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OPTIMIZATION

= General problem: min f(x)
x€eK

= Examples:
— Find portfolio with maximum return and minimum risk
— Find a shortest route between two points on a map

» General classes of optimization problems:
— Combinatorial optimization: variables are discrete (bits, integers)
« Often NP-hard!
— Continuous optimization: variables are real (floating point)
« Convex or non-convex



WHY QUANTUM FOR OPTIMIZATION?

= Straightforward to encode in a circuit
— ODbjective function can often be encoded directly, no data loading necessary

= Many small hard problems

— Some combinatorial optimization problems become intractable at a few
hundred binary variables (e.g. Low Autocorrelation Binary Sequences)

» Clear value
— Optimization is ubiquitous In industry
— Doing optimization better directly connects to business value

» Evidence of broadly applicable speedups
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QUANTUM SPEED-UPS FOR OPTIMIZATION

Combinatorial

= We don’t expect quantum computers to have exponential speedup for NP-hard
problems

= But! Many provable polynomial speedups exist:
— Quadratic speedups that leverage Grover’s algorithm as a subroutine
* Branch-and-bound [Montanaro '19, Chakrabarti et al. '20]
* Dynamic programming [Ambainis et al.”18]
— Quantum walk algorithms
* Quadratic speedup for backtracking [Montanaro’15]



JPMorganChase

QUANTUM SPEED-UPS FOR OPTIMIZATION

Combinatorial

= We don’t expect quantum computers to have exponential speedup for NP-hard
problems

= But! Many provable polynomial speedups exist:
— Quadratic speedups that leverage Grover’s algorithm as a subroutine
* Branch-and-bound [Montanaro '19, Chakrabarti et al. '20]
* Dynamic programming [Ambainis et al.”18]
— Quantum walk algorithms
* Quadratic speedup for backtracking [Montanaro’15]

/\ Warning! /A
Quadratic speedups are likely to be insufficient in the near
term due to overhead of error correction [Babbush et al "20]
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Combinatorial

polynomial degree d

parallelism

resource “lower bound”

Vss

(a) “Quantum NAND”
> 10 qubitseconds

(b) “Classical NAND”
< 1079 transistorseconds

speedup S |iterations M |runtime T*
1 5.2 x 10° | 2.4 hours
Ot Quadratic, d = 2 10° 5.2 x 10® | 100 days
10° 5.2 x 10 | 280 years
1 7.2 x 102 12 seconds
Cubic, d =3 103 2.3 x 10* |6.4 minutes
10° 7.2 x 10° | 3.4 hours
1 8.0 x 10! |1.4 seconds
Quartic, d = 4 10° 8.0 x 10° | 14 seconds
10° 8.0 x 10° |2.3 minutes

/\ Warning! /A

Quadratic speedups are likely to be insufficient in the near
term due to overhead of error correction [Babbush et al "20]
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Fowler Devitt 2013

"A bridge to lower overhead quantum computation” e
€ = 2e-12
Gidney Fowler 2019 A—4 3-4
"Efficient magic state factories with a
catalyzed CCZ-2T transformation” Out

€ = 3e-11

ol
This paper
€ = 4e-6
3 t
Fowler Gidney 2018 This paper Vss
"Low overhead quantum computation €= 2e-9 (b) “Classical NAND”
using lattice surgery" < 10~? transistorseconds

€ = 9e-17

[Gidney et al '24]

/\ Warning! /A
Quadratic speedups are likely to be insufficient in the near
term due to overhead of error correction [Babbush et al "20]
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= We don’t expect quantum computers to have exponential speedup for NP-hard
problems

= Quadratic speedups are likely to be insufficient in the near term

» [ Super-quadratic speedups
— Slightly-better-than-quadratic speedup over brute-force-search by starting
Grover from a “warm-start” state [Dalzell et al '22]



QUANTUM SPEED-UPS FOR OPTIMIZATION

Combinatorial
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Problem Our quantum algo | Best classical algo
3-CNF-SAT | 0.5—(5.2x107") 0.39 3
k-CNF-SAT | 0.5 — Q(273%k=3) 1-Qk 1) [3]

SK model 0.5 — (2.7 x 107°) 0.45 [11
k-spin 0.5 — Q(k™3) 1
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Combinatorial

= We don’t expect quantum computers to have exponential speedup for NP-hard
problems

= Quadratic speedups are likely to be insufficient in the near term

» [ Super-quadratic speedups
— Slightly-better-than-quadratic speedup over brute-force-search by starting
Grover from a “warm-start” state [Dalzell et al '22]
— B B3 slightly-better-than-quadratic speedup over Markov Chain search for
a broad range of constrained problems [Chakrabarti et al ‘24]
« Super-quadratic speedup over any classical search with a polynomial-time
Gibbs sampler for a certain class of problems
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» B Exponential space advantage in streaming setting [Kallaugher et al *23]

« B B Potential exponential speedup for restricted family of problems which are
not known to be NP-hard [Jordan et al "24]
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= We don’t expect quantum computers to have exponential speedup for NP-hard
problems

= Quadratic speedups are likely to be insufficient in the near term

» [ Super-quadratic speedups
— Slightly-better-than-quadratic speedup over brute-force-search by starting
Grover from a “warm-start” state [Dalzell et al '22]
— B B3 slightly-better-than-quadratic speedup over Markov Chain search for
a broad range of constrained problems [Chakrabarti et al ‘24]
— Quartic speedup for planted kXOR [Schmidhuber et al '24]

» B Exponential space advantage in streaming setting [Kallaugher et al *23]

» B B Potential exponential speedup for restricted family of problems which are
not known to be NP-hard [Jordan et al "24]
— Easy to study empirically by studying classical decoders!
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QUANTUM HEURISTICS FOR OPTIMIZATION

Combinatorial

= Heuristics have been proposed that appear to do well numerically
— Quantum Approximate Optimization Algorithm [Hogg ‘00, Farhi "14]

« Some numerical evidence of speedup is available [Boulebnane 22,

Shaydulin "23]

QAOA+QMF

QAOA

Memetic Tabu

Reproduced

(23, 30)

Solver Fit Error
WalkSAT QAOA | —3.232 + 0.295n | 0.011
QAOA (p = 14) | —1.064 + 0.326n | 0.008
QAOA (p = 60) | —2.842 + 0.302n | 0.007

walksatlm —0.309 + 0.325n | 0.008
maplesat 1.531 + 0.461n | 0.004
glucosed 2.998 + 0.498n | 0.005

[Boulebnane '22]

Fit
CI

1.21
(1.19, 1.23)

1.46
(1.42,1.50)

1.35
(1.33,1.38)

[Shaydulin 23]

1.34
N/A
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QUANTUM HEURISTICS FOR OPTIMIZATION

Combinatorial

» Heuristics have been proposed that appear to do well numerically
— Quantum Approximate Optimization Algorithm [Hogg ‘00, Farhi "14]
« Some numerical evidence of speedup is available [Boulebnane 22,
Shaydulin "23]
— Quantum Adiabatic Algorithm [Farhi '00]
* Proving performance is challenging, but can be run heuristically
— Quantum Counterdiabatic Driving [Berry '09]

= Experiments on hardware will tell if these work

14



QUANTUM SPEED-UPS FOR OPTIMIZATION

Continuous

* Provable polynomial speedups for convex problems

— Semidefinite programming [Brandao-Svore 16, van Apeldoorn-Gilyen *18]
— Linear programming [Kerenidis-Prakash 18, Augustino et al. 23]

“Even if quantum computers one day match the gigahertz-level clock-speeds of
modern classical computers, 10?4 layers of T gates would take millions of
years to execute. By contrast, the PO problem can be easily solved in a
matter of seconds on a laptop for n = 100 stocks.”

[Dalzell ‘22 on Kerenidis-Prakash ‘18]
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Continuous

* Provable polynomial speedups for convex problems
— Semidefinite programming [Brandao-Svore 16, van Apeldoorn-Gilyen 18]
— Linear programming [Kerenidis-Prakash 18, Augustino et al. 23]

Table 1: Complexity to solve the primal-dual pair (P)-(D) to precision ¢

Algorithm Complexity QRAM Notes
IPM [CLS21, vdB20] O, 1((m +n)*) i

QMMWU [BGJ*23] O (vim ¥ nr5e=25 4 ¢=3) o> el
IR-QIPM [MFWT23] O, (g) 1 ((m +n)**x(Q)* Q] |l2«[°) v

IR-QCPM (this work) Om,n,m(M),% ((m + n)nnz(A)k(M)) X

[Augustino et al. 23]
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QUANTUM SPEED-UPS FOR OPTIMIZATION

Continuous

* Provable polynomial speedups for convex problems

— Semidefinite programming [Brandao-Svore 16, van Apeldoorn-Gilyen 18]
— Linear programming [Kerenidis-Prakash 18, Augustino et al. '23]

* Promising heuristics for non-convex problems
— Quantum Hamiltonian Descent [Leng et al "23]
— Quantum Langevin Dynamics [Chen et al ‘23]

5d

Sim-QHD —_—

DW-QHD : [ TH
DW-QAA | .
Sim-QAA HIh
NG —TH
SNOPT T}

MATLAB I—[D

QcaP e

IPOPT H H

10~ 107° 107 10

[Leng et al 23]



TAKEAWAY

= Optimization is a promising domain for quantum algorithms due to availability of
broadly applicable speedups and promising heuristics

= Speedups available in both discrete and continuous setting

— Mostly polynomial, though recent results suggest possibility of exponential
separations

= Experiments on early fault-tolerant devices will show the power of heuristics

18
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