
technology, and national security. The Task Force had 
one overarching finding.

Computational science is essential: 
Computational science plays a crucial role in 
scientific discovery, the economy, and national 
security, but U.S. leadership is under threat. 
Investments that ensure our continued leadership 
should be a high national priority. The latter part 
of Section 1 discusses the competition for U.S. 
leadership in computational science.

Continued leadership will require overcoming 
significant challenges. The Task Force identified two 
major impediments to further progress in the field.

Future high performance computers will be 
challenging to design and difficult to program: 
Since the 1960s, device engineers have made 
continuous progress on smaller and more 
energy efficient transistors. This has enabled 
exponential growth in computer performance, 
enabling many of the impacts of computational 
science. However, without significant hardware 
and software advances, future progress in 
computational science will be made at a much 
slower rate. Performance improvements in 
future computers will require new architectures 
that are significantly more energy-efficient than 
present supercomputers. Exotic technologies 
like quantum accelerators may be part of future, 
more heterogeneous supercomputers. These 
architectural changes will be highly disruptive to 
the applications, algorithms, and software used 
for computational science today. Significant new 
investments are needed to ensure that modeling, 
data science, simulation, and other activities can 
be adapted to the promising but challenging new 
computing environments just over the horizon. 



Although it is frequently invisible, 
computational science enables many of the 
technologies that drive modern economies 
and societies. For example:

Medicine and health care

Advanced algorithms and computing were at the heart of 
the human genome project and are central to genomics 
and metagenomics. Drug design relies on high-fidelity, 
atomistic models of proposed therapeutics and their targets. 
Epidemiology utilizes social and behavioral models to optimize 
interventions against infectious diseases. Personalized 
medicine employs sophisticated data analysis tools to devise 
appropriate treatment plans for each patient.

Earth and environmental science

Sophisticated models of the atmosphere enable weather 
predictions that inform everything from picnic plans to farming 
and disaster response. Whole earth models that combine 
the atmosphere, the oceans, and ice coverage shape our 
understanding of climate change and its consequences. 
Ubiquitous sensors combined with data management and 
analysis capabilities allow for the monitoring of biosystems 
and optimization of farm yields.

Materials science

Computational modeling and machine learning accelerate 
the discovery of new materials for batteries, solar cells, and 
innumerable other applications. Quantum-accurate materials 
models provide deep, quantitative understanding of material 
properties, and support optimal design

Manufacturing and industrial competitiveness

Model-based design allows for the design of safer cars, 
energy-efficient airplanes, improved industrial processes, 
and effective additive manufacturing technologies. Modeling 
coupled with data science enables “digital twins,” which are 
used to optimize maintenance schedules.

Energy

Modeling and real-time data assimilation help with the design 
and control of the electrical grid. Advanced simulations 
support the design of more efficient wind turbines and better 
layout of turbines in a wind farm. Simulations enable more 
efficient engine designs.

National security

Modeling and machine learning are central to nuclear 
stockpile stewardship. State-of-the-art aircraft, submarines, 
and weapons systems are optimized via modeling and 
simulation. Data management and synthesis is essential to 
battlefield management.

Fundamental science

Astrophysics relies on simulations of stars, galaxies, and entire 
universes. Particle physics employs simulations to understand 
the fundamental forces of the universe. Large scientific 
facilities (e.g. accelerators, telescopes, light sources) generate 
enormous amounts of data that must be managed, stored, and 
analyzed.
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Section 3 discusses prospects for hardware 
advances, and the corresponding software 
developments, that pursue improvements to 
traditional digital microelectronics, while Section 
4 discusses more disruptive approaches such as 
quantum and neuromorphic computing. 

Existing approaches for attracting and preparing 
the future computational science workforce are 
insufficient: The opportunities and challenges 
facing computational science can be addressed 
only through the efforts of a large, highly skilled 
workforce. Computational science is inherently 
interdisciplinary, and there is already a shortage 
of expertise. New approaches are needed to 
broaden and deepen pathways into computational 
science fields and to ensure that the broad 
research community obtains the skills needed 
across all disciplines to advance increasingly 
complex computational efforts. Section 7 
discusses approaches to create pathways 
into computational science for historically 
underrepresented communities and existing 
workers with skills in adjacent areas.

The Task Force identified three areas in which the 
scientific landscape is changing dramatically, and 
through which computational science will have the 
opportunity to make transformative progress to 
the betterment of science and society.

Exascale computing will enable unprecedented 
science: With the arrival of the Frontier 
supercomputer at Oak Ridge National Laboratory, 
we have entered the exascale era (1018 operations 
per second). Two more exascale machines will be 
standing up in the coming months. The Department 
of Energy’s Exascale Computing Project (ECP) 
has created a large corpus of exascale-ready 
software spanning from tools and libraries through 
a diverse suite of applications. Never before has 
the community had a common core of high-quality 

software to build upon. ECP has laid a foundation, 
but additional investments are needed to ensure 
the full promise of these technologies in enabling 
new scientific discoveries and technological 
advancements. Section 2 discusses the importance 
of leveraging the advances of ECP, as well as 
the potential impact of emerging technologies 
like digital twins, and the combination of artificial 
intelligence and computer simulation.

Science increasingly relies on large and complex 
data streams: Modeling and simulation have 
been at the heart of computational science for 
many decades, but in recent years, data science 
has become central to scientific progress. The 
world is awash in data from high-throughput 
experiments, ubiquitous sensors, and simulations 
themselves. Section 5 discusses the need for 
research and development to create a wide range 
of data management and processing capabilities 
for scientific applications and the need for much 
more research to integrate data science with 
simulation and artificial intelligence.

Artificial intelligence will create entirely new 
ways to do computational science: In just the 
last few years, artificial intelligence (AI) and 
machine learning (ML) have begun to transform 
broad swaths of commerce and society. These 
technologies are beginning to have major 
benefits for science and engineering as well, but 
the field is still very young. AI is being used to 
accelerate simulations, to combine experiments 
with simulations, to automate workflows, to 
propose new hypotheses, and much more. This 
rapidly developing area will be a major driver 
of scientific progress for the foreseeable future, 
but only if investments are made to ensure that 
existing or new AI technologies are appropriately 
reliable and trustworthy for scientific and 
engineering applications. Section 6 discusses 
the opportunities for modern AI to transform the 
scientific landscape.
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The competition for U.S. 
leadership in computational 
science

Until recently, the United States was the unquestioned 
leader in advanced computing and computational 
science. But in recent years that leadership has been 
challenged by strategic rivals. Europe and Japan have 
always had strong research programs in computational 
science, but the recent emergence of China has 
been particularly striking. The Top 500 List1 tracks the 
fastest computers in the world by a widely embraced 
benchmark. The list has long been dominated by U.S. 
systems, but a Chinese computer took the top spot 
in November 2014, and it was surpassed by another 
Chinese system in June 2016. By November 2017, 
China had more computers in the list than the U.S. In 
recent years, China has stopped submitting results to 
the Top 500 List, so the current status of their efforts is 
hard to assess.

China has also made great strides in applications of 
computational science, as measured by the yearly 
Gordon Bell Prize. Teams of Chinese scientists 
garnered this award in 2016, 2017, and 2021.

The impacts of international competition are already 
evident. European weather-prediction models are 
generally viewed as superior to their U.S .counterparts. 
The European Union is implementing digital twins to 
better understand the European Earth System and 
make revolutionary discoveries. In national security, 
the U.S.’s adversaries have used their increased 
computational power to help develop new weapons, 
such as hypersonic missiles, which the U.S. is still 
working to master.

1 Top 500 List: top500.org

Finding 1.0: Given the central role of computational 
science in scientific discovery, industrial 
competitiveness, and national security, the federal 
government must make the necessary investments to 
ensure continued U.S. leadership in the field.

The United States federal government has long played 
a central role in the advancement of computational 
science and its application to a variety of scientific fields. 
Many federal agencies invest in the development and 
application of computational science, most critically the 
Department of Energy (DOE) and the National Science 
Foundation (NSF) as well as several others such as the 
Department of Defense (DOD), National Institutes of 
Health (NIH), and National Institute of Standards and 
Technology (NIST). Even more agencies depend on 
computational science including the National Oceanic 
and Atmospheric Administration (NOAA), National 
Aeronautics and Space Administration (NASA), and 
Environmental Protection Agency (EPA). DOE’s unique 
role for many decades has been to push the frontiers of 
applied mathematics, computer science, and scientific 
software at the leading edge of high performance 
computing, both by providing computing platforms, and 
through support of basic research and development in 
computational science. Computational science enabled 
by high performance computing is central to many of 
DOE’s missions including scientific discovery, alternative 
energy, environmental remediation, and stockpile 
stewardship. Because of DOE’s leadership role in high 
performance computational science and the impact 
DOE-supported advances will have on computational 
science more broadly, the Task Force has chosen to 
focus its recommendations on actions that the DOE can 
take to ensure the nation maintains its leadership role in 
computational science. 

The unique role of the DOE and its predecessors among 
the federal agencies in the development and promotion 
of computational science dates back to the early days of 
the modern supercomputer era. More recently, its role 
has led to the deployment of exascale computers and 
the advanced software technology of the DOE Exascale 

http://top500.org
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Computing Project (ECP), a partnership between DOE’s 
Advanced Scientific Computing Research (ASCR) 
program and National Nuclear Security Administration 
(NNSA). In particular, ECP’s software technology 
heavily leveraged decades of basic research in applied 
mathematics, computer science, and computational 
science supported by ASCR, whose mission is “to 
discover, develop, and deploy computational and 
networking capability to analyze, model, simulate, 
and predict complex phenomena important to the 
Department of Energy and the advancement of science.” 
In addition, existing ASCR programs in computer science 
and applied mathematics have advanced capabilities 
and seeded new areas of research for revolutionary 
advancements. A key element of DOE’s research 
programs over the past two and a half decades has 
been the support by multiple DOE Office of Science 
Program Offices of partnerships between researchers 
in the domain sciences and those in mathematics and 
computer science. In particular, the Scientific Discovery 
through Advanced Computing (SciDAC) program 
has supported collaborations bringing leading-edge 
mathematics and computer science advances to bear 
on scientific and engineering challenges of importance 
to the DOE. The recently established Energy Earthshots 
program2 has funded similar partnerships aimed at 
advancing clean energy technologies in support of the 
nation’s climate and clean energy goals. 

DOE’s leadership in computational science and 
engineering has been critical to U.S. leadership 
and innovation across the scientific spectrum, and 
sustained support for ASCR’s ongoing programs is 
vital for this leadership to continue. ASCR continues 
to be uniquely positioned to play a pivotal and 
continuing role as one of the leading programs for the 
advancement of computational science to meet the 
problems facing our world. 

However, with the completion of ECP, DOE stands at 
a crossroads on its next priorities and major efforts. 
DOE has provided significant support to deploy major 
computing platforms at the exascale, to develop an 

2  Energy Earthshot Initiative: www.energy.gov/energy-earthshots-initiative

exascale computing software stack, and to build a 
suite of scientific applications that can take advantage 
of exascale capabilities. For progress into the future, 
a comprehensive plan and program is needed to 
leverage these advances for future computational 
science impact, and to begin the hard work of 
preparing for the next generation of computers past 
exascale. Given the advances of our competitors 
and the future U.S. needs for computational science, 
current federal investments are insufficient to ensure 
continued U.S. leadership. The SIAM Task Force looks 
to DOE to craft a clear plan and implement a program 
that will drive forward the future of computational 
science, including new capabilities, to ensure 
continued U.S. leadership.

Recommendation 1.1: Investments should be made 
to support a comprehensive computational science 
program that leverages the results of the Exascale 
Computing Program and anticipates and exploits 
future high performance computing platforms. To 
fully take advantage of ECP technology and future 
hardware, this program will require further advances 
in applied mathematics and computer science and 
the establishment of partnerships between applied 
mathematicians, computer scientists, and application 
scientists to address critical national challenges. 
Exascale hardware and software provide a foundation 
for discoveries through scientific computing, but further 
research and development is required to fully realize 
the potential of exascale. In addition, future advances 
in computer performance and efficiency will come from 
computer designs that will require new algorithms 
and software. Current support for mathematics and 
computer science research aimed at enabling the use 
of future computers is insufficient to ensure they will 
be usable for science in a timely way. It is essential 
that a comprehensive program be implemented to 
develop the mathematics and computer science and to 
support the partnerships needed to enable application 
scientists to exploit these computers to address critical 
future challenges.

https://www.energy.gov/energy-earthshots-initiative
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2. Computational science is poised for 
transformative new impacts

Summary

The demand for additional computational resources 
is unrelenting. The capability of the world’s fastest 
computers has grown by a mind-boggling nine 
orders of magnitude in the past 35 years. With each 
increase in performance, new scientific opportunities 
come within reach. With the large investments by 
the Department of Energy (DOE) in the Exascale 
Computing Project (ECP), scientists now have access to 
computers that can process 1018 numerical operations 
per second. This level of performance allows for new 
ways of doing science, including: 

 • more complex and accurate simulations; 

 • the conjoining of simulation with data science and 
artificial intelligence; 

 • the ability to simulate in real time and so to drive 
physical experiments or systems; and

 • the capacity to understand uncertainties and fully 
explore design spaces. 

Simultaneously, mathematical and algorithmic 
advances are opening new pathways to scientific 
discovery and engineering practice, such as 
applications of digital twins and the integration of 
machine learning with simulation. With the right 
investments, computational science is poised for a 
dramatic growth in applications and impact. As with 
past progress in computational capability, seizing 
these new opportunities will require advances in 
fundamental mathematics, algorithms, computer 
science, and application science.

Finding 2.0: DOE’s recent investments have produced 
supercomputers, software tools, and applications 
with exascale capabilities. Similarly, recent 
mathematical and algorithmic advances have led to 
novel approaches for answering difficult scientific 
and engineering questions. A comprehensive 
investment strategy will be required to ensure that 
these capabilities can continue to advance and be 
leveraged to develop new pathways of scientific 
discovery and engineering practice.

Computational science is used pervasively across 
science and industry to provide critical insights. Recent 
developments in computing and mathematics have 
created opportunities for a host of new, impactful 
applications. This section reviews three illustrative, 
emerging opportunities, each of which can be 
transformative.

Leveraging exascale

With the success of the Department of Energy’s (DOE) 
Exascale Computing Project (ECP), the research 
community now has access to transformational 
computing power and a highly sophisticated, 
community-endorsed software suite to enable their 
capabilities. The advent of the age of exascale 
computing has brought unprecedented opportunities 
to employ computational science to address scientific 
and societal grand challenges in astrophysics, 
biology, climate, energy, earth sciences, infrastructure, 
manufacturing, materials, medicine, and social 
sciences. The three-orders-of-magnitude increase in 
peak performance of current leading-edge systems 
over the past 15 years, accompanied by concomitant 
improvements in memory, networking, and storage, 
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have provided the computing power to make modeling 
and simulation tractable for many complex phenomena 
exhibiting multiscale, multirate, multiphysics, 
multidomain, and multimodel behavior. At the same 
time, the exascale era has provided new capabilities for 
analyzing and interpreting rapidly expanding volumes 
of observational and model-generated data. The 
DOE and other federal agencies need to provide the 
necessary support to seize the exascale opportunity 
and to sustain U.S. scientific leadership. Exascale 
applications will require methodological advances in 
multiphysics simulations, uncertainty quantification, 
design optimization, and the conjoining of artificial 
intelligence with simulation. Managing exascale 
simulations will require new approaches to system 
administration, workflow management, data analysis 
and visualization. All these needs can only be met 
with additional research investments from the federal 
government.

To manage the complexity of building exascale 
applications, ECP built a large collection of software 
tools and infrastructure including numerical libraries, 
mesh generation toolkits, performance profilers, 
programming models, and visualization libraries. All 

these tools were designed to run at exascale. This 
entire corpus of community software encompassing 
enabling technology and applications is a principal 
product of the nation’s large investment in ECP. For 
the first time, the community has a very high quality 
and broadly embraced software stack that ranges from 
libraries and programming models through a variety of 
scientific applications. This software stack will underpin 
scientific discovery for many years to come. Further 
research investments in mathematics, algorithms, and 
software are needed to expand these capabilities and 
to customize and apply them to emerging applications. 

Recommendation 2.1: Further investments are 
required to support the research and development 
activities needed to fully leverage the promise of 
exascale computing. These investments should 
include mathematics, computer science, application 
science, and system software. Exascale applications 
will require methodological advances in multiphysics 
simulations, uncertainty quantification, design 
optimization, and conjoining artificial intelligence with 
simulation. Managing exascale applications will require 
new approaches to system administration, workflow 
management, data analysis, and visualization. All of 

Frontier, the world’s first exascale 
computer, has about 8.7 million cores 
and performed 1.19 × 1018 operations per 
second in a widely used supercomputing 
benchmark. Frontier is located at Oak 
Ridge National Laboratory.
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these needs can be met only with additional research 
investments from the federal government.

Recommendation 2.2: An explicit program should 
be established to leverage and continue to advance 
the community software created by the Exascale 
Computing Project. This body of software developed 
under ECP will underpin the community for many 
years to come, and will provide a cost-effective way 
to develop, support, port, and maintain a host of 
advanced applications. But this software will not be 
able to address continually evolving needs without 
further investment. DOE should oversee a research 
and development program to continue to extend this 
functionality, adapt it to new computers, and to apply it 
to new application areas. 

Digital twins

A digital twin3 is a computer model of a natural, 
engineered, or social system that is dynamically 
updated with data from the real system and is used 
to inform decisions. Data streaming from the physical 
system is assimilated into the computational model to 

3  Foundational Research Gaps and Future Directions for Digital Twins

reduce uncertainties and improve predictions of the 
model. The updated model in turn is used as a basis 
for controlling the physical system, optimizing data 
acquisition, and/or providing decision support. The 
digital twin must execute rapidly enough to support 
decisions and controls in timescales relevant to 
the physical system and must manage and quantify 
uncertainties across its lifecycle.

The concept behind digital twins has been around 
for decades, but recent progress in mathematics, 
algorithms, and computing capability have opened 
broad, new vistas of possible applications. Digital 
twins are being developed in nearly every sector of 
industry—from transportation to the process industry, 
from defense to manufacturing, from energy to 
microelectronics, from civil infrastructure to aerospace. 
Moreover, digital twins are being deployed for many 
natural systems, such as severe weather, wildfires, 
tsunamis, earthquakes, and volcanoes, and earth and 
environmental systems including climate, biological, 
and ecological systems. Personalized medicine 
presents a future in which a predictive digital twin of an 
individual, continuously updated with sensor, lab test, 
and imaging data, will be used as a basis for diagnosis 

Advanced manufacturing production 
processes, including 3D printing, 
are complex and produce parts that 
require careful inspection to ensure 
they are high quality and defect-
free. Researchers at Lawrence 
Livermore National Laboratory are 
using digital twins to help optimize 
the process, catch existing errors, 
prevent new ones, and ensure the 
timely delivery of high-quality parts.

https://nap.nationalacademies.org/catalog/26894/foundational-research-gaps-and-future-directions-for-digital-twins
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and treatment of diseases well before they can be 
caught using conventional techniques. 

While digital twins present enormous opportunities, 
their development faces great mathematical, 
statistical, and computational challenges. This stems 
from the enormous complexity and scale of models 
describing complex physical systems targeted by 
digital twins, the numerous uncertainties that underlie 
these models, and the complexity of observing 
experimental systems and the indirect nature of the 
data they produce. Since digital twins subsume data 
assimilation and inverse problems, optimal control and 
model-based decision making, surrogates and model 
reduction, validation and uncertainty quantification, 
they inherit all of the individual challenges presented 
by those problems. Moreover, entirely new challenges 
arise when these constituent problems are integrated 
into digital twin frameworks, and research investments 
in mathematics and computer science must address 
the following needs:

 • Faster solvers for real-time applications.

 • Ensuring the stability of numerical methods for 
coupled systems.

 • Uncertainty quantification with surrogate models 
(including machine- learned models).

 • Feedback control methods for specific 
applications.

Recommendation 2.3: Investment is needed to 
provide a strong scientific foundation for the 
development and use of digital twins. This includes 
furthering the individual understanding of data 
assimilation and inverse problems, optimal control and 
model-based decision making, surrogates and model 
reduction, validation, and uncertainty quantification. In 
addition, understanding must be developed of the new 
challenges that arise when these constituent problems 
are integrated into digital twin frameworks.

Combining simulation with artificial 
intelligence

The recent explosive progress in the capabilities of 
artificial intelligence (AI) and machine learning (ML) 
presents numerous opportunities and challenges 
for scientific computing. As discussed in Section 5, 
with the right investments, these technologies have 
transformative potential for scientific and engineering 
applications. The field is very young and new ideas are 
emerging rapidly, but areas of potential impact include:

 • Fast approximate (surrogate) models for complex 
systems to enable quicker responses. Fast 
approximate models can enable real-time control 
of experiments or complex systems. They will also 
allow for more thorough explorations of parameter 
spaces to enable optimal designs, better 
understanding of uncertainties and margins, and 
higher confidence.

 • New methods for merging experimental results 
with simulation outputs to allow for improved 
predictions of complex phenomena.

 • Automated laboratories and user facilities to 
increase scientific throughput and discovery.

 • Enhanced productivity for developers of scientific 
software, and fewer software bugs.

Much of the recent progress in AI and ML has been 
driven by industry through large investments in 
research, hardware, and software. The computational 
science community should leverage all of this to the 
extent possible and collaborate with industry where 
appropriate. These collaborations should examine 
scientific use cases and assess which existing 
capabilities are adaptable to scientific applications. 
They should also identify gaps where the scientific 
needs diverge from commercial applications and 
use these to prioritize new research directions. One 
possible example is how to exploit the low- and 
mixed-precision hardware being developed for AI, 
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both mathematically and practically, for scientific 
software. New tools are also needed for managing 
heterogeneous hardware and complex workflows 
that integrate ML/AI languages like TensorFlow and 
PyTorch with traditional scientific computing languages 
like C++ and Fortran, allowing software developers to 
use the most appropriate hardware and language for 
each step of their workflows. These hybrid workflows 
will use computing resources differently than 
traditional simulations, so new approaches to resource 
management will also be needed. Further discussion 
of these opportunities and needs can be found in 
Section 6.

Recommendation 2.4: Investments are needed in the 
research, software tools, and system management 
tools needed to enable complex workflows that 
combine simulation with machine learning. The 
computational science community should leverage 
recent progress in AI and ML in industry and identify 
new AI and ML research directions that will enable new 
and faster scientific and engineering capabilities. Many 
existing applications involve the use of ML models as 
very fast “surrogates” (approximate replacements) for 
more expensive simulation codes.
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3. Rapid change is afoot in high performance 
computers

Summary

High performance computing (HPC) is a key element of 
computational science, but HPC itself is at an inflection 
point. Historical drivers for performance improvement 
have run their course, with transistors now nearly 
as small as they can get and supercomputer energy 
consumption at a practical maximum, making the 
energy-efficiency of future HPC platforms of paramount 
concern. The only viable way to continue improving 
performance will involve architectural specialization 
and heterogeneous supercomputers. A range of 
federal investments are needed to ensure these future 
machines will be applicable to computational science 
needs. These investments should include researcher 
access to early hardware and vendor incentives to 
serve the computational science market. In addition, 
the lack of clarity about future machines creates 
research challenges for algorithms and software 
engineering today, since software lives much longer 
than computers. 

Finding 3.0: The nation needs a suite of investments 
to ensure that the development of high performance 
computing continues beyond exascale to meet the 
nation’s continually evolving needs for advanced 
computational science. 

For more than 50 years, the density of transistors on 
a chip has doubled every 1.5 years. This exponential 
growth, combined with faster clock rates and larger 
machines, has led to the current era of exascale 
computing. While current supercomputing power 
promises revolutionary advances in many fields of 
science and engineering, there are important scientific 

and engineering questions that will remain out of 
reach. Examples include full understanding of climate 
change, increased accuracy in weather prediction, 
predictive design of materials, and understanding and 
predicting complex scientific and industrial processes. 
For reasons articulated below, the increased computing 
capability needed to make advances in these fields will 
no longer come from traditional approaches for scaling 
computer power, but will require innovations in digital 
microelectronics or markedly different approaches, 
such as quantum and neuromorphic computers. The 
current section is focused on the future of traditional 
digital microelectronics and its implications for 
computational science. The subsequent section 
focuses on the more disruptive alternatives including 
quantum and neuromorphic approaches.

Potentially radical changes in tomorrow’s 
supercomputers will also require a broad set of new 
mathematical approaches, algorithms, and software 
tools. Changes will permeate the entire software 
stack from programming tools and numerical libraries 
through resource managers and system software. 
The computational science community can adapt to 
foreseeable changes in architectures, but the lack of 
clarity about future machines is an enormous challenge. 
It can take many years to develop new, optimized 
algorithms applicable to new computer designs. Modern 
computational science application codes take years to 
develop, and their lifespan is generally much longer than 
the lifespan of a single computer. So, the community 
must develop algorithms and software today that will be 
capable of running on future computers, even without 
clarity about what those computers will look like.
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Hardware and architecture 
innovation for the post-
exascale era

The exascale era has been enabled by a 
decrease in power requirements on the chip, 
increased heterogeneity of compute nodes with 
GPU accelerators, and the evolution of massive 
parallelism in compute nodes all incorporated in a 
monolithic system. However, the cost of designing, 
building, and operating future systems to provide 
even greater performance is becoming prohibitive. 
Transistor sizes have decreased to nearly the limits 
defined by physics, building a new semiconductor 
fabrication plant has become enormously expensive, 
and exascale-era supercomputers have the power 
requirements of a small city, dictating that any future 
hardware advances must include increased energy 
efficiency as a practical constraint.

New directions are possible and under development 
in architecture and hardware. Architectural design 
relates to how CMOS transistors are deployed on 
conventional chips. Hardware design refers to the 
development of the physical components that are 
employed in the computer. The GPU is a successful 
example of a specialized architecture, and it is likely 
that other accelerators will appear alongside evolved 
CPUs and GPUs.

The development of new hardware presents 
significant economic as well as technical challenges. 
The commercial viability of HPC-oriented hardware 
has depended on leveraging commercial hardware 
developed for other (larger) markets. Most recently, 
increases in supercomputer performance have 
depended on GPUs, which are commercially 
successful because of their applicability and use for 
the collectively large markets of HPC, AI, and crypto. 
A commercially viable future HPC market will most 

certainly depend either on leveraging investments in 
adjacent markets such as AI (risky and implying strong 
dependency on commercial markets) or discovering 
and leveraging less expensive approaches for 
developing new hardware. It is also important to note 
that computational science workloads are evolving 
to involve more data science and machine learning. 
Future HPC platforms will need to be able to address 
the increased complexity these developments imply for 
future applications.

Data movement increasingly dominates computation 
in both energy and time costs, motivating dramatic 
changes in architectures and software approaches. 
Potential hardware optimizations include specialized 
functional units and chiplets as discussed below. 
Software optimizations involve reducing the size of 
data, such as using reduced or mixed floating-point 
precision, lossy data compression, and selectively 
zeroing out weights in machine learning. These 
optimizations trade off accuracy for efficiency, which 
motivate new analytical and mathematical questions on 
error analysis and uncertainty quantification.

Options for less expensive hardware 

Three new hardware directions are present in the 
marketplace that have the potential to provide greater 
performance and increased energy efficiency with 
reduced cost: disaggregation, wafer-scale computing, 
and quantum computing (discussed in the next section).

Disaggregation and chiplets

The cost, time, and expertise needed to bring a new 
chip to market has been a high bar to customization. 
An alternative lies in embedded systems on chip, which 
for many years have been customized for specific 
applications by combining often-reusable components 
(or “chiplets”) with new custom subsystems. To allow 
this trend to evolve and broaden, the Open Compute 
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effort4,5,6, a collaboration that cuts across companies 
and laboratories, is working toward standards of 
interoperability that would add available off-the-shelf 
components, reduce cost and risk, and generally lower 
the barriers to custom designs for application spaces 
including HPC. This may provide opportunities for the 
HPC field, the DOE, and perhaps eventually research 
teams to accelerate their computational science 
research through significantly cheaper and more 
powerful computers made possible by custom design.

Wafer scale and near-memory processing

Recent development of wafer-scale devices7 brings 
processing, fast SRAM memory, and fast, low latency 
on-wafer communication to a large (eight-inch square) 
wafer device having multiple petaflop compute 
capacity along with tens of gigabytes of memory. 
Most important, because of the locality of memory, the 
use of SRAM, and integration of the network with the 
processor, there is an attractive ratio of compute speed 
to memory and network bandwidth and single cycle 
memory and per hop network latency. Thus, wafer-
scale integration achieves most of the long-promised 
benefits of near-memory computing, or taking the 
converse view, near-compute memory. The fast, low-
latency communication that is possible on a wafer 
solves the data movement problem that occurs when 
processing is moved into DRAM devices and data is 
spread across these devices with low communication 
bandwidth between them. Although the main current 
use case is training neural networks for AI8, recent 
exploratory investigations in combustion models9, 

4 Open Compute Project
5 Open Compute Project Pushes Fast Forward on an Open Chiplet Economy
6 RISC-V Moving Toward Open Server Specification
7 Cerebras 
8 GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics.
Maxim Zvyagin, et al. The International Journal of High Performance Computing Applications, Oct 2023
9 Fast Stencil-Code Computation on a Wafer-Scale Processor. Kamil Rocki et al. Proceedings of SC 20
10 Efficient Algorithms for Monte Carlo Particle Transport on AI Accelerator Hardware. John Tramm, et al. Computer Physics 
Communications, in press
11 Massively Distributed Finite-Volume Flux Computation. Ryuichi Sai, et al. Proceedings of SC 23

neutron transport10, and seismic imaging11 have shown 
hundredfold speedups over GPUs on modest-size 
problems with a similar reduction in energy cost. Much 
research remains to be done in applied mathematics 
and computer science to clarify the value of this 
approach for large-scale computational science.

Architectures for complex workflows

Big data computing involves streaming massive 
data volumes in and out of compute systems with, 
frequently, insufficient computational intensity to 
tolerate the I/O rates of current systems. New tighter 
integration of optical communication with terabit per 
second per fiber bandwidth into compute systems, 
involving transducers and memory systems capable of 
sourcing or sinking these bandwidths, can open new 
and important use cases.

New applications will involve a mixture of simulation, 
data science, and machine learning—running on 
computers with specialized accelerators for some of 
these functions. Instead of having a single system 
composed of essentially the same components in each 
node, pools of CPUs, GPUs, memory, storage, and 
other accelerators will be available in a disaggregated 
form and composed for a particular application 
workflow. To achieve this, smart and fast networks will 
be required along with new algorithms and tools for 
resource and workflow management. Fundamental 
mathematical formulations and new algorithms will be 
needed to take maximum advantage of these emerging 
architectures.

https://www.opencompute.org/blog/open-compute-project-pushes-fast-forward-on-an-open-chiplet-economy
https://www.hpcwire.com/2023/07/24/risc-v-moving-toward-open-server-specification/
https://cerebras.net/
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Longer-term technical directions

Some electronics researchers have responded to 
the impending end of Moore’s Law by looking into 
alternatives to the established silicon orthodoxy. There 
is fascinating work being done in packaging, devices, 
and materials that provide possible avenues for 
progress beyond the end of CMOS scaling and perhaps 
a revival of exponential growth (in performance per 
unit power)12. These technologies include memristive 
memory and computing, analog representations, 
various “neuromorphic” technologies, carbon nanotube 
devices, multiple layers on a chip, integration of logic 
with memory, chip and wafer stacking, and others. 
Although each of these ideas has merit, many of them 
will be very challenging to integrate into existing 
manufacturing processes.

In summary, as Moore’s Law comes to an end, 
further performance improvements will require new 
technologies and computer designs. There are many 
ideas that might become commercially important, but 
it is very difficult to discern which ideas will succeed 
from those which will not. It is clear that tomorrow’s 
high performance computers will necessarily be 
different from today’s, but the characteristics of those 
machines are not at all clear. For the computational 
science community, this requires a strategy of 
sustained engagement and continual (re-)evaluation, 
while working to minimize the disruptive impact of new 
architectures on existing software.

Recommendation 3.1: Investments are needed in 
research and development collaborations between 
computational scientists and computer vendors 
to ensure development of future energy-efficient 
computers that meet the needs of the computational 
science community. The high performance computing 
market is dominated by AI and Cloud, but there is 
still enough commonality that computational science 
can profit from developments in the larger market. 
Incentives are needed to encourage vendors to 

12  Aly, M.M.S., et al. Energy-Efficient Abundant-Data Computing: The N3XT 1,000X,” IEEE Computer, Vol. 48 (2015), 24-33

consider the needs of scientific applications beyond 
their own markets. In this emerging environment, DOE 
should continue to leverage its successful history of 
investments in holistic co-design collaborations aimed 
at advancing the scientific computing market.

Recommendation 3.2: Investments are needed in 
research into methods to insulate applications from 
uncertain changes in future computing architectures. 
These investments should include new methods and 
algorithms, modular software design, abstraction layers, 
and research in scientific software engineering.

Recommendation 3.3: A facility or facilities should 
be established that will ensure that computational 
science researchers have access to emerging 
hardware, programming models, and heterogeneous 
systems to enable assessment of their utility for 
scientific applications. With the plethora of emerging 
computing designs, it is difficult to know which are 
the most promising, how they can be best exploited, 
and which application areas are best suited to each. A 
program to provide broad access to new technologies, 
and to assist new users, will allow the community to 
identify the most promising approaches. A similar DOE 
program in the late 1980s and early 1990s supported (in 
part) under the federal High Performance Computing 
and Communications (HPCC) Program was essential 
for the successful transition from vector computers to 
parallel computers.
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4. Potentially transformational computing 
technologies are on the horizon

Summary

Beyond traditional computer architectures, several 
disruptive alternatives are maturing and have the 
potential for impact in the next decade. This section 
reviews two such approaches, neuromorphic computing 
and quantum computing. Both technologies have 
compelling advantages over traditional approaches for 
a subset of important applications. But both also have 
considerable limitations. Investments in these areas are 
high-risk and high-reward and are an important part of a 
balanced portfolio in computational science. 

Finding 4.0: Advances in traditional silicon-based 
computer architecture will likely be insufficient to 
address important scientific challenges of the future. 
Investments in alternatives to traditional computing, 
such as neuromorphic and quantum computing, will 
be necessary to achieve these goals. 

As was discussed in Section 3, advances in silicon 
CMOS microelectronics have slowed considerably 
due to fundamental engineering and manufacturing 
constraints. Future performance increases from 
traditional computers will be harder to come by and 
will likely require significant changes in computer 
architectures with disruptive consequences for existing 
software. Researchers have proposed several other 
technologies for digital computing with performance 
and power advantages, e.g. carbon nanotubes and 
cryogenic computing. Most of these technologies remain 
in their infancy and would require profound changes 
to manufacturing processes or computer machine 
rooms. But two technologies have credible paths to 
impact computational science over the coming decade: 
neuromorphic computing and quantum computing.

Neuromorphic computing

As its name suggests, neuromorphic computing 
involves computing approaches that are inspired 
by biological brains. The extraordinary progress 
in deep learning in recent years is an exemplar of 
neuromorphic computing. The commercial promise 
of this technology has inspired firms big and small 
to design and market specialized accelerators 
for various aspects of machine learning (ML). The 
scientific computing community will benefit from 
ML, and specialized ML accelerators will be an 
important part of the high performance computing 
landscape for the foreseeable future. Beyond ML, 
these low-power, high-throughput accelerators may 
also be able to accelerate other elements of the 
computational science workflow. This is an important 
and active area of research.

The commercial market for ML computing is 
quite large, so limited opportunity exists for the 
computational science community to shape the 
landscape. But well-targeted investments could help 
ensure that these devices include computational 
science as one of their target customers. This will 
require close collaboration and codesign spanning 
hardware, software, and applications.

Current ML devices are built out of traditional 
microelectronics, but analog devices employing 
different physics (e.g. memristors) have the potential 
to dramatically reduce energy consumption and 
increase performance. The broader utility of these 
devices is unclear, but their potential makes them 
worthy of continued investigation.
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Quantum computing

Richard Feynman’s visionary proposition of quantum 
computers underscored the prospect of taming 
quantum many-body problems without succumbing 
to the curse of dimensionality. This proposition not 
only laid the groundwork for quantum computing, but 
also spotlighted the paradigm’s potential to transcend 
today’s limits of classical computing. Quantum 
computing is a fundamentally different approach from 
classical computing. It has the potential for significant 
speedups of some important algorithms for fields 
ranging from quantum chemistry and many-body 
physics to broader areas such as drug discovery, 
finance, and machine learning. Quantum devices are 
currently very fragile and error prone, but academia 
and industry are making steady progress in the design 
and fabrication of quantum computers. Combined 
with rapid advances in algorithms and applications, 
quantum computing has the potential to be a 
significant contributor to computational science within 
the next decade.

The rapid progress in quantum computing provides the 
scientific computing community with unprecedented 
opportunities. From an applied math perspective, 
quantum algorithms perform a sequence of matrix-
vector multiplications using only unitary matrices. 
However, many scientific computing tasks are not 
formulated as multiplications of unitary matrices. 
Over the past few decades, with particularly exciting 
progress in recent years, ingenious methods have 
been devised to adapt non-unitary operations and 
express them in terms of unitary operations. Many of 
these advancements draw significantly from classical 
numerical analysis and numerical linear algebra, 
incorporating aspects like approximation theory and 
matrix decomposition techniques. The emphasis on 
unitary operations also provides fertile ground for novel 
numerical analysis and methodological developments. 

Quantum algorithms promise to transform our 
problem-solving methods for a broad range of 
application areas, such as those mentioned above. 

Such transformations will require reformulating 
existing problems in terms of unitary matrices, such as 
Hamiltonian simulation problems. There may also be 
other innovative approaches that offer new directions 
and insights. Realizing these possibilities will demand 
substantial research in fundamental quantum-aware 
applied mathematics and computational science, as 
well as efforts to optimally map these new methods 
onto the various quantum systems being developed. 
Just as the transition from mainframes and vector 
computing to massively parallel computing systems 
required significant investment in numerical methods 
and algorithms research, so too will the quantum era 
require a similar level of dedication and innovation of 
research in applied mathematics and computational 
sciences.

Yet, realizing this potential is challenging. It demands 
thorough exploration of quantum speedups, the 
creation of new quantum techniques, and robust 
error correction and fault-tolerance strategies. To 
effectively utilize quantum capabilities, it is important 
to understand the true quantum cost. While it might 
be tempting to think that n qubits can represent 
an equivalent of 2n classical bits of information, 
suggesting exponential quantum speedups, all 
quantum algorithms will need to interface with classical 
processing. So, the quantum complexities should 
factor in the input-output models and specific needs of 
quantum algorithms. The focus should be on problems 
where results are obtained from a limited quantum 
measurement set, ensuring both practicality and 
optimized performance. Quantum computers might 
not bring about universal speedups but could act as 
specialized accelerators, similar to GPUs. They are 
meant to complement, not replace, classical computers. 

Broadly, the quantum cost can be broken down into 
three main parts: input, running, and output costs.

1. Input cost refers to the cost of preparing the initial 
quantum state. Typically, a quantum algorithm 
starts with a standard state, and the input state for 
the quantum algorithm is prepared using a unitary 
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matrix acting on the standard state. The input cost 
then is the gate complexity to achieve this input 
state. If a quantum algorithm  
 
requires repeated access to the input state 
in a coherent manner, the input cost needs 
to be multiplied by the number of initial state 
preparations.

2. Running cost refers to the expense of executing 
the quantum algorithm a single time, not taking 
into account the cost for the input state. The 
running cost is typically the element most 
amenable to theoretical analysis.

3. Output cost refers to the number of times the 
quantum algorithm needs to be executed to 
perform quantum measurement on one or 
multiple qubits. 

Considering the input, running, and output costs offers 
a comprehensive “end-to-end” analysis. Demonstrating 
a quantum advantage also requires comparing the 
quantum cost with that of classical solvers. 

As quantum technology progresses, the spectrum of 
potential applications has been expanding notably. 
Many of these applications cater to inherently classical 
challenges, such as quantum solvers designed 
for classical differential equations, linear systems, 
optimization problems, and sampling tasks. The scope 
of scientific computing problems that could benefit 
from quantum algorithms is extensive, promising a 
wide range of opportunities. However, it is important 
to note that not every classical problem is well-suited 
for substantial quantum enhancements. For example, 
many low-dimensional differential equations have 
a solution cost that scales polynomially with system 
size, which restricts the possibility of exponential 
quantum speedups. Additionally, the input and output 
mechanisms for high-dimensional differential equations 
often present considerable hurdles. To accurately 
measure the advantage of quantum algorithms over 
classical counterparts, their performance should be 
benchmarked against the best classical methods, 

particularly those adept at handling high-dimensional 
data structures, such as tensor methods, Monte Carlo 
methods, and quantum-inspired techniques. It is also 
important to acknowledge that conducting a full end-
to-end analysis can be challenging due to the nascent 
state of the field. Nevertheless, the concept of an 
end-to-end analysis should remain a guiding principle, 
with prioritized research providing a strategic roadmap 
toward comprehensive evaluation.

Addressing errors is another vital aspect. Over the 
past 50 years, classical computer gates have seen 
significant improvements, achieving error rates as 
low as 10−13 or even better. In contrast, quantum gates 
like single qubit rotations or two-qubit CNOT gates 
have error rates around 10−3 or higher. This presents a 
challenge for Noisy Intermediate Scale Quantum (NISQ) 
devices and highlights the importance of effective 
quantum error correction (QEC) mechanisms. The 
advancement of QEC codes can drastically change the 
landscape of quantum computation.

Strategies to address these challenges include:

1. Support fundamental quantum-aware 
computational science and mathematical research 
to enable the reformulation of challenging 
classical problems into quantum alternatives that 
are more amenable to be solved by quantum 
algorithms. 

2. Improve quantum algorithms for scientific 
computing problems, while aiming to address 
the “end-to-end” complexity. Examples include, 
but are not limited to, Hamiltonian simulation, 
eigenvalue problems, open quantum systems, 
non-Hermitian quantum physics, linear and 
nonlinear classical differential equations, 
optimization, and sampling problems.

3. Address challenges posed by quantum algorithms 
for early fault-tolerant quantum computing 
(beyond NISQ), considering limited quantum 
resources and fault tolerance capabilities.
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4. Develop quantum-inspired classical algorithms, 
along with other advanced classical algorithms, 
to extend the boundaries of current classical 
computation capabilities.

Recommendation 4.1: Investments are needed for the 
development of high-risk, high-reward alternatives 
to traditional computing hardware, such as quantum 
and neuromorphic computing, along with research 
and development of the algorithms and software 
that will be required to use them for scientific and 
engineering applications. 

Recommendation 4.2: Investments are needed 
to advance quantum computing through the 
improvement of mathematical understanding and 
algorithm development. These investments should 
be focused on the development and refinement of 
quantum algorithms for a broad range of unsolved 
scientific computing challenges, aiming at addressing 
end-to-end complexity in quantum computing 
applications. 

Recommendation 4.3: A facility or facilities should 
be established to ensure that researchers have 
access to experimental non-traditional hardware 
that will inform a holistic codesign cycle between 
manufacturers and users of transformative 
computing technologies. As the non-traditional 
computing hardware industry evolves and the roles 
of different enterprises change, the government 
should remain open to establishing new types of 
collaborations and relationships with both existing and 
emerging industrial partners. These new devices will 
likely be initially employed as accelerators, so their 
ability to integrate with existing HPC platforms must be 
part of the design process.

A quantum computer at Lawrence Berkeley National Laboratory 
is exploring the potential for quantum phenomena to enable 
groundbreaking computational power.
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5. Scientific progress increasingly relies on vast 
amounts of data

Summary

A new generation of scientific facilities is providing 
unprecedented volumes and quality of data. In the 
broader world, ubiquitous sensors are providing novel 
data about earth systems and social systems. And ever 
larger and more complex simulations generate vast 
amounts of data. All these very different kinds of data 
can provide important insight into science and decision 
making. Consequently, managing and leveraging data 
is now a central element of computational science. 
Scientific data science requires capabilities that are 
distinct from those required for traditional simulation. 
As detailed in this section, these capabilities include a 
broad tool set for collecting, processing, storing, and 
analyzing data. Significant research investments are 
needed in mathematics and computer science to create, 
build, and apply these capabilities and to gain maximum 
value from existing and emerging data streams.

Finding 5.0: Scientific progress increasingly relies 
on vast amounts of data. Broad investments will 
be required to ensure that scientific advances will 
continue to be fueled by the increasingly large 
and complex data streams produced by scientific 
instruments and facilities. These investments must 
both leverage current exascale and edge computing 
technologies and be able to take advantage of future 
computer architectures as they are developed.

Our world is awash with sensors that can be used 
for societal good like weather forecasting, traffic 
routing, and environmental monitoring. New scientific 
facilities are generating unprecedented amounts of 
data. Simulations themselves generate enormous 
outputs. These data, separately and combined, can 
be used to answer important questions in applied 
and fundamental science ranging from better battery 
materials to the health of our planet to the origins of the 
universe. Modern data science requires sophisticated 
mathematical and computational tools. Data needs to 
be managed, processed, organized, stored, analyzed, 
and interpreted to produce insights for science and for 
society. Thus, new approaches are needed across the 
data lifecycle (See figure below) for sensor development, 
efficient data storage, safe and secure management, 
and novel techniques for analysis and visualization. 
Open research questions remain around analyzing 
highly distributed data sources, enabling data discovery 
and integration, tracking data provenance, coping with 
sampling biases and heterogeneity, ensuring data 
integrity, privacy, security, and sharing, and visualizing 
massive datasets. Integrated research and development 
(R&D) are needed throughout the full pipeline of the data 
lifecycle, informed and shaped by the specific needs of 
the relevant scientific communities.

Generation Storage VisualizationCollection Management InterpretationProcessing Analysis

Lifecycle of data. New types and quantities of data are reshaping science. 
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DOE’s national laboratories provide researchers 
with access to the largest and most diverse suite of 
scientific experimental facilities in the world—from 
x-ray synchrotrons and neutron sources to integrative 
genomics and atmospheric radiation facilities—as 
well as to the world’s most capable high performance 
computing facilities. Upgrades to these user facilities 
and the advent of new facilities coming online now 
and over the next decade will dramatically increase the 
amount and complexity of new data produced. Given 
the specialization of many of these facilities and the 
scientific questions they will help answer, it will not be 
possible to rely on general advances in data science to 
fully support the needs associated with growth in data. 
The DOE will need to build its own R&D programs that 
focus on science-driven questions and the required 
computing capabilities to answer them.

An important example is the opportunity to build on 
DOE’s co-design experience by enabling application 
scientists, software infrastructure developers, data 
science researchers, and hardware specialists to define 
and develop a common software stack for data science 
computing resources at the different user facilities. The 
software infrastructure should support some generic 
services but also allow the creation of specialized 
applications specific to the facility.

Data science can also enable breakthroughs in 
operating complex infrastructure. To realize this 
potential, new paradigms must be developed and 
tested to integrate real-time information from sensors 
with nearby computing resources (known as “edge 
computing”), to enable real-time predictive analytics, 
control, and optimization. Ideally these models 
will support particle accelerators, light sources, 
and complex instruments, many of which involve 
interconnected subsystems of magnets, mechanical, 
vacuum, and cooling equipment, power supplies, 
and other components. Such instruments have many 
control points, and require high levels of stability, 
making their operation a complex optimization 
problem. It is a challenging, ongoing problem to 
develop models for reliable and safe control. 

The application of data fusion in technical systems 
requires mathematical and heuristic techniques from 
fields such as statistics, AI, operations research, digital 
signal processing, pattern recognition, cognitive 
psychology, information theory, and decision theory. In 
scientific scenarios, data fusion sensors can be used 
to observe electromagnetic radiation, acoustic and 
thermal energy, nuclear particles, infrared radiation, 
noise, and other signals. 

Using intense X-ray pulses 
from SLAC National Accelerator 
Laboratory’s Linac Coherent 
Light Source, scientists can 
determine the structures of 
proteins from tiny nanocrystals, 
including proteins important 
in disease and its treatment. 
The analyses of these data sets 
require advanced data science 
and supercomputing capabilities.
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Multisensor data fusion is a relatively new engineering 
discipline used to combine data from multiple and 
diverse sensors and sources to make inferences about 
events, activities, and situations. These systems are 
often compared to the human cognitive process where 
the brain fuses sensory information from the various 
sensory organs, evaluates situations, makes decisions, 
and directs action. Current sensor fusion solutions 
perform object-level fusion wherein each sensor with 
its inherent limitations identifies and classifies objects 
individually. This results in poor performance and is not 
optimal because no single sensor is capable by itself of 
detecting all objects under all conditions. Furthermore, 
when sensor data is not fused, operators may get 
contradicting inputs from sensors and be unable to 
determine with a degree of certainty on the next action. 
New, application-informed approaches to scientific data 
fusion are needed.

One of the main challenges is dealing with data 
that is heterogeneous in nature, such as data that 
is in different formats, units, or scales. This requires 
developing methods for data harmonization and 
normalization, which can be complex and time-
consuming. Another challenge is ensuring the quality 
and accuracy of the data, especially when dealing 
with large and complex datasets. This requires 
developing methods for data cleaning, validation, and 
error correction. Data fusion requires integrating data 
from different sources and modalities into a unified 
format that can be analyzed and interpreted, as well as 
advanced analytics and machine learning techniques 
to extract meaningful insights and patterns.

In all of these settings and many more, advances in 
data science and machine learning will accelerate and 
transform the practice of science and engineering. But 
scientific applications are different from commercial 
applications of these technologies, and considerable 
effort will be required to modify existing approaches, 
to develop entirely new approaches, and to build the 
requisite web of complex software tools.

Recommendation 5.1: Investments are needed in 
research to develop the mathematics and computer 
science technologies supporting multisensor data 
fusion. Development of these capabilities will require 
research in fields such as mathematics, statistics, AI, 
operations research, digital signal processing, pattern 
recognition, cognitive psychology, information theory, 
and decision theory.

Recommendation 5.2: Investment is needed to 
define and develop a common software stack for 
data science edge computing resources at scientific 
user facilities. This will include developing and testing 
new paradigms for integrating real-time information 
from sensors with edge computation, enabling real-
time predictive analytics, control, and optimization in 
support of operation of complex infrastructure at DOE 
scientific user facilities. The software infrastructure 
should support all aspects of scientific user facility 
operations, from generic operation and analysis 
services to specialized software applications specific to 
each facility.

Recommendation 5.3: Investment is needed in 
research and development to create an integrated 
suite of data lifecycle methods and tools, informed 
by the specific needs of DOE scientific communities. 
Techniques that lead to data harmonization and 
normalization, such as data cleaning, validation, and 
error correction must be developed to overcome 
the natural heterogeneity of data sources which is in 
inherent conflict with the need for data fusion. Open 
research questions remain around analyzing highly 
distributed data sources, enabling data discovery and 
integration, tracking data provenance, coping with 
sampling biases and heterogeneity, ensuring data 
integrity, privacy, security, and sharing, and visualizing 
massive datasets. 
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6. Modern artificial intelligence is transforming the 
scientific landscape

Summary

13  AlphaFold Protein Structure Database 

Extraordinary recent advances in artificial intelligence 
(AI) and machine learning (ML) have showcased 
the potential for these technologies to disrupt many 
aspects of society. The field is being driven by industry, 
with a focus on commercial applications. But it is 
clear that AI and ML also have enormous potential to 
accelerate scientific discovery. The field of scientific 
ML is quite young, and the underlying technologies are 
changing rapidly, so it is difficult to see the future with 
great clarity. A successful research program will need 
to remain agile and adaptive. To complement and 
leverage the large industrial investment in these areas, 
DOE should focus on the unique needs associated 
with scientific applications and with the needs of DOE’s 
broader missions.

Finding 6.0: Artificial intelligence and machine 
learning have enormous potential to impact 
the processes of scientific research, but broad 
investments in mathematics and computing will be 
required to realize these opportunities. In some cases, 
AI and ML capabilities developed by industry can 
be applied to science, but in many cases, significant 
research will be required to make these capabilities 
usable in the scientific domain. In particular, DOE 
should focus on the unique needs associated with 
scientific applications and with the needs of DOE’s 
broader missions. These investments must both 
leverage current exascale and edge computing 
technologies and be able to take advantage of future 
computer architectures as they are developed.

In just the past decade, explosive progress in AI 
and ML have created capabilities that are changing 

numerous areas of commerce and everyday life. 
These capabilities are also showing the potential to 
dramatically accelerate progress in science, and there 
is much yet to be discovered. Many scientists are 
exploring ideas and developing new insights, but the 
field of scientific machine learning is very young. Many 
existing applications involve the use of ML models as 
very fast “surrogates” (approximate replacements) for 
more expensive simulation codes. The speed of these 
ML surrogates allows for more instances to be run, and 
for a larger search space to be explored which can lead 
to more optimized designs or better characterizations 
of uncertainties. Alphafold13, Google’s breakthrough 
technology for predicting protein conformations, 
showcased the potential for ML to outperform 
traditional scientific approaches. Other potential roles 
for ML in science include automatically monitoring 
and running experiments or series of experiments, 
improved methods for combining simulation results 
and experimental data, and the generation of new 
hypotheses from data. Quite likely, the most important 
ideas have not yet been thought of. AI may also 
dramatically change the software development 
process, which might make it much easier to build new 
computational science tools and applications.

Modern methods in AI, defined broadly to include 
ML, optimization, statistical inference, and supporting 
systems, are yielding unprecedented results in many 
application areas. Recent AI successes can be attributed 
to huge datasets, enormous computing power, and 
innovations in the underlying mathematics, statistics, and 
algorithms. Scientific applications of AI can have quite 
different characteristics than commercial applications, 

https://alphafold.ebi.ac.uk/
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so existing methods may need to be modified and 
new methods developed for scientific needs. Scientific 
datasets may be limited in size and are seldom labeled 
with the information required for many AI/ML algorithms. 
The best use of algorithms for scientific ML may involve 
new methods that take into account physical principles 
and constraints. Many scientific and engineering 
applications are high-consequence and require high 
accuracy and a careful assessment of uncertainties. 
The scientific community needs new algorithms and 
approaches to meet these challenges, and progress will 
have profound impact on many areas of science.

Some of the foundational areas to explore include:

 • Effective ML training for small or sparse 
datasets. Many scientific areas, ranging from 
materials science to astronomy to biology, have 
very few datasets with labeled training data. Many 
current AI algorithms, for example, deep neural 
networks, cannot perform well when trained 
on these limited samples. New developments 
in foundational AI, such as few-shot learning, 
self-supervised learning, mixed-scale dense 
networks, and meta-learning techniques, need 
to be developed to enable important scientific AI 
applications.

 • Incorporation of physical models into AI 
structure. The current theory and practice of AI 
struggles to incorporate physical models and 
constraints. Formulations of new AI algorithms 
structured to include physical models, rather 
than having to “learn” the physics, will allow 
the designs of new classes of AI applications 
optimized exactly for the scientific tasks that 
require them. To do this will require advances 
in such formalisms as projection operators that 
enforce physical principles, data structures that 
encode symmetries and constraints, and the 
construction of physical priors and their injection 
into mathematical models.

 • Verification, validation, and uncertainty 
quantification. DOE has been a leader 
in verification, validation, and uncertainty 
quantification (VVUQ) for computational 
models, where verification determines the 
accuracy and correctness of a code’s output, 
and validation determines the degree to which 
a model represents the real world. Augmenting 
computational models with data, AI, and ML 
algorithms opens new VVUQ challenges that will 
require a comprehensive framework for assessing 
the uncertainty associated with AI predictions 
and leveraging this knowledge to develop better 
predictors.

 • Real-time decision making. Many facilities in 
the DOE portfolio and beyond generate vast 
quantities of heterogeneous data that must be 
analyzed in real-time. Further work is required 
to achieve sub-microsecond decision times for 
applications such as particle physics, real-time 
particle accelerator or fusion reactor control, or 
the kinds of processing required for applications 
such as radio astronomy. Real-time decision 
making can also be used to optimize the use of 
scientific experiments and facilities and to manage 
key systems like the power grid.

 • AI methods for management of computational 
resources and workflows. Computer systems 
employed in high-end scientific applications 
have become extremely complex. Computer 
architectures have deep hierarchies with 
multicore CPU and GPU components, are often 
heterogeneous, and are increasingly integrated 
into distributed systems that incorporate edge 
computing. AI methods are being developed to 
schedule and coordinate execution of workflows 
and to choreograph applications that include 
capture, reduction, assimilation, and analysis of 
streaming data. 

 • Interpretable models and algorithms. Many AI 
models focus on prediction accuracy without a 
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focus on explainability. For scientific applications, 
prediction without insight is seldom enough. A 
key area of exploration is the development of 
interpretable models and algorithms that provide 
insight on why and how a model is producing a 
particular output.

Recommendation 6.1: Investments should be made 
in fundamental research to develop AI technologies 
that can advance DOE science. This could include 
efforts through existing programs and new focused 
opportunities that enable research collaborations 
among applied mathematicians, computer scientists, 
and computational scientists. Possible examples 
include the following:

 • effective ML training for small or sparse datasets;

 • incorporation of physical models into AI structure; 

 • verification, validation, and uncertainty 
quantification; 

 • real-time decision making;

 • AI methods for management of computational 
resources and workflows;

 • AI methods for planning, monitoring and running 
experiments;

 • interpretable models and algorithms; and

 • hypothesis generation from data.

Recommendation 6.2: Investments should be made 
to develop partnerships between computational and 
applications scientists to customize and apply AI 
capabilities to new science areas. As with all areas 
of science, active collaboration between science 
domain experts and computational experts will ensure 
that the best possible computational capabilities can 
be developed and brought to bear on challenging 
scientific problems. The SciDAC program provides an 
attractive model for this kind of investment.

An AI/Deep Learning/Machine 
Learning Project at the Princeton 
Plasma Physics Laboratory has 
enabled the FRNN code to predict 
the onset of powerful instabilities 
known as “disruptions” in magnetic 
confinement fusion devices 
(“tokamaks”). This is an important 
step towards a system to control 
plasmas for fusion power generation.
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7. Workforce

Summary

14  Council on Competitiveness, “Advance: Benchmarking Industrial Use of High Performance Computing for Innovation,” 2008. [Online]. 
Available: https://compete.org/2008/03/16/advance

15  Roscoe Giles, et al. 2020. Transforming ASCR after ECP. https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/202004/Transition_
Report_202004- ASCAC.pdf 

In industry, academia, and the national labs, there is 
high and growing demand for workers with expertise 
in computational science. The current workforce 
is insufficient to meet these needs, and demands 
will continue to grow as employers embrace the 
transformational opportunities discussed above. 
Current pipelines are tapped out, so new initiatives 
are needed to create pathways for historically 
underrepresented communities. Retraining programs 
are also needed, e.g. in artificial intelligence and 
machine learning, for workers with skills in adjacent 
areas. As an inter- or even multidisciplinary field, 
training in computational science requires specialized 
educational programs that cut across traditional 
academic departments and continue in the workplace.

Finding 7.0: The current workforce is insufficient in 
both size and diversity to meet the national need 
for computational science expertise in industry, 
academia, and the national labs. Active steps must be 
taken to create pathways into computational science 
for historically underrepresented communities and 
existing workers with skills in adjacent areas.

High performance computing (HPC) plays a “vital role 
in driving private-sector competitiveness”14 driven by 
advances in computing technology and computational 
science and engineering (CSE). The rapidly changing 
HPC environment is creating new challenges and 
exciting opportunities for CSE professionals. Thus, 
there will be an intensifying demand for a well-trained, 
increasingly diverse CSE workforce that can continually 
adapt and grow to meet these challenges, and that can 

take advantage of the opportunities for new and exciting 
advances in science and engineering that will result. 

In a workforce environment where industry rather than 
the government sector increasingly draws the brightest 
minds in computer science and mathematics, it will 
be important to attract talented young researchers 
into the CSE workforce at government  laboratories 
and in academia. The U.S. Department of Energy 
(DOE) has played a critical role in the development 
and use of CSE and HPC, maintaining an international 
leadership position. However, it has been noted by 
the DOE hallenges in workforce development and 
recruitment. This is exacerbated due to the inter- and 
multidisciplinary nature of the work and the reliance on 
an understanding of advanced and high-performance 
computing15. Thus, it will be increasingly important 
to draw from an expanded base of talent, which 
makes recruiting from historically underrepresented 
communities even more important. 

Creating new workforce pipelines that expose 
students to scientific computing earlier in their careers 
is vital to expand the pool of practitioners. DOE’s 
Workforce Development for Teachers and Scientists 
(WDTS) has been successful at collaborating with the 
national laboratories to engage with educators and 
undergraduate, graduate, and postdoctoral students. 
However, with the changing landscape in scientific 
computing, more investment is needed to address the 
growing workforce issues at all levels. Exposure to DOE 
has proven to be an effective way to inspire students 
at all levels to pursue careers in the field and ensure 

https://compete.org/2008/03/16/advance
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/202004/Transition_Report_202004- ASCAC.pdf
https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/202004/Transition_Report_202004- ASCAC.pdf
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they gain the requisite skills. The national labs provide 
these opportunities but are a finite resource; additional 
programs at educational institutions to attract and train 
the next generation of the CSE workforce will help to 
alleviate the current shortages. 

Recommendation 7.1: DOE should invest in programs 
at diverse educational institutions to increase the 
reach of workforce development programs. One 
model DOE could follow is the National Science 
Foundation Research Experiences for Undergraduates, 
which funds students to work on research projects at 
the host institution. DOE should also consider additional 
K–12 engagement to ensure students are aware of and 
interested in CSE fields as they make college decisions. 
To support the workforce needs of the future, students 
need to be exposed early and often to DOE, and 
partnering with other institutions will multiply the impact 
of this effort. 

Over the past decades, workforce development 
programs have been created that aim to build a 

16  Brown, D, Hack, J, Voigt, R. The Early Years and Evolution of the DOE Computational Science Graduate Fellowship Program. Computing in 
Science & Engineering. 2021 November 1; 23(6):9-15. Available: https://ieeexplore.ieee.org/document/9580661/ DOI: 10.1109/MCSE.2021.312068) 
17  The ECP Broadening Participation Initiative: https://www.exascaleproject.org/hpc-workforce
18  Brown, DL, Crivelli, S, Leung, MA. Sustainable Research Pathways: Building Connections across Communities to Diversify the National 
Laboratory Workforce. CoNECD 2019 - Collaborative Network for Engineering and Computing Diversity; 2019; c2019. source-work-id: 3228546
19  Sustainable Horizons Institute: https://shinstitute.org

skilled CSE workforce. A principal example is the DOE 
Computational Science Graduate Fellowship16, which 
has enabled students to pursue a multidisciplinary 
program of education in CSE coupled with practical 
experiences at the DOE laboratories. Graduates of this 
program have pursued professional careers in industry, 
academia, and at federal laboratories. More recently, 
the ECP Broadening Participation Initiative 17, including 
the Sustainable Research Pathways program18, 19, has 
successfully brought hundreds of faculty and students 
from underrepresented communities to the DOE 
national laboratories for summer research experiences 
and HPC training. Continuation and expansion of 
these programs, and the development of additional 
programs modeled after them, will be essential for 
building the diverse CSE workforce needed to address 
the challenges and take advantage of the opportunities 
discussed in this report.

Department of Energy (DOE) Computational Science Graduate 
Fellowship (CSGF) scholars and alumni at the 2023 DOE CSGF 
Annual Program Review in Washington, D.C. The CSGF scholars 
are part of an innovative group learning to use high performance 
computing to solve scientific and engineering problems.

https://ieeexplore.ieee.org/document/9580661/ DOI: 10.1109/MCSE.2021.312068)
https://www.exascaleproject.org/hpc-workforce/
https://shinstitute.org
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Computational science has always been an 
interdisciplinary endeavor, drawing on mathematics, 
computer science, and application domains. With 
the growth in the importance of data science and 
AI discussed elsewhere in this report, the field is 
becoming even broader. Interdisciplinary education 
has long been challenging due to the departmental 
structure of universities. But recent years have seen 
a steady growth in cross-campus programs that 
facilitate interdisciplinary education, collaboration, 
and research. Many of the most pressing scientific 
and societal challenges can only be solved 
through the efforts of multidisciplinary teams. The 
federal government should create incentives for 
interdisciplinary education and collaboration at both 
the graduate and undergraduate levels.

Recommendation 7.2: The federal government should 
expand and broaden investments in workforce 
development in computational science. Areas of 
focus should include pathways for underrepresented 
communities, retraining opportunities for existing 
workers, and academic programs with strong 
interdisciplinary elements.

Recommendation 7.3: DOE should continue to 
support, and look for opportunities to expand, the 
Computational Science Graduate Fellowship. The 
CSGF program has been integral in ensuring early 
career researchers have the skills and experiences 
they need to effectively contribute to DOE. As the 
future of scientific computing continues to evolve, 
the program should be supported in expanding to 
new areas, such as quantum computing and artificial 
intelligence for science. 
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8. Findings and recommendations

SECTION 1 | Introduction 

Finding 1.0: Given the central role of computational 
science in scientific discovery, industrial 
competitiveness and national security, the federal 
government must make the necessary investments to 
ensure continued U.S. leadership in the field.

Recommendation 1.1: Investments should be 
made to support a comprehensive computational 
science program that leverages the results of the 
Exascale Computing Program (ECP) and anticipates 
and exploits future high performance computing 
platforms. To fully take advantage of ECP technology 
and future hardware, this program will require further 
advances in applied mathematics and computer 
science and the establishment of partnerships 
between applied mathematicians, computer 
scientists, and application scientists to address 
critical national challenges. Exascale hardware 
and software provide a foundation for discoveries 
through scientific computing, but further research and 
development is required to fully realize the potential 
of exascale. In addition, further advances in computer 
performance and efficiency will come from computer 
designs that will require new algorithms and software. 
Current support for mathematics and computer science 
research aimed at enabling the use of future computers 
is insufficient to ensure they will be usable for science 
in a timely way. It is essential that a comprehensive 
program be implemented to develop the mathematics 
and computer science and to support the partnerships 
needed to enable application scientists to exploit these 
computers to address critical future challenges.

SECTION 2 | Computational science 
opportunities

Finding 2.0: DOE’s recent investments have produced 
supercomputers, software tools, and applications 
with exascale capabilities. Similarly, recent 
mathematical and algorithmic advances have led to 
novel approaches for answering difficult scientific 
and engineering questions. A comprehensive 
investment strategy will be required to ensure that 
these capabilities can continue to advance and be 
leveraged to develop new pathways of scientific 
discovery and engineering practice.

Recommendation 2.1: Further investments are 
needed to support the research and development 
activities needed to fully leverage the promise of 
exascale computing. These investments should 
include mathematics, computer science, application 
science, and system software. Exascale applications 
will require methodological advances in multiphysics 
simulations, uncertainty quantification, design 
optimization, and conjoining artificial intelligence with 
simulation. Managing exascale simulations will require 
new approaches to system administration, workflow 
management, data analysis, and visualization. All of 
these needs can only be met with additional research 
investments from the federal government.

Recommendation 2.2: An explicit program should 
be established to leverage and continue to advance 
the community software created by the Exascale 
Computing Project. This body of software developed 
under ECP will underpin the community for many 
years to come and will provide a cost-effective way 
to develop, support, port, and maintain a host of 
advanced applications. But this software will not be 
able to address continually evolving needs without 
further investment. DOE should oversee a research 
and development program to continue to extend this 
functionality, adapt it to new computers, and apply it to 
new application areas. 
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Recommendation 2.3: Investment is needed to 
provide a strong scientific foundation for the 
development and use of digital twins. This includes 
furthering the individual understanding of data 
assimilation and inverse problems, optimal control and 
model-based decision making, surrogates and model 
reduction, validation, and uncertainty quantification. In 
addition, understanding must be developed of the new 
challenges that arise when these constituent problems 
are integrated into digital twin frameworks.

Recommendation 2.4: Investments are needed in the 
research, software tools, and system management 
tools needed to enable complex workflows that 
combine simulation with machine learning. The 
computational science community should leverage 
recent progress in AI and ML in industry and identify 
AI and ML research directions that will enable new and 
faster scientific and engineering capabilities. Many 
existing applications involve the use of ML models as 
very fast “surrogates” (approximate replacements) for 
more expensive simulation codes.

SECTION 3 | Future architectures, traditional 
microelectronics 

Finding 3.0: The nation needs a suite of investments 
to ensure that the development of high performance 
computing continues beyond exascale to meet the 
nation’s continually evolving needs for advanced 
computational science. 

Recommendation 3.1: Investments are needed 
in research and development collaborations 
between computational scientists and computer 
vendors to ensure development of future energy-
efficient compute platforms that meet the needs 
of the computational science community. The high 
performance computing market is dominated by AI 
and Cloud, but there is still enough commonality that 
computational science can profit from developments 

in the larger market. Incentives are needed to 
encourage vendors to consider the needs of scientific 
application beyond their own markets. In this emerging 
environment, DOE should continue to leverage its 
successful history of investments in holistic co-design 
collaborations aimed at advancing the scientific 
computing market.

Recommendation 3.2: Investments are needed in 
research into methods to insulate applications from 
uncertain changes in future computing architectures. 
These investments should include new methods and 
algorithms, modular software design, abstraction layers, 
and research in scientific software engineering.

Recommendation 3.3: A facility or facilities should 
be established that will ensure that computational 
science researchers have access to emerging 
hardware, programming models, and heterogeneous 
systems to enable assessment of their utility for 
scientific applications. With the plethora of emerging 
computing designs, it is difficult to know which are 
the most promising, how they can be best exploited, 
and which application areas are best suited to each. A 
program to provide broad access to new technologies, 
and to assist new users, would allow the community 
to identify the most promising approaches. A similar 
program in the late 1980s and early 1990s was 
essential for the successful transition from vector 
computers to parallel computers.

SECTION 4 | Future architectures, 
transformational 

Finding 4.0: Advances in traditional silicon-based 
computer architecture will likely be insufficient to 
address important scientific challenges of the future. 
Investments in alternatives to traditional computing, 
such as neuromorphic and quantum computing, will 
be necessary to achieve these goals. 
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Recommendation 4.1: Investments are needed for the 
development of high-risk, high-reward alternatives 
to traditional computing hardware, such as quantum 
and neuromorphic computing, along with research 
and development of the algorithms and software 
that will be required to use them for scientific and 
engineering applications. 

Recommendation 4.2: Investments are needed 
to advance quantum computing through the 
improvement of mathematical understanding and 
algorithm development. These investments should 
be focused on the development and refinement of 
quantum algorithms for a broad range of unsolved 
scientific computing challenges, aiming at addressing 
end-to-end complexity in quantum computing 
applications. 

Recommendation 4.3: A facility or facilities should 
be established to ensure that researchers have 
access to experimental non-traditional hardware 
that will inform a holistic codesign cycle between 
manufacturers and users of transformative 
computing technologies. As the non-traditional 
computing hardware industry evolves and the roles 
of different enterprises change, the government 
should remain open to establishing new types of 
collaborations and relationships with both existing and 
emerging industrial partners. These new devices will 
likely be initially employed as accelerators, so their 
ability to integrate with existing HPC platforms must be 
part of the design process.

SECTION 5 | Data

Finding 5.0: Scientific progress increasingly relies 
on vast amounts of data. Broad investments will 
be required to ensure that scientific advances will 
continue to be fueled by the increasingly large 
and complex data streams produced by scientific 
instruments and facilities. These investments must 

both leverage current exascale and edge computing 
technologies and be able to take advantage of future 
computer architectures as they are developed.

Recommendation 5.1: Investments are needed in 
research to develop the mathematics and computer 
science technologies supporting multisensor data 
fusion. Development of these capabilities will require 
research in fields such as mathematics, statistics, AI, 
operations research, digital signal processing, pattern 
recognition, cognitive psychology, information theory, 
and decision theory.

Recommendation 5.2: Investment is needed to define 
and develop a common software stack for data 
science edge computing resources at scientific user 
facilities. This will include development and testing of 
new paradigms for integrating real-time information 
from sensors with edge computation, enabling real-
time predictive analytics, control, and optimization in 
support of operation of complex infrastructure at DOE 
scientific user facilities. The software infrastructure 
should support all aspects of scientific user facility 
operations, from generic operation and analysis 
services to specialized software applications specific to 
each facility.

Recommendation 5.3: Investment is needed in 
research and development to create an integrated 
suite of data lifecycle methods and tools, informed 
by the specific needs of DOE scientific communities. 
Techniques that lead to data harmonization and 
normalization, such as data cleaning, validation, and 
error correction must be developed to overcome 
the natural heterogeneity of data sources which is in 
inherent conflict with the need for data fusion. Open 
research questions remain around analyzing highly 
distributed data sources, enabling data discovery and 
integration, tracking data provenance, coping with 
sampling biases and heterogeneity, ensuring data 
integrity, privacy, security, and sharing, and visualizing 
massive datasets. 
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SECTION 6 | Artificial intelligence 

Finding 6.0: Artificial intelligence and machine 
learning have enormous potential to impact 
the processes of scientific research, but broad 
investments in mathematics and computing will 
be required to realize these opportunities. In 
some cases, AI and ML capabilities developed by 
industry can be applied to science, but in many 
cases, significant research will be required to make 
these capabilities usable in the scientific domain. 
In particular, DOE should focus on the unique 
needs associated with scientific applications and 
with the needs of DOE’s broader missions. These 
investments must both leverage current exascale and 
edge computing technologies and be able to take 
advantage of future computer architectures as they 
are developed.

Recommendation 6.1: Investments should be made 
in fundamental research to develop AI technologies 
that can advance DOE science. This could include 
efforts through existing programs and new focused 
opportunities that enable research collaborations 
among applied mathematicians, computer scientists, 
and computational scientists. Possible examples 
include:

 • Effective ML training for small or sparse datasets;

 • Incorporation of physical models into AI structure; 

 • Verification, validation, and uncertainty 
quantification; 

 • Real-time decision making;

 • AI methods for management of computational 
resources and workflows;

 • AI methods for planning, monitoring and running 
experiments;

 • Interpretable models and algorithms; 

 • Hypothesis generation from data.

Recommendation 6.2: Investments should be made 
to develop partnerships between computational and 
applications scientists to customize and apply AI 
capabilities to new science areas. As with all areas 
of science, active collaboration between science 
domain experts and computational experts will ensure 
that the best possible computational capabilities can 
be developed and brought to bear on challenging 
scientific problems. The SciDAC program provides an 
attractive model for this kind of investment.

SECTION 7 | Workforce 

Finding 7.0: The current workforce is insufficient in 
both size and diversity to meet the national need 
for computational science expertise in industry, 
academia, and the national labs. Active steps must be 
taken to create pathways into computational science 
for historically underrepresented communities and 
existing workers with skills in adjacent areas.

Recommendation 7.1: DOE should invest in programs 
at diverse educational institutions to increase the 
reach of workforce development programs. One 
model DOE could follow is the National Science 
Foundation Research Experiences for Undergraduates, 
which funds students to work on research projects 
at the host institution. DOE should also consider 
additional K–12 engagement to ensure students are 
aware of and interested in CSE fields as they make 
college decisions. To support the workforce needs 
of the future, students need to be exposed early and 
often to DOE, and partnering with other institutions will 
multiply the impact of this effort. 

Recommendation 7.2: The federal government should 
expand and broaden investments in workforce 
development in computational science. Areas of 
focus should include pathways for underrepresented 
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communities, retraining opportunities for existing 
workers, and academic programs with strong 
interdisciplinary elements.

Recommendation 7.3: DOE should continue to 
support, and look for opportunities to expand, the 
Computational Science Graduate Fellowship. The 
CSGF program has been integral in ensuring early 
career researchers have the skills and experiences 
they need to effectively contribute to DOE. As the 
future of scientific computing continues to evolve, 
the program should be supported in expanding to 
new areas, such as quantum computing and artificial 
intelligence for science. 
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Appendix I: Acronym glossary
AI Artificial Intelligence

ASCR U.S. Department of Energy Advanced Scientific Computing Research Program

CMOS Complementary Metal-Oxide Semiconductor

CNOT controlled NOT (quantum logic) gate

CPU Central Processing Unit

CSE Computational Science and Engineering

CSGF U.S. DOE Computational Science Graduate Fellowship program

DOD U.S. Department of Defense

DOE United States Department of Energy

DRAM Dynamic Random-Access Memory

ECP DOE Exascale Computing Project

EPA U.S. Environmental Protection Agency

E.U. European Union

GPU Graphics Processing Unit

HPC High Performance Computing

HPCC (Federal) High Performance Computing and Communications Program

IO input-output

ML Machine Learning

NASA The National Aeronautics and Space Administration

NIH U.S. National Institutes of Health

NISQ Noisy Intermediate Scale Quantum (device)

NIST U.S. National Institute of Standards and Technology

NOAA U.S. National Oceanic and Atmospheric Administration

NSF National Science Foundation

QEC Quantum Error Correction

SIAM Society for Industrial and Applied Mathematics

SciDAC DOE Scientific Discovery through Advanced Computing program

SRAM Static Random-Access Memory
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Columbia University
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