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A Network Model of Immigration and Coexistence
By Yao-li Chuang, Tom Chou,    
and Maria R. D’Orsogna

In the summer of 2015, more than 
one million refugees from the Middle 

East, Central Asia, and Africa arrived in 
Europe via dangerous routes across the 
Mediterranean Sea and the Balkans [7]. 
German Chancellor Angela Merkel wel-
comed the newly arrived with an enthu-
siastic “Wir schaffen das”—“We can do 
this”—embodying the collective spirit 
of optimism that pervaded Europe at the 
time. The vast majority of migrants were 
fleeing civil wars, brutal dictatorships, or 
religious persecution; others were seeking 
better economic opportunities. Preferred 
destinations among the more prosperous 
nations included Germany, Sweden, and the 
U.K., whereas European law and geography 
placed most of the burden of processing 
asylum claims on border nations such as 
Italy, Greece, and Hungary, which were not 
prepared to cope with such unprecedented 
numbers of new arrivals.

Measures including the forced return of 
illegal migrants to Turkey in exchange for 
economic concessions attempted to stem the 
flow. Hungary closed its borders, and Italy 
eventually closed its ports. European law-
makers were unable to devise a clear bur-

den-sharing system among member states; 
at the same time, refugees and smugglers 
quickly found and exploited new migrant 
routes as existing ones saw increased 
patrolling and border controls. Eventually, 
the perception of an unmanageable crisis 
touched the entire continent. Discontent 
among the general public grew, as did dis-
cussions on safety, integration, European 
identity, secularism, resource availability, 
and the role of non-governmental organiza-
tions. As a result, the issue of migration has 
dominated elections across Europe over the 
past few years, and nationalist parties have 
enjoyed large gains in many countries.

It is within this larger sociopolitical con-
text that many migrants have settled into 
European cities, each with their own per-
sonal story of adaptation, hurdles, discover-
ies, kindness, and hostility from strangers. 
Outcomes have thus far been mixed; refu-
gees have successfully integrated in many 
communities from Italy to Sweden, but in 
some cases there have been challenges and 
mistrust. A common observation is that 
newcomers who do not adapt well—either 
by circumstance, aversion from natives, 
lack of resources and/or motivation, etc.—
tend to self-segregate and create insular 
communities [5]. While these enclaves pro-
vide immigrants with advantages and a 

sense of belonging, they may also 
prevent them from fully integrating 
into the larger society.

The fateful summer of 2015 pre-
sented a most daunting question: Is 
it possible to integrate vast num-
bers of asylum seekers in a way 
that is constructive for natives and 
migrants alike? This issue is also at 
the core of our recent mathematical 
modeling work, wherein we offer a 
quantitative setting for the study of 
immigration and coexistence [2]. 
We consider two communities—
“hosts” ( )Nh  and “guests” ( )Ng —
as nodes that interact on a social 
network, both seeking to improve 
their socioeconomic status. Each 
node i  carries a time-dependent 
attitude xi

t  towards others and is 
assigned a utility function Ui

t  that 
depends on its mi

t  connections. 
Over time, nodes adjust attitudes 
and reshape links to increase their 
utility; as a result, the network 
evolves towards either integra-
tion or segregation between hosts 
and guests. While the utility func-
tion follows game theoretic rules, 
attitudes are assumed to evolve 

The Mathematical Fight for Voting Rights
By Matthew R. Francis

State and local governments will redraw 
voting districts based on new informa-

tion following completion of the 2020 U.S. 
Census. Ideally, this process ensures fair 
representation. In practice, however, dis-
tricting often involves gerrymandering: the 
deliberate planning of districts to dilute the 
voting power of certain groups in favor of 
others, which violates the law.

Racial gerrymandering—drawing dis-
tricts to limit the power of voters of color 
to select candidates they favor—is a particu-
larly pernicious problem. Section 2 of the 
Voting Rights Act (VRA) of 1965 specifi-
cally prohibits this practice, but that has not 
stopped authorities from doing it anyway. 
“A number of court decisions have pur-
posefully asked mathematicians, political 
scientists, and statisticians to use specific 
methods to try and understand racial ger-
rymandering,” Matt Barreto, a professor of 
political science and Chicana/o studies at the 
University of California, Los Angeles, said. 

Barreto and his colleagues employ pow-
erful statistical methods and draw on census 
and other public data to identify gerryman-
dered districts. Utilizing these tools, math-
ematicians can test proposed district maps 
or draw their own, designing them from the 
ground up to prevent voter dilution. 

Since gerrymanderers use the same data 
to intentionally disenfranchise voters, the 
question is whether mathematical approach-
es alone are enough to fight the problem. 
Just as machine learning algorithms can 
“learn” racism from their training data,1 
studies show that the results of algorithmic 
districting can be as bad as deliberate ger-
rymandering [2]. To put it another way, can 
math solve problems it did not create? 

“Previous efforts that used mathematics 
were not as accurate, and they did white-
wash over some of the black and brown 
voters living in communities,” Barreto said. 
“By going that extra step and purposefully 
trying to bring in accurate data on racial and 
ethnic minorities, we can go back to our 
trusted mathematical and statistical meth-

ods to make sure we’re getting 
accurate counts of people.”

Racial Polarization,                 
Racial Gerrymandering

In 1812, cartoonist Elkanah 
Tisdale noticed that one of 
the districts created under 
Massachusetts Governor 
Elbridge Gerry looked like 
the mythical fire-monster sala-
mander, so he dubbed it the 
“Gerry-Mander” (that argu-
ably makes “gerrymandering” 
the most important legal term 
ever coined in a cartoon, which 
pleases me as a frequent com-
ics writer). This original ger-
rymander is a prime example 
of partisan gerrymandering 
because it was created to favor 

1  https://sinews.siam.org/
Details-Page/the-threat-of-ai-
comes-from-inside-the-house

the Democratic-Republican Party over the 
Federalists (see Figure 1).

Racial gerrymandering has garnered 
less attention than its partisan counterpart, 
though the two often go hand in hand. 
However, racial gerrymandering also hap-
pens in effective one-party regions, such 
as cities where the Democratic Party domi-
nates local politics. In practice, testing for 
unethical districting involves looking for 
racially polarized voting patterns — places 
in which minority voters strongly prefer 
one candidate over another, but districts 
are drawn to favor white voter preferences. 
Chicago—with a history of just two elected 
African American mayors despite its large 
black population—is a classic example of 
this form of gerrymandering.

Consider an imaginary mayoral election 
with two candidates: Smith, who is preferred 
by white/Anglo voters, and Herrera, who is 
preferred by Latinx voters. The city is divid-
ed in a such way that Latinx voters never 
amount to more than 40 percent of the total 
population in any district, while white voters 
never comprise fewer than 50 percent — 
regardless of the city’s total racial and ethnic 
makeup. Racial gerrymandering ensures that 
Smith always wins over Herrera and Latinx 
preferences are never represented, which is a 
violation of the VRA. Perhaps the districting 
scheme splits apart Latinx-majority neigh-
borhoods and lumps the fragments with 
white-majority areas; a more equitable and 
representative division would keep those 
neighborhoods whole, possibly even allow-
ing for Latinx-plurality districts.

The challenge for mathematicians involves 
reconstructing racial voting patterns without 
violating voter privacy, which is protected 
by law. Barreto and his collaborators use 
ecological inference (EI), a technique that 
infers individual behaviors from population-
level datasets. Their EI methods involve 
an iterative Bayesian approach, utilizing 
publicly available data from petitions, voter 
records (which merely tabulate if a regis-
tered voter casts a ballot), and the census.

Figure 1. Cartoonist Elkanah Tisdale’s 1812 depiction of 
Massachusetts Governor Elbridge Gerry’s partisan ger-
rymandering in favor of the Democratic-Republican Party. 
Public domain image. See Voting Rights on page 4

See Immigration on page 2

Figure 1. Each node i  is characterized by a variable 
attitude − ≤ ≤1 1xi

t  at time t.  Negative (red) values 
indicate guests and positive (blue) values represent 
hosts. The magnitude | |xi

t  represents node i’s degree 
of hostility towards members of the other group. All 
nodes j k,  that are linked to node i  represent the 
green-shaded social circle W i

t  of node i  at time t. The 
utility Ui

t  of node i  depends on its attitude relative to 
that of its mi

t  connections. Nodes maximize their utility 
by adjusting their attitudes xi

t  and establishing or sev-
ering connections. Figure courtesy of Yao-li Chuang [2].
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JPBM Communications 
Award Recipients

	 Every year, the Joint Policy 
Board for Mathematics 
(JPBM) presents the JPBM 
Communications Award, which 
acknowledges communicators 
who routinely help convey 
mathematical ideas to non-
mathematical audiences. The 
recipients of the 2020 JPBM 
Communications Award are 
Chris Budd and James Tanton.

5 	 Mean Field Game Theory: A 
Tractable Methodology for 
Large Population Problems

	 Mean field game (MFG) theory 
finds applications in a wide 
variety of areas, including 
vaccination strategies, crowd 
dynamics, algorithmic trading 
in competitive markets, and 
demand management for domes-
tic users on electrical power 
grids. Peter E. Caines presents 
the basic notions of MFG 
theory in the context of illustra-
tive examples that involve cell 
phone energy management and 
optimal execution in finance.
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	 Educators in STEM fields 
routinely strive to ready their 
students for the workforce. 
While core scientific curricula is 
undoubtedly important, skills like 
interdisciplinary collaboration, 
effective communication, and 
data literacy are equally valu-
able — especially for positions 
in industry. Kathleen Kavanagh, 
Joe Skufca, Ben Galluzzo, 
and Karen Bliss outline some 
of the initiatives presented at 
the 2020 Joint Mathematics 
Meetings in January.

8 	 SIAM: The Early Years
	 Executive director James 

Crowley reflects on two recent 
coincidences that inspired him 
to examine SIAM’s history, 
establishment, and incorpora-
tion as the society we know 
today. He explores Ed Block’s 
pivotal role in SIAM’s found-
ing, as well as the ENIAC’s 
development and subsequent 
influence on the newly-
emerging computer industry 
and the city of Philadelphia.
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through opinion dynamics; the two inform 
each other in a synergistic way.

Attitudes xi
t  vary between − ≤ ≤1 0xi

t  
for guests and 0 1£ £xi

t  for hosts; the 
magnitude | |xi

t  indicates the degree of 
hostility towards the other group. Thus, 
xi
t → ±0  characterizes most receptive 

guests or most hospitable hosts, while 
xi
t =±1  represents the highest level of 

xenophobia (see Figure 1, on page 1). The 
utility Ui

t  is given by a pairwise reward—
to which each node j  linked to i  contrib-
utes—and by a cost function for maintain-
ing mi

t  connections, such that

U A
x x m

i
t

ij
j

i
t

j
t

i
t

i
t

= −
−

−
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Ω

exp
( )
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Here, Wi
t  is the set of nodes linked to i  at 

time t,  so that mi
t  is given by its cardinal-

ity: mi
t

i
t=| | .Ω  The pairwise reward depends 

on the attitude difference | |x xi
t

j
t-  between 

nodes i  and j;  a diminishing attitude dif-
ference correlates with an increasingly high 
reward. Therefore, if both i  and j  are 
hosts or immigrants, the reward is maxi-
mized for x xi

t
j
t= ,  leading to consensus 

within the group. But if i  and j  are from 
different groups, the reward is optimized 
only if both nodes adopt more coopera-
tive attitudes: xi

t → −0  and x j
t → +0 .  The 

parameter s  controls the reward’s sensitiv-
ity to attitude differences, the amplitude Aij 
specifies the maximum possible reward, 
and the scaling coefficient a  governs the 
cost of maintaining active links. Other mod-
els have considered residential segregation 
between two ethnic groups, with nodes 
seeking “friendly” neighbors with whom 
to connect. The most famous of these is the 
seminal Schelling model of segregation [3, 
4, 6]. Our utility function Ui

t  adds socio-
economic status as a decision-making factor 
in the link establishment process. 

The dynamics unfold so that connec-
tivities are modified at each time step to 
maximize utility. Attitudes are changed by 
imitation, so that
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where k  governs attitude adjustment. 
Specifically, the timescale for guest 
cultural adjustment tg  is given by k, 
and scaled by the probability of a guest 
being paired with a host N Nh / ,  so that 
τ κg h~ / .N N  Similarly, the host cultural 
adjustment timescale τ κh g~ / .N N  Since 
N Nh g ,  also t th g ; adjustment 
times for hosts are longer than for guests. 
These cultural adjustment timescales are 
compared with the unitary timescale for 
social link remodeling. Finally, initial con-
ditions represent the way in which guests 
are originally settled in the community. 
One extreme case involves a perfectly 
executed welcoming program that pro-
vides refugees with sufficient social ties 

to hosts, and where all nodes are randomly 
connected — regardless of attitudes and 
utilities. The other extreme case is that 
of guests who arrive in a completely for-
eign environment with nonexistent initial 
resources. Hosts are naturally connected 
to one another in their own state of equi-
librium, and guests are introduced without 
any links to hosts or each other.

Figure 2 depicts two representative 
steady-state outcomes. In Figure 2a, hosts 
and guests segregate and maintain highly 
hostile attitudes. Any initial cross-group 
utilities yield low rewards that do not 
increase over time, so that all ties between 
hosts and guests are eventually severed. 
Enclaves emerge when the two separate 
communities adopt uniform but differing 
attitudes xi .  In Figure 2b, all nodes develop 
more cooperative attitudes that increase 
cross-group rewards, so that hosts and 
guests remain mixed. Eventually, xi

t® 0  on 
all nodes. For both scenarios, | |x xi

t
j
t− → 0 

at steady state, but to which configuration 
society converges depends on parameter 
choices and initial conditions.

We find that the main predictor of inte-
gration versus segregation is the magnitude 
of the t tg h,  timescales relative to the uni-
tary network remodeling time. In the case 
of slow cultural adjustment, immigrant 
and host communities tend to segregate 
as accumulation of socioeconomic wealth 
occurs more efficiently through insular, 
in-group connections. Conversely, fast cul-
tural adjustment enables the establishment 
and sustenance of cross-cultural bridges, 
allowing different groups to reach consen-
sus and maintain active cooperation. This 
is shown in Figures 2a and 2b, where the 
only difference is the k  parameter that 
drives t tg h, .  We also find that a high 
guest-to-host ratio N Ng h/  increases the 
likelihood of in-group connections and 
reduces communication between immi-
grant and host populations. 

One possible approach to avoid seg-
regation is the promotion of cross-group 
interactions via government incentives, 
or if newcomers carry or acquire desired 
skill sets, for example. Note that cultural 
adjustment does not necessarily mean 
that either side must abandon their iden-
tity; rather, we find that different groups 

must adopt tolerant attitudes towards one 
another, engaging in rapport building and 
acceptance to bridge differences and pro-
mote integration [1]. This is the long-term 
challenge for the future.

Acknowledgments: This work was 
made possible by support from grant 
W1911NF-16-1-0165.
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Figure 2. Simulated dynamics leading to complete segregation (2a) and integration (2b) 
between guest (red) and host (blue) populations. Initial conditions are randomly connected 
guest and host nodes with attitudes xi, guest

0 1=−  and xi, .host
0 1=  Panels 2a and 2b differ only 

for k, the attitude adjustment timescale, with k=1000  in 2a, where segregated clusters 
emerge, and k=100  in 2b, where a connected host-guest cluster arises over time. Figure 
courtesy of Yao-li Chuang [2].

Immigration
Continued from page 1

SIAM News Transition
Karthika Swamy Cohen, who over-

saw SIAM News as managing editor 
since July 2015, left SIAM last month 
for a new position. We are grateful for 
her contributions to SIAM and wish her 
the best of luck in her future endeavors.

Lina Sorg, who served as the associ-
ate editor of SIAM News since October 
2015, has taken over as managing editor.
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There are several mechanical or geo-
metrical interpretations of the sym-

metry of a matrix; I would like to describe 
one that recently occurred to me. It is likely 
that others have thought of it before, though 
I did not do a literature search to confirm.

Let us interpret the square n n´  matrix 
A  as a frame of its column vectors ak

nÎ , 
thought of as n  rigid rods that are weld-
ed together and pivot on the origin O. 
As illustrated in Figure 1, let us connect 
the tip of the k th  column/rod ak to the 
tip of the coordinate unit vector ek by a 
Hookean spring, i.e., the spring whose ten-
sion is directly proportional to its length. 
All springs have the same Hooke’s constant.

Claim 1: An n n´  ( )n³ 2  matrix is 
symmetric if and only if the aforementioned 
mechanical system is in equilibrium.

Indeed, in an equilibrium state the torque 
around O  in any ij-coordinate plane van-
ishes; this amounts to a aij ji− = 0.

Claim 2: A matrix is positive-definite if 
and only if the frame is right-handed and 
in a stable equilibrium.

Symmetry and Polar Decomposition by Mechanics
of its elements’ squares: 
   X X XT2= tr( ).

Polar Decomposition
Given an arbitrary n n´  

matrix A  that is not nec-
essarily symmetric, let 
us connect the frame of 
columns to the springs—
as in Figure 1—and then 
release. After undergoing 
a rotation R SO nÎ ( ),  the 

frame will 
settle (assuming some damp-
ing) to the orientation of least 
potential energy; this new 
frame corresponds to a sym-
metric matrix S.  In short, 
S RA= , i.e., A R S= −1 , which 

almost amounts to the polar decomposition 
of A.  The “almost” is due to the fact that S  
need not be positive definite, as Figure 1b 
illustrates; one must first compose A  with 
an extra reflection if det A< 0,  and then 
carry out the above operation.

Sylvester’s Criterion
Sylvester’s criterion is a nec-

essary and sufficient condition 
for the positivity of a sym-
metric matrix that requires all 
principal minors to be posi-
tive. Minimality of the Toeplitz 
norm  A I- 2  for positive 
definite 2 2´  matrices makes 
Sylvester’s criterion visually 
transparent. For example, if the 
Toeplitz norm is minimal for a 

positively-oriented frame, only two cases of 
the equilibria shown in Figure 2 can occur;  
a11 0>  in both of these cases. Finding a 
purely visual proof of Sylvester’s criterion for 
n=3  in a similar spirit is left as a challenge.

The figures in this article were provided 
by the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

The proof of this claim in dimension 2 is 
almost purely geometrical. Figure 2 illus-
trates stable equilibria with the positively-
oriented frames. No combination of quad-
rants other than those in Figure 2 can occur.

It is clear that both eigenvalues are positive 
in either case. Indeed, with QN  denoting the 
N th  quadrant, we have (see Figure 3)

     A Q Q A Q Q( ) ( )1 1 2 2⊂ ⊃and

for matrix A  in Figure 2a. We use the 
fact that the matrix maps the 
basis e e1 2,  to the frame a a1 2, . 
According to a fixed point 
theorem, Q1 and Q2  both 
contain eigenvectors with posi-
tive eigenvalues. We treat the 
matrix in Figure 2b similarly, 

with the same conclusion 
of two positive eigendirec-
tions. By contrast, Figure 
1b depicts a negatively-ori-
ented frame, and we have 
A Q Q Q( )2 4 2⊃ =−  for the 
corresponding matrix A; this 
implies the existence of a 
negative eigenvalue.

Connection to the 
Toeplitz Norm 

Potential energy of the 
system in Figure 1 is a 

mechanical interpretation of the Toeplitz 
norm  A I- 2 ,  up to a constant factor 
that depends on Hooke’s constant. We 
recall that the Toeplitz norm of a square 
matrix X  is defined as the root of the sum 

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 2. Illustration of Sylvester’s criterion in 2.

Figure 1. The k th  column vector ak  is connected to the k th 
coordinate unit vector ek .  1a. det A> 0.  1b. det A< 0.

Figure 3. Two eigendirections (dotted) with positive eigen-
values for the matrix in Figure 2a. Shaded sectors are 
A Q( )2  (3a) and A Q( )1  (3b).

By Hans Kaper

Attendees of the American Association 
for the Advancement of Science 

(AAAS) Annual Meeting are like kids in a 
candy store: confronted with many choices, 
unexpected delights, and an ongoing tension 
between instant gratification and long-term 
perspective. I have been participating in 
these meetings since 2018, and I must say 
that I find them more fascinating with each 
passing year. Yes, I enjoy and would regret 
missing the professional meetings of SIAM, 
the American Geophysical Union, and other 
societies to which I belong. But AAAS meet-
ings are different. They offer guests a chance 
to look beyond their silos and provide a 
unique opportunity to visualize mathematics 
as part of the larger scientific enterprise.

The theme of the 2020 meeting, which 
took place this February in Seattle, Wash., 
was “Envisioning Tomorrow’s Earth.” What 
better occasion to reflect on the ways in 
which science and technology respond to 
new challenges from both the natural and 
built world, and conversely, to see how the 
challenges of today’s “real world” can inspire 
novel mathematics? This theme also coincid-
ed with the objectives of the SIAM Activity 
Group on Mathematics of Planet Earth.1

The AAAS is an umbrella organization 
that represents many sciences. It is his-
torically dominated by the biological and 
chemical sciences, and a cursory look at 
Science—their flagship magazine—offers 
ample evidence of this dominance. Rarely 
does it feature an article explaining a recent 
result in mathematics, either core or applied. 
But mathematics and statistics have a seat at 
the table; it is simply difficult to convince 
the powers that be of mathematical scienc-
es’ relevance to many discoveries in other 

1  https://www.siam.org/membership/
activity-groups/detail/mathematics-of-planet-
earth

Envisioning Tomorrow’s Earth: 
Reflections on the 2020 AAAS Annual Meeting

the AAAS has made sizeable investments in 
training communicators; this is a long-term 
effort, but the payoff could be significant.

The AAAS Annual Meeting is a great 
place to learn about mathematical scienc-
es’ role in the broad panorama of physi-
cal and life sciences. The theme of next 
year’s meeting is “Understanding Dynamic 
Ecosystems.”3 What better opportunity to 
showcase the role of applied mathemat-
ics? Let’s make an effort to highlight our 
passion for mathematics and demonstrate 
how we can create a win-win situation for 
science and society.

Hans Kaper, founding chair of the 
SIAM Activity Group on Mathematics 
of Planet Earth and editor-in-chief of 
SIAM News, is affiliate faculty in the 
Department of Mathematics and Statistics 
at Georgetown University.

3  https://meetings.aaas.org/program/ 
meeting-theme/

disciplines. Yet we must keep trying, as it is 
better to be heard than forgotten.

The 2020 AAAS Annual Meeting had two 
substantive scientific sessions that focused 
on mathematical contributions to the public 
good. One session, organized by Karen 
Saxe (American Mathematical Society), 
examined gerrymandering and racial fair-
ness and featured talks by Matt Barreto 
(University of California, Los Angeles), 
Jonathan Mattingly (Duke University), and 
Moon Duchin (Tufts University).2 The other 
session, organized by Christiane Rousseau 
(University of Montreal) and Fred Roberts 
(Rutgers University), focused on resilience 
in the digital age, with talks by Amy Luers 
(Future Earth), Hans Kaper (Georgetown 
University), and Wayne Getz (University of 
California, Berkeley). Both sessions were 
well attended and boasted stimulating ques-
tion-and-answer dialogues.

Not only does the AAAS Annual Meeting 
draw participants from academia, govern-
ment, and the private sector, it also attracts 
communicators, the press, and numerous 
think tanks. In fact, the meeting’s major 
thrust is to expose new ideas to a broader 
community, inform decision-makers, and 
connect science and society. Not all ses-
sions at the 2020 gathering focused on 
science; panels and town hall events were 
devoted to communication issues, work-
shops highlighted career opportunities, and 
plenary talks addressed “big picture” ideas.

Two plenary sessions were of particu-
lar interest. Bill Gates discussed science 
policy’s influence on public health (and vice 
versa), which is where the Bill & Melinda 
Gates Foundation has made significant con-
tributions. And Krysta Svore (Microsoft 
Corporation) offered an insider’s view on 
the state of the art of quantum information 

2  See “The Mathematical Fight for Voting 
Rights” on page 1 for a detailed analysis of 
Barreto and Duchin’s work.

science at Microsoft. In addition, multiple 
sessions explored Earth’s climate system and 
its many subsystems (ocean, atmosphere, 
carbon cycle, water cycle, etc.), issues of 
sustainability (food supply, manufacturing, 
etc.), extreme events, artificial intelligence, 
machine learning, and public health.

Most of us realize that a wide gap exists 
between the scientific research enterprise 
and the public’s appreciation of science, and 
recognize that it is important to make sus-
tained efforts to bridge this gap. However, 
determining how to best engage the public 
and develop meaningful communication 
channels is not always clear. The social 
sciences indicate that “show and tell” is 
not going to close the gap; we need to be 
more discerning and tailor our message spe-
cifically to our audience. We must pay heed 
to examples of successful communication 
techniques—many of which were presented 
at the 2020 AAAS Annual Meeting—so our 
message is not ignored and lost. To that end, 

Bill Gates of the Bill & Melinda Gates Foundation addresses the crowd during his plenary lecture 
at the 2020 American Association for the Advancement of Science (AAAS) Annual Meeting, which 
took place this February in Seattle, Wash. Photo courtesy of Robb Cohen Photography & Video.
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Voting Rights
Continued from page 1

Each year, the Joint Policy Board for 
Mathematics (JPBM) presents the 

JPBM Communications Award to reward 
and encourage communicators who bring 
mathematical ideas and information to 
non-mathematical audiences on a sus-
tained basis. Established in 1988, the prize 
is a collaborative effort between SIAM, 
the American Mathematical Society, the 
American Statistical Association, and the 
Mathematical Association of America 
(MAA). Both mathematicians and non-
mathematicians are eligible for up to two 
awards of $2,000 annually.

The recipients of the 2020 JPBM 
Communications Award are Chris Budd and 
James Tanton. As per the citation, Budd 
received the prize “for his passionate pop-
ularization of mathematics. Through his 
positions at Gresham College, the Royal 

Recognizing the 2020 JPBM 
Communications Award Recipients

Institution of Great Britain, and the Institute 
of Mathematics and its Applications, his 
books, and his work with science festivals and 
schools, he inspires audiences of all ages.” 
Tanton was acknowledged “for global leader-
ship in high school mathematics instruction. 
Through his “G’Day Math!” online courses, 
MAA Curriculum Inspirations, numerous 
textbooks, and the Global Math Project, he is 
inspiring millions to learn and teach math in 
wonderful new ways.”

Budd and Tanton received their awards 
during a ceremony at the 2020 Joint 
Mathematics Meetings, which took place in 
Denver, Colo., this January.

Read more about the prize and this year’s 
awardees online.1

1  https://sinews.siam.org/Details-Page/
christopher-budd-and-james-tanton-to-
receive-2020-jpbm-communications-awards

Mathematical Association of America (MAA) President Michael Dorff (left) presents the 2020 
Joint Policy Board for Mathematics (JPBM) Communications Award to James Tanton. Photo 
courtesy of Kate Awtrey, Atlanta Convention Photography.

Chris Budd (right) accepts the 2020 Joint Policy Board for Mathematics (JPBM) Communications 
Award from Mathematical Association of America (MAA) President Michael Dorff. Photo cour-
tesy of Kate Awtrey, Atlanta Convention Photography.

The census is the only public record 
that regularly includes racial information. 
However, it is only updated every 10 years, 
and citizens may relocate during that period 
and vote in more than one election in a 
given year. To infer the race of voters 
based on registration information, Barreto’s 
group employs a method called Bayesian 
Improved Surname Geocoding (BISG). 
This technique uses geographic information 
to assign a probability that a given surname 
belongs to one of the major racial/ethnic 
groups in America—white, black, Asian, 
Latinx, or other. For instance, my surname 
“Francis” is more likely to be shared by 
white people in Iowa but probably belongs 
to African Americans in New Orleans.

Barreto and his colleagues tested the 
BISG method using a dataset wherein peo-
ple self-identified their race. By iteratively 
improving their Bayesian priors, their model 
now identifies the race of a particular voter 
with between 93 and 97 percent accuracy.

In the simplest case—like Herrera v. 
Smith—a district has two candidates and 
two distinct racial/ethnic groups (Latinx and 
Anglo/white). For every precinct i  in the 
district, one must estimate the fraction of 
each group ( , )b bL

i
W
i  that voted for Herrera. 

The known quantities are the fraction of 
voters who cast a vote ( )TH

i  for Herrera 
and the Latinx fraction of total voters who 
participated in this election ( ),XL

i  esti-
mated using BISG and generally assumed 
to be independent of the b  parameters. 
Because these quantities are all fractions, 
the complementary values for white partici-
pation is X XW

i
L
i= −1  and the vote fraction 

for Smith is T TS
i

H
i= −1 .

Unfortunately, even the simplest system 
does not allow exact solutions, so Harvard 
University political scientist Gary King and 
his colleagues proposed the use of tomogra-
phy graphs by analogy with medical imag-
ing procedures, where one must infer three-
dimensional structures from X-rays that pass 
through the human body [3]. Each precinct 
is represented by a line that accounts for 
all possible ( , )b bL

i
W
i  parameter values (as 

given by the linear equation), with the slope 
and intersect involving known quantities:
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If the data is clear-cut, the lines on the 
tomography graph will intersect in a well-
defined region (see Figure 2). In this case, 
a bivariate normal distribution (restricted to 
bR
i Î[ , ]0 1  for R L W={ , }) yields the likeli-

hood function of the best aggregate values 

for ( , ).b bL W  In contrast, less well-defined 
data require more complicated analyses.

While this two-candidate, two-race EI 
model is adequate for some parts of the coun-
try, many districts necessitate extended forms 
of the model. One extension is iterative: 
separating one racial/ethnic group or candi-
date at a time and comparing it to the others 
in aggregate, repeating this process until all 
groups have been analyzed. Another expan-
sion is the R C´  model, which combines all 
parameters into a matrix bRC

i ,  with row R 
tabulating race/ethnicity and column C  tabu-
lating candidate. Barreto and his collaborators 
developed eiCompare2—a freely-available 
package for the R statistical programming 
language—to simultaneously calculate the 
different models’ parameters, compare their 
outcomes, amd provide the best possible EI 
estimates in real-world elections.

“We’re not trying to prove that there’s 
always racially polarized voting,” Barreto 
said. “In some communities there is not, and 
the data will show us that.”

Accounting for Fairness
The U.S. Supreme Court laid out three 

criteria for demonstrating racial gerryman-
dering in their 1986 decision on Thornburg 
v. Gingles, including rules for legally prov-
ing racial polarization [4]. These “Gingles 
prongs” are as follows:

1. If there is a minority racial/ethnic group 
large enough to be a majority in a district 

2. If this group votes in cohesive ways, 
tending to have preferred candidates as a bloc 

3. If the white-preferred candidates are 
almost always able to defeat the minority-
preferred candidates despite the first two cri-
teria, then racial gerrymandering is present. 

Any redesigned district must therefore 
account for these conditions to comply with 
the VRA. To ensure fairness, the court also 
instructed legislators to consult professional 
mathematicians and statisticians.

Tufts University mathematician Moon 
Duchin and her colleagues pair analysis 
techniques like EI with high-level geomet-
ric methods to identify where communities 
or individual neighborhoods define voting 
blocs, and generate alternative maps to 
eliminate gerrymandering. Duchin founded 
the Metric Geometry and Gerrymandering 
Group,3 which provides publicly-available 
tools to help identify better ways of creat-
ing districts. One such tool is Districtr,4 an 
interactive online Java program for drawing 
state-level congressional districts.

But racial gerrymandering is not the 
only problem that voters of color face. 

2  https://cran.r-project.org/package=
eiCompare

3  http://mggg.org
4  http://districtr.org

Figure 2. Each line on these tomography graphs represents all possible fractions of black and 
white voters ( , )b bB W  who voted for a particular candidate in each precinct. The region where 
these lines intersect indicates these parameters’ “true” values for the entire district. The likeli-
hood function for the parameters is sharply peaked where the overlap region is small, as in this 
example. Figure adapted from [1].

Polling station closures in minority-major-
ity districts, poor polling locations (which 
are often exacerbated by district shape), 
arbitrary removal of registered voters, and 
inclusion of prisons comprise other issues 
that disproportionately affect minority 
voters. For instance, Duchin’s group was 
actively involved in the referendum when 
residents of Lowell, Mass., changed their 
polling system to ranked-choice voting. 
This shift provided a parallel way to identi-
fy community issues and racial polarization.

Barreto, Duchin, and like-minded research-
ers also use mathematical methods to break 
down voting patterns beyond the stereotypi-
cal white/African American dichotomy that 
often dominates national discourse. “There 
are racial power dynamics inherent in these 
political systems, which are also sometimes 
inherent in social sciences and even in math,” 
Barreto said. “We need to make sure that 
there is a perspective of black and brown 
scholars who are also very sophisticated stat-
isticians that care about social policy.”

Matt Barreto and Moon Duchin pre-
sented their work during a session enti-

tled “Gerrymandering and Mathematics: 
Redistricting the Nation” at the 2020 
American Association for the Advancement 
of Science Annual Meeting, which took 
place this February in Seattle, Wash.
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Mean Field Game Theory: A Tractable 
Methodology for Large Population Problems
By Peter E. Caines

Mean field game (MFG) theory finds 
applications in areas such as demand 

management for domestic users on electri-
cal power grids, algorithmic trading in 
competitive markets, crowd dynamics, and 
vaccination strategies. This is because MFG 
methodology is formulated in terms of 
tractable infinite population approximations 
to these problems, each of which involves 
thousands or even millions of agents, mak-
ing explicit solutions impossible. A similar 
situation arises in cell phone networks. 
Overlapping signals in code division mul-
tiple access (CDMA) cell phones can cause 
poor call quality since such interference 
may degrade individual signal-to-noise 
ratios and thus reduce call performance.

Conventional power control algorithms 
in mobile devices use gradient-type algo-
rithms with bounded step size for transmit-
ted power, which we can approximately 
represent with the so-called adjustment 
model for 0£ £t T :

     dp u dt dw u ui
p
i

p
i

p
i

p
i= + ≤s , | | ,max

where 1£ £i N ,  N  indicates the number 
of users, and wp

i  denotes a standard Wiener 
process. Furthermore, the log-normal model 
is standard for time-varying attenuation, 
wherein e

i tb ( ) represents channel gain for 
the ith agent with respect to the base station 
at instant t.  The product e p

i ib ´ , where the 
channel state b( )t  evolves according to the 
attenuation dynamics described by a stable 
uncontrolled stochastic differential equation 
(SDE), models received power at the base 
station from the ith  agent.

Using the standard instantaneous quality-
of-service ratio for a generic agent i  [1], 
we can model the finite population loss (or 
performance) function for this agent by
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where each agent’s running cost l pi ( , )b  
involves both its individual transmitted 
power and its signal-to-noise ratio.

Applying a centralized stochastic con-
trol to minimize the sum of the loss of 
functions J pi i i( , ),b  1£ £i N ,  each of 
which is contingent upon all agent states, 
is an intractable problem. Furthermore, a 
decentralized solution in the form of a finite 
population dynamical game, where every 
agent attempts to minimize its individual 
loss J pi ( , ),b  1£ £i N ,  is even more 
complex than the control problem.

While a precise game-theoretic solu-
tion might not be possible due to huge 
complexity, we may employ the classical 
strategy of passing to an infinite limit, 
as in the celebrated Boltzmann equation 
of statistical mechanics and the Navier-
Stokes equation of fluid mechanics [5]. In 
this spirit, MFG theory analyses the exis-
tence of Nash equilibria for competitive 

systems with very large numbers of play-
ers by exploiting the relationship between 
the finite and corresponding infinite limit 
population problems. A key entity in this 
formulation is the mean field: the prob-
ability distribution of the state of a generic 
agent in the infinite population.

Mean Field Game Theory
The following set of controlled SDEs 

provides a general framework for MFG 
theory. For each agent i  where 1£ £i N  
—with state xi ,  control ui ,  and Wiener 
process disturbance wi  (assumed scalar and 
uniform for simplicity)—this framework 
incorporates dynamic coupling of the form

  
   
  

dx t
N

f t x t u t x t dti
j

N

i i j( ) ( , ( ), ( ), ( ))=
=
∑1
1

 
                   

+sdw ti ( ).

In the infinite population limit and for 
sufficiently smooth f ,  this yields the con-
trolled McKean-Vlasov equation

   dx t f x t u t dt dw ti i i t i( ) [ ( ), ( ), ] ( )= +µ σ
 
                                            	   : ( ( ), ( ), ) ( ) ( ),= +∫ f x t u t z dz dt dw t
R

i i t iµ σ

whose solution, given initial conditions, 
is the process-distribution pair ( , ).x u  We 
may similarly pass to the limit in each agent 
i 's  performance function, with running 
costs l t x t u t x ti i j( , ( ), ( ), ( ))  averaged over 
the agents j , 1£ £j N ;  this produces a 
performance function J u ui( , )  with running 
cost l x t u t ui i t[ ( ), ( ), ].

Assuming that the limits exist, we obtain 
equations for a game-theoretic Nash equi-
librium in the infinite population limit. 
This takes the form of an optimal stochastic 
control problem between each dynamical 
agent and the dynamically-evolving infi-
nite population mean field. Specifically, 
the Hamilton-Jacobi-Bellman (HJB) and  
Fokker-Planck-Kolmogorov (FPK)  MFG 
equations are as follows:
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plus terminal and initial conditions respec-
tively, where p tu ( , )⋅  is the density (assumed 
to exist) of the linking mean field measure ut. 
And ϕ µ( , , )t x t  shall denote the infimizer in 
the HJB equation. The ( , , )t x ut -dependent 
optimal control  is con-
sequently the game-theoretic best response  
strategy for the generic individual agent 
with respect to its performance function.

MFG theory was introduced in [6-10]  
with existence and uniqueness results estab-
lished in [2, 6, 7], while the related notion of 
oblivious equilibrium for Markov decision 
processes appeared in [11]. The solution of 
the infinite population MFG equations is 
often tractable (as shown by the examples 
in this article), whereas the corresponding 
large population game problem is usually 
intractable. Consequently, the epsilon-Nash 
approximation results—for the error incurred 
when MFG solutions are employed as strate-
gies in the finite population setting—are of 
theoretical and practical significance [6, 7].

The Code Division              
Multiple Access Problem

We recall that the mean field in the 
CDMA problem consists of the distribu-
tion of transmitted power and channel 
attenuation µ βt p( , )  for a generic agent. 
Beginning with the initial mean field 
µ β0 ( , )p  for an infinite population (see 
Figure 1), the solution to the FPK equation 
(see Figure 2) depicts the evolution of the 
equilibrium mean field µ βt p( , ) at four dif-
ferent instants. Figure 3 portrays the evolv-
ing value function V p t( , , )b  that solves 
the HJB equation, which terminates in the 

value 0 for all ( , ).b p  For a simulation 
involving 400 agents, Figure 4 (on page 6) 
shows a typical agent’s sample paths for the 
respective values of its transmitted power 
p,  value function V ,  channel attenuation 
b,  and control function u.  Figure 2 and 
the simulation in Figure 4 indicate that 
the uncontrolled b process—which has 
stable dynamics—converges to a stationary 
Gaussian distribution. Figure 3 displays the 
evolution of the Nash equilibrium of the 
infinite population, as given by the value 
function generated by the MFG HJB equa-
tion, while Figure 4 (on page 6) depicts the 
value function over the interval [ , ]0 1  for a 
typical agent in the simulation.

An Optimal Execution MFG Problem
In standard versions of the optimal exe-

cution problem, models depict financial 
traders as balancing price risk from trading 
slowly with market instability and price 
impact caused by trading quickly in order 
to finally maximize their expected wealth.

It is assumed in [4] that a mean field 
effect of the trading rate of a population 
of high-frequency traders (HFTs) linearly 
enters the dynamical equations of a generic 
minor liquidator trader, yielding
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and control variables Q ti ( ),  ni t( ),  F ti ( ), 
and u ti ( )  respectively, where Qi  denotes 
inventory, ni  is trading rate, ui  is trad-
ing acceleration, Fi  denotes fundamental 
asset price, l l0 , i denote what is called 
permanent impact, s  is volatility, Si  is 
execution price, Zi  is cash process, and 
wi
F  is a Wiener process. The performance 

function Ji ( )×  (not fully displayed here), 
to be minimized by an HFT that aims 
to liquidate l  shares during the inter-
val [ , ]0T , is defined so that the trader 
tracks a fraction of the market’s aver-
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J u ui i( , ). 

We assume analogous dynamics and per-
formance functions for an acquirer HFT 
and a single major trader.

We can solve the associated major-minor 
linear quadratic Gaussian MFG equations 
in the complete and partial observation 

Figure 2. Evolution of the system state ( , )b p  mean field density over the time interval [0,1]. 
Figure courtesy of Mohamad Aziz.

Figure 3. Evolution of the optimal cost-to-go function from the system state ( , )b p  over the 
time interval [0,1].  Figure courtesy of Mohamad Aziz.

Figure 1. Initial system mean field µ β
t
p( , ) den-

sity t=0 00. . Figure courtesy of Mohamad Aziz.

See Mean Field Game Theory on page 6
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During the 2019 SIAM Conference 
on Analysis of Partial Differential 

Equations (PD19), which took place 
this past December in La Quinta, Calif., 
Andrea Bertozzi and postdoctoral 
researcher Claudia Falcon—both of the 
University of California, Los Angeles 
(UCLA)—performed a demonstration of 
“tears of wine.” The tears of wine prob-
lem is a curious phenomenon that wine 
drinkers have observed for centuries. In 
the right setting, one may notice a thin 
layer of water-ethanol mixture that trav-
els up inclined surfaces—such as wine 
glasses—against gravity and falls down 
in the form of “tears.”

Bertozzi and Falcon presented a live 
experiment with a pre-swirled glass, 
wherein the famous wine tears emerged. 
They described this particular behavior 
using a mathematical model that involves 
a conservation law with a nonconvex flux 
and higher-order diffusion, due to the bulk 
surface tension. Such equations have non-
classical “undercompressive” shock solutions, which were the main drivers of the destabiliz-
ing front in the demonstration at PD19. Bertozzi and Falcon’s work—conducted with UCLA 
student Yonatan Dukler and postdoctoral researcher Hangjie Ji—will appear in Physical 
Review Fluids and is currently available online.1 Prior mathematical modeling of this problem 
addressed the behavior of the meniscus and the film at earlier stages, rather than the wine tears. 
     — Andrea Bertozzi and Claudia Falcon

1  https://arxiv.org/abs/1909.09898

Tears of Wine at PD19

Claudia Falcon, a postdoctoral researcher at the University of California, Los Angeles, 
addresses the “tears of wine” problem at the 2019 SIAM Conference on Analysis of Partial 
Differential Equations, which took place this past December in La Quinta, Calif. Photo 
courtesy of Andrea Bertozzi.

Demonstration of the famed “tears of wine” 
problem at the 2019 SIAM Conference on 
Analysis of Partial Differential Equations, held 
in La Quinta, Calif., this past December. Photo 
courtesy of Claudia Falcon.

Mean Field Game Theory
Continued from page 5

cases. For the latter, the separation prin-
ciple of stochastic control provides a solu-
tion. This yields infinite population minor 
agent MFG best-response strategies in the 
form of linear feedback control laws that 
employ Kalman filter-estimated values 
for the agent’s own state xi ,  the major 
agent’s state x0 ,  and the mean field x .  We 
hence obtain the following form of a minor 
agent’s best response strategy:
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Employing the MFG solution, Figure 5 
shows the corresponding trajectory of a sin-
gle stochastic agent in an infinite population. 

Concluding Thoughts
In this article, we have introduced the 

basic notions of MFG theory as well as 
illustrative examples involving cell phone 
energy management and optimal execution 
in finance. Other applications of MFG the-
ory include nonlinear control system state 
estimation, the macroeconomics of growth, 
systemic risk modeling in banking, optimi-
zation of electric vehicle populations in grid 
charging and battery usage, and domestic 
electricity demand management on the grid. 
A recent foundational two-volume MFG 
monograph also treats many applications [3].
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Peter E. Caines is a professor at McGill 
University. He is the author of Linear 
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research interests include hybrid systems, 
mean field game (MFG) theory and appli-
cations, and graphon MFG theory on very 
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Figure 5. A generic minor liquidator’s state component values and its estimates of their 
values. Figure courtesy of Dena Firoozi.

Figure 4. Trajectories over the interval [0,1] of power p ti ( ),  value function V ti ( ),  channel 
attenuation b i t( ),  and control u ti ( )  for a generic agent i.  Figure courtesy of Dena Firoozi.

SIAM leadership and senior staff have been closely monitoring the outbreak of the 
SARS-CoV-2 virus and the associated COVID-19 disease. We are deeply commit-

ted to the health and well-being of both our members and the general public, and to 
finding an appropriate compromise between containment of the novel coronavirus and 
our important mission of advancing industrial and applied mathematics.

Taking these factors into consideration, SIAM has made the difficult decision to 
cancel or postpone the following meetings:

• SIAM Conference on Uncertainty Quantification (UQ20), originally scheduled 
to take place March 24-27 in Garching, Germany

• SIAM Conference on Mathematics of Data Science (MDS20), originally sched-
uled to take place May 5-8 in Cincinnati, Ohio 

• SIAM International Conference on Data Mining (SDM20), originally scheduled 
to take place May 7-9 in Cincinnati, Ohio

• SIAM Conference on Mathematical Aspects of Materials Science (MS20), origi-
nally scheduled to take place May 18-22 in Bilbao, Spain

• SIAM Conference on Optimization (OP20), originally scheduled to take place 
May 26-29 in Hung Hom, Hong Kong

• SIAM Conference on Discrete Mathematics (DM20), originally scheduled to take 
place June 1-4 in Portland, Ore.

• SIAM Conference on Mathematics of Planet Earth (MPE20), originally sched-
uled to take place June 8-10 in Garden Grove, Calif.

• SIAM Conference on the Life Sciences (LS20), originally scheduled to take place 
June 8-11 in Garden Grove, Calif.

This list was updated as of March 19th, when the April issue of SIAM News went to 
press. For the most up-to-date information, please visit https://go.siam.org/COVID19. 
Details about possible rescheduling will be made available in the coming months. 

Coronavirus Update
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Send copy for classified advertisements and announcements to marketing@siam.org. 
For rates, deadlines, and ad specifications, visit www.siam.org/advertising.

Students (and others) in search of information about careers in the mathematical 
sciences can click on “Careers” at the SIAM website (www.siam.org) or proceed 

directly to www.siam.org/careers.

Professional Opportunities 
and Announcements

A Solution to the 3x + 1 Problem
I continue to believe that I have solved this 

very difficult problem. In more than two years, 
I have received no claims of errors in the first 
two proofs of the 3 1x +  Conjecture (a proof 
solves the Problem) from visitors to the paper. 
Recently, I discovered a third proof of the 
Conjecture that is only four pages long! No 
claims of errors so far.

However, no journal will consider my paper 
because of the Problem’s difficulty and the 
fact that I am not an academic mathematician 

(my degree is in computer science, and I have 
spent most of my career as a researcher in the 
computer industry).

Therefore, I am looking for a mathematician 
who will help me prepare the paper for submis-
sion to a journal, and who will write to the editor 
stating the mathematician’s belief that the paper 
is worthy of publication.

The paper is called “A Solution to the 3 1x +  
Problem,” on occampress.com.

— Peter Schorer, peteschorer@gmail.com

Helping Faculty Prepare Students for the Workforce
By Kathleen Kavanagh, Joe Skufca, 
Ben Galluzzo, and Karen Bliss

Motivated by national initiatives1 to 
improve the role of science, tech-

nology, engineering, and mathematics 
(STEM) educators in workforce prepara-
tion from K-12 through college, the SIAM 
Education Committee is focusing on meth-
ods to help teachers and faculty better equip 
their students. A session organized by the 
committee at the 2020 Joint Mathematics 
Meetings, which took place this January 
in Denver, Colo., reflected this focus area. 
The speakers included Karen Bliss of 
Virginia Military Institute (VMI) and Ben 
Galluzzo and Joe Skufca, both of Clarkson 
University. An industry panel following 
the talks generated discussion on employer 
requirements when hiring mathematicians.

In addition to a solid foundation of 
core mathematics, statistics, and problem-
solving abilities, industrial positions also 
require skills like data literacy, computing, 
mathematical modeling, interdisciplinary 
team collaboration, and effective commu-
nication. Integrating these skills into new 
or existing curricula raises challenges for 
faculty members who may not be experi-
enced in certain areas. For example, while 
machine learning courses have not his-
torically been part of most undergraduate- 
or graduate-level coursework, academic 
departments are now recognizing that a 
machine learning background increases 
their students’ marketability.

Computing lies at the heart of every 
future path across all global cultures, 
including complex societal problems, man-
ufacturing and financial innovation, and 
even consumer trends. To ensure that high 

1  https: / /www.whitehouse.gov/wp-
content/uploads/2018/12/STEM-Education-
Strategic-Plan-2018.pdf

school students are prepared for this future, 
instructors must be creative and resource-
ful. To that end, Galluzzo described a 
National Science Foundation venture that 
centers on computational literacy using 
math modeling and R programming in high 
school courses. The Computing with R 
for Mathematical Modeling (CodeR4Math) 
project leverages inherent 
connections between compu-
tational thinking, mathemati-
cal modeling practices, and a 
multitude of representational 
tools. This combination cre-
ates a synergistic solution that 
allows students to simultaneously develop 
competencies in both domains. The project 
is currently generating a collection of facili-
tated math modeling activities that provide 
students with “just in time” coding help.

Bliss detailed the evolution of a dif-
ferential equations (DEs) course as part of 
the transition from a mathematics major 
to an applied mathematics major  at VMI. 
At the outset, she and her colleagues met 
with faculty from departments served by 
the DEs course—like engineering, physics, 
and chemistry—to determine what they 
wanted students to gain from the course. 
This discussion allowed them to pare down 
the existing pencil-and-paper solution 
techniques and redirect the course’s focus 
to modeling, specifically the employment 
of DE utilization to answer questions in 
different disciplines. Students in Bliss’s 
class explore population models, models of 
disease spread, and the use of blast attenu-
ating seats (represented by a spring-mass 
system) in military vehicles to decrease 
traumatic brain injury. By emphasizing 
the translation of mathematical models to 
real-world scenarios, utilizing appropriate 
technology to obtain solutions, and com-
municating results via succinct reports, 

students learn to work in interdisciplinary 
teams and leverage their math skills to 
solve important problems.

Skufca overviewed Clarkson’s efforts 
to address emerging workforce needs, as 
framed in the context of a small, resource-
challenged university. Clarkson developed 
a professional master’s degree in data 

analytics, which is avail-
able as an interdisciplinary 
program across all of the 
university’s departments. 
Three years after establish-
ing the master’s program, 
Clarkson’s Department 

of Mathematics began offering an under-
graduate degree in data science. The flex-
ibility associated with a small university 
helped achieve both initiatives, which were 
inspired by industry need.

Skufca then explained how careful cur-
riculum mapping—combined with strong 
cooperation across disciplines—allowed 
Clarkson to build these programs without 

adding many supplementary resources. The 
directors of both new programs first look 
to industry to identify relevant skills, then 
turn to internal academic expertise to deter-
mine the fundamental pedagogy that sup-
ports, enables, and broadens that specific 
skillset. A unique component of the data 
science curriculum is a three-credit “math” 
course (taught by a mathematics professor) 
on the ethics of data science and applied 
mathematics; this is especially pertinent as 
the interplay of math, industry, and govern-
ment requires awareness of professional 
mathematics’ impact on society.

Genetha Gray of Salesforce, Carol 
Woodward of Lawrence Livermore National 
Laboratory, Pat Quillen of MathWorks, 
and Aaron Luttman of Pacific Northwest 
National Laboratory comprised the industry 
panel that followed the initial presentations. 
Each panelist began by recounting employ-
ers’ requirements for hiring mathematicians. 

See Workforce on page 8
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Recommended skills included deep knowl-
edge in a specific subject, a background in 
some realm of science, programming expe-
rience with expertise in a compiling lan-
guage, familiarity with numerical methods, 
and problem-solving abilities. However, 
a common theme among all panelists was 
strong communication proficiency — the 
ability to explain ideas at a high level to 
experts while also communicating effec-
tively with non-experts.

The audience was interested in types 
of required writing skills, and inquired 
about methods that they could use to train 
students accordingly. Quillen noted that 
helping students learn succinctness—in 
an email or storytelling, for example—is 
crucial. Woodward emphasized the impor-
tance of efficiently translating logical argu-
ments into writing while keeping one’s 
audience in mind. One attendee sought 
advice on building connections with indus-
try associates, identifying and contacting 
the right partners, and maximizing the like-
lihood of response. Gray suggested reach-

ing out to public relations personnel since 
they are often able to best connect individ-
uals with suitable internal contacts. Most 
importantly, she recommended underscor-
ing the benefits for companies in forming 
relationships with academia.

Finally, Luttman urged attendees to uti-
lize SIAM resources,2 and encouraged 
faculty to take advantage of programs 
like PIC Math3 and the Visiting Lecturer 
Program4 to help students establish early 
industry partnerships.

Kathleen Kavanagh is a professor of 
mathematics at Clarkson University and the 
Vice President for Education at SIAM. Joe 
Skufca is a professor of mathematics and 
chair of the Department of Mathematics at 
Clarkson. Benjamin Galluzzo is an associ-
ate professor of mathematics at Clarkson. 
Karen Bliss is an associate professor in 
the Department of Applied Mathematics at 
Virginia Military Institute.

2  https://siam.org/students-education/
resources

3  https://math.siam.org/picmath/
4  https://www.siam.org/students-education/

programs-initiatives/siam-visiting-lecturer-
program

Aaron Luttman (Pacific Northwest National Laboratory), Pat Quillen (MathWorks), Carol 
Woodward (Lawrence Livermore National Laboratory), and Genetha Gray (Salesforce) com-
prised an industry panel at the 2020 Joint Mathematics Meetings, which took place this 
January in Denver, Colo. Photo courtesy of Kathleen Kavanagh.

By James Crowley

History can reveal a lot about ourselves 
and our organization — what we 

stand for and how we reached this point. 
Two recent coincidences caused me to look 
back at SIAM’s early years and explore 
how SIAM came to be about mathematics, 
computing, and their applications. This 
story is a result of my investigation.

A Chance Occurrence
Not long ago, I met a minister who 

served a community in which my father 
lived. When we were introduced, Reverend 
George Patterson announced something 
puzzling. “You know, my father was one 
of the founders of SIAM,” he said. At first 
I was a bit perplexed. I was well aware of 
Ed Block’s notable role in SIAM’s found-
ing, but unfortunately my familiarity with 
the society’s early history beyond that point 
was a bit fuzzy. Patterson and I chatted 
some more, and when I returned home I 
did a little homework. Block’s “SIAM – 
Its First Three Years,” which published in 
SIAM Review [2], was a natural place to 
start. The article noted that “The first orga-
nizing meeting for the proposed society took 
place in December 1951 at Drexel Institute 
of Technology [now Drexel University]. 
Members of the organizing committee were 
I.E. Block, Donald B. Houghton, Samuel 
S. McNeary, Cletus O. Oakley, George W. 
Patterson III, and George Sonneman.”

According to Block, the nascent organi-
zation sponsored Mina Rees of the Office 
of Naval Research as its first speaker. 
Rees delivered a talk entitled “The Role 

SIAM: The Early Years

applications—required the development of 
new algorithms, and organizations hired 
mathematicians to accomplish this objec-
tive. This provided the basis for a new 
scholarly society in applied mathematics.

The tradition of appointing and elect-
ing officers from industry and/or national 
laboratories continued over the next five 
decades. Of SIAM’s first 39 presidents, 11 
were affiliated with a company or national 
lab. These organizations included Philco 
(Bradley), Remington Rand (Mauchly), 
IBM (Donald Thomsen and Hirsh Cohen), 
Bell Labs (Brockway McMillan and 
Margaret Wright), Oak Ridge National 
Laboratory (Alston Householder), Argonne 
National Laboratory (Wallace Givens), the 
Boeing Company and the National Bureau 
of Standards, now the National Institute of 
Standards and Technology (Burt Colvin), 
Los Alamos National Laboratory (Mac 
Hyman), and MathWorks (Cleve Moler).

Harold Kuhn is credited with expand-
ing SIAM’s conference program [4] by 
eliciting an invitation from the American 
Mathematical Society to join it—along with 
the Mathematical Association of America 
and the Association for Symbolic Logic—
for their joint meeting in Pittsburgh, Penn., 
in December 1954; we now know this con-
ference as the Joint Mathematics Meetings. 
This was SIAM’s first national meeting.

By 1960, SIAM had 2,000 members 
and counting; today that number exceeds 
14,000. By 1976, SIAM had expanded to 
the point of needing a managing director for 
its small but growing staff, and the Board of 
Trustees appointed Block to this position. 
It was around this time that SIAM really 
began to take off as a professional society.

A Second Coincidence 

Upon return from a trip to Ireland, my 
wife and I happened to chat with someone 
who asked me about my work. I responded 
that I worked with the Society for Industry 
and Applied Mathematics. “Oh, SIAM!” 
he exclaimed. “My father was the treasurer 
of SIAM many years ago.” SIAM records 
indeed confirmed this statement: Richard 
“Dick” Lamb was SIAM Treasurer from 
1965 until 1983.

This discovery inspired yet another 
journey into SIAM’s history, which rein-
forced my earlier conclusions. My research 
revealed that Lamb was employed at the 
Auerbach Corporation’s Digital Computing 
Service for a time, where he probably met 
Block, who also spent time with Isaac 
Auerbach. This led me down another fasci-
nating trail of history concerning Auerbach 
himself, and hints at why SIAM was estab-
lished in Philadelphia.

In the 1950s, Philadelphia was the Silicon 
Valley of its time. This was in part due to 
the ENIAC’s development at the University 
of Pennsylvania, which created a core of 
experts in the region who left the university 
after World War II for commercial pursuits 
in industry. These enterprising individuals 

helped found both large organizations and 
smaller technology companies. For example, 
Eckert and Mauchly’s departure inspired the 
creation of the Eckert-Mauchly Computer 
Corporation, which became Remington 
Rand and later gave rise to Unisys. And Isaac 
Auerbach left the Burroughs Corporation to 
form his own company, which bore his 
name. It was at the Auerbach Corporation 
where Block found Lamb and brought him 
to SIAM as treasurer.

Block spent most of his career in industry. 
After earning his doctorate in mathematics at 
Harvard University, he accepted a position 
at Philco. He then moved to the Burroughs 
Corporation, where he eventually became 
a manager at the UNIVAC Engineering 
Computer Center of the Sperry-Rand 
Corporation’s Remington Rand Division 
in Philadelphia and served as supervi-
sor of the UNIVAC Division of Sperry 
Rand’s Applied Mathematics Unit. From 
there, Block joined Auerbach Corporation 
as technical advisor to the director of the 
Information Sciences Division. 

During this entire period, Block served in 
various capacities as a volunteer with SIAM: 
as founding secretary (1952-1955), vice pres-
ident (1963-1974), Board member (1970-
1976), and chairman of SIAM’s Publications 
Committee. At Auerbach, he became vice 
president of Auerbach Publishers, thus merg-
ing his full-time job with his interests in 
scientific publishing at SIAM [1].

Block was clearly a driving force in 
SIAM’s creation and development. Former 
SIAM President Bob O’Malley aptly noted 
that SIAM had been founded “mostly 
through the efforts of Ed” [3].

The lessons I came away with as a result 
of my historical expedition were not only 
an explanation of SIAM’s emphases in the 
early days (which continue to some degree 
today) to embrace applied and industrial 
mathematics as well as computing. SIAM 
offered a place not only for industrial 
mathematics, but also for mathematicians 
working in industry and government labo-
ratories. It has always included a strong 
computing component. 

Most of all, we can be thankful for Ed 
Block, who personified many of these things.
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of Mathematics in Government Research.” 
Shortly thereafter, on April 30, 1952, 
SIAM was incorporated.

The strong integration of mathematicians 
in industry and government (and industrial 
mathematics) into SIAM from its outset is 
certainly interesting. William E. Bradley 
of Philco was elected as the first presi-
dent. SIAM had two vice presidents in its 
initial years: Grace Hopper of the Eckert-
Mauchly Division of Remington Rand and 
George W. Patterson III of the Burroughs 
Adding Machine Company. Emil Amelotti 
of Villanova University was the first trea-
surer, and Block (then at Philco) was 
the first secretary. The influence of the 
then-newly emerging computer industry is 
also apparent within this group. Members 
of the Board of Trustees included John 
W. Mauchly,1 co-founder of the Eckert-
Mauchly Division of Remington Rand 
(with J. Presper Eckert). Mauchly helped 
create the ENIAC computer and would 
later become the fourth president of SIAM.

Development of the ENIAC at the 
University of Pennsylvania’s Moore 
School had a profound impact on both 
mathematics and the greater Philadelphia 
area. Organizations raced to embrace 
this new technology, and companies like 
Philco and the Burroughs Adding Machine 
Company—inspired by the region’s tal-
ent pool—created divisions devoted to the 
novel computer and hired people with 
ENIAC development experience.

The newfound focus on computing ser-
vices—both for military and commercial 

1  https://en.wikipedia.org/wiki/John_
Mauchly
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I. Edward Block (left) mingles with attendees at an early SIAM conference. SIAM photo.


