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Abstract

We define algorithms for computing the eigenvalue counting functions (ECFs) of the Laplacian
with Dirichlet and Neumann boundary conditions for a variety of convex 2D and 3D domains using
floating point precision in Python. These domains include the square, disk, ball, cube, and cylinder.
We use these computed ECFs to validate Polya’s conjecture on these domains. The conjecture has
not been proven in completeness on the ball, so this work presents numerical evidence to the positive.
We also use these calculations to study the potential geometric information in the lower-order terms
of the asymptotics by comparing ECFs between different shapes. We do this by subtracting the like
terms in the asymptotics of the ECFs to draw out the lower-order information. In the 3D case, a
difference can be seen in the lower-order asymptotics of a cube and cylinder with the same volume
and surface area. In particular, the cube’s o(k2) term has a larger variance than the cylinder’s term,
and in both cases, the term is mostly positive.
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1 Introduction

In this paper, we consider the mathematical properties of the Laplacian differential operator, defined
in d-dimensional Cartesian coordinates as

∇2 =
d∑

i=1

∂2

∂x2
i

. (1)

In particular, we are interested in the distribution of the eigenvalue spectrum of the Laplacian in different
geometries. Similar to eigenvalue problems in finite-dimensional linear algebra, the eigenvalues of the
Laplacian on a bounded domain Ω ⊂ Rd are defined with the following partial differential equation (PDE):

∇2u = −λu. (2)

Equation (2) is called the Helmholtz equation. For the duration of the paper, we consider only the
following two types of boundary conditions:

Definition 1.1 Let Ω ⊂ Rd be bounded and have a Lipschitz continuous boundary ∂Ω. Let n̂ be
a normal vector field on ∂Ω. Then, given a PDE of unknown u, such as (2), let the Dirichlet boundary
conditions (BCs) on Ω be u(x) = 0, ∀x ∈ ∂Ω. Let the Neumann BCs be ∂u

∂n̂ = ∇(u(x)) · n̂(x) = 0, ∀x ∈ ∂Ω.

Dirichlet conditions fix u at the boundary and Neumann conditions fix the flux of u across the boundary.
Thus, the Neumann conditions given in definition 1.1 are also called No Flux BCs. Non-trivial (u ̸= 0)
solution pairs (λ, u) are respectively called eigenvalues and eigenfunctions of the Laplacian on Ω. By
solving the eigenvalue problem (2) with these different boundary conditions, we produce two distinct
spectra of the Laplacian on Ω: the Dirichlet spectrum and the Neumann spectrum. It is known from
linear elliptic PDE theory (see chapter 6 in [6]) that these spectra are discrete, any given eigenvalue is
real, non-negative, and of finite multiplicity, and that the eigenvalues accumulate up to +∞. Specifically,
the Dirichlet and Neumann eigenvalues on Ω can be sorted into monotonically increasing sequences (λn)
and (µn) respectively such that

0 < λ1 ≤ λ2 ≤ ... ≤ λn ≤ . . .

0 = µ1 ≤ µ2 ≤ ... ≤ µn ≤ . . .
(3)

We can thus define a counting function for these spectra as follows:

Definition 1.2 Let (λn) and (µn) be the sequences of ordered Dirichlet and Neumann eigenvalues
for a bounded set Ω ⊂ Rn. The Dirichlet and Neumann eigenvalue counting functions (ECF) for the
Laplacian on Ω, ND

Ω (k) and NN
Ω (k) are described as

ND
Ω (k) = #{n : λn ≤ k2},

NN
Ω (k) = #{n : µn ≤ k2}.

(4)

Observe that in (4) we count the number of eigenvalues less than the square of the input, rather than
just the input. This normalization is helpful for computation and a standard notation used in literature
[7].

Our study focuses on the asymptotic behavior of the ECFs on different geometries. To begin, we
define Weyl’s law for the Laplacian eigenvalue counting functions:

Theorem 1.3 Let NΩ(k) be either the Neumann or Dirichlet counting function for the bounded set
Ω ⊂ Rd. Then it has the following one term asymptotics:

NΩ(k) = Cd|Ω|dkd + o(kd), (5)
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where

Cd =
1

(4π)
d
2Γ(d2 + 1)

,

with Γ(x) as the Gamma function, and |Ω|d is the d-dimensional volume of Ω.

Proof Originally proven by Weyl in [18].

Weyl’s law is the basis on which most study on the asymptotic distribution of Laplacian eigenval-
ues is based, with much study on improving this approximation. Weyl conjectured a further improvement
in the following two-term law for sets with piecewise-smooth boundaries [19]:

NΩ(k) = Cd|Ω|dkd ± Cb,d|∂Ω|d−1k
d−1 + o(kd−1), (6)

where

Cb,d =
Cd−1

4
,

and the sign is a plus for Neumann boundary conditions and a minus for Dirichlet boundary conditions.
This two-term statement remains unsolved in generality, but it has been proven for convex analytic
domains [15]. These asymptotic terms define a distinct relationship between the geometry of shapes and
the behavior of the Laplacian operator on their domains. Observe that, for sufficiently large k, (6) implies
the following set of inequalities:

ND
Ω (k) ≤ Cd|Ω|dkd ≤ NN

Ω (k). (7)

George Polya made the stronger conjecture that these inequalities are true not just for large k, but for any
k ≥ 0. It is this conjecture that we focus our study on. The left inequality is referred to as the Dirichlet
conjecture and the right inequality is referred to as the Neumann conjecture. Polya proved the Dirichlet
conjecture for tiling sets of Rd, and R. Kellner later proved the Neumann conjecture for these sets [10].
Recently, Filonov et al proved the complete conjecture for the unit disk and the Dirichlet conjecture for
the d-dimensional unit ball [7]. Furthermore, for sets on which the conjecture is proven, the conjecture is
also proven on their Cartesian products:

Proposition 1.4 Let Ω1 ⊂ Rd1 with d1 ≥ 2 be a set on which Polya’s conjecture is true and let
Ω2 ⊂ Rd2 be bounded. Then the Cartesian product Ω1 × Ω2 ⊂ Rd1+d2 also satisfies Polya’s conjecture.

Proof The Dirichlet case is Theorem 2.8 in [12] and the Neumann case is Corollary 1.4 in [8].

It is a goal of this paper to numerically check Polya’s conjecture for a variety of 2D and 3D con-
vex geometries using algorithms with floating point accuracy. These include sets where the conjecture
has been proven, but they also include the unit ball, where the complete conjecture is unproven, so our
work represents new results in those cases. Furthermore, it is known in general that non-congruent shapes
can possess the same eigenvalue spectra [5], so we were also interested in comparing shapes with the
same volume, surface area, etc. per Weyl’s two-term law. Differences in counting function behavior for
different shapes with the same asymptotic Weyl terms could imply that geometric information about
these differences is encoded in the remaining o(kd−1) term in the asymptotics. Therefore, comparing these
counting functions highlights potential differences. We accomplish this task by normalizing the computed
ECFs via subtracting the leading Weyl terms to ensure the observed behavior comes from the lower-order
terms. In this process, we also provide new visualizations of the ECFs for these geometries. Specific
Python scripts can be found in the supplementary material.

2 2D Geometries

We now consider two geometries in R2. We start with the square and move to the disk. Polya’s
conjecture has been proven for both shapes, so our computations serve as visualizations of the inequalities
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for these shapes. Furthermore, since the leading term C2|Ω|2k2 is solely a function of a shape’s area, we
restrict our geometric parameters such that the shapes all have the same area, π. The leading asymptotic
term for this area is

NΩ(k) =
k2

4
+ o(k). (8)

Comparing the ECFs of 2D shapes with equal areas highlights how more geometric information than
just the area of shape is captured in these counting functions. This concept will be more heavily explored
in section 3.

2.1 The Square of Sidelength s

Firstly, we examine the case of the square of sidelength s whose bottom left corner is the origin. The
Helmholtz equations in Cartesian coordinates (x, y) is simply expressed as

∂2u

∂x2
+

∂2u

∂y2
= −λu. (9)

The Dirichlet BCs on u(x, y) are u(x, s) = u(x, 0) = u(0, y) = u(s, y) = 0 and the Neumann BCs are
∂u
∂x |y=0 = ∂u

∂x |y=s = ∂u
∂y |x=0 = ∂u

∂y |x=s = 0. Using the separation of variables, it can be seen that, with
n,m ∈ N, the Dirichlet eigenfunctions on the square are

unm(x, y) = sin

(
nπx

s

)
· sin

(
mπy

s

)
. (10)

Now, expanding to n,m ∈ N ∪ {0}, the Neumann eigenfunctions on the square are

unm(x, y) = cos

(
nπx

s

)
· cos

(
mπy

s

)
. (11)

From (10) and (11) it can be seen that the eigenvalues in both cases are of the form

λnm =
π2

s2
(n2 +m2), (12)

with the only difference being whether one allows n and m to be zero. Observe per (12) that it is often
possible to find multiple pairs (n1,m1) and (n2,m2) such that λn1m1

= λn2m2
. When n1 ̸= m1, the trivial

case is found by simply transposing the indices such that n1 = m2 and m1 = n2. Here the two pairs
produce the same eigenvalue but distinct eigenfunctions, so they impact the eigenvalue’s multiplicity.
In general, the multiplicity of an arbitrary eigenvalue of the square is a number theory problem. The
following known proposition gives some light to the multiplicity of a given Dirichlet eigenvalue:

Proposition 2.1.1[11] Let λ be a number of the form λ = m2 + n2 for n,m ∈ N. If λ has a prime
factorization of the form λ = 2αpr11 . . . prkk qs11 . . . qsll , where the pi are of the form 4t+ 1 and the qi are of
the form 4t+ 3, then the multiplicity of λ is

k∏
i=1

(ri + 1). (13)

As long as the pre-factor of π2

s2 is considered, the identity (13) can be used to find the multiplicity of any
given Dirichlet eigenvalue. However, it is not useful for handling Neumann eigenvalues, and it does not
give a method for generating eigenvalues, so it is not useful for computing the ECFs of a square. However,
it can be useful for creating regression tests to ensure any square ECF algorithm is producing the correct
multiplicity for a given eigenvalue.
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To calculate the square ECFs, we used a naive, greedy algorithm that used a double for-loop to check
every possible set of (n,m) within a finite range to see if they produce a valid eigenvalue, as described in
algorithm 1. This ensured that we captured every possible eigenvalue below k2.

Algorithm 1 Calculating the Dirichlet ECF on a square with sidelength s

Input Maximum value k
Step 1: init nMax = ⌊k⌋
Step 2: init eigenvalues as empty list
Step 3:
For n = 1 , . . . , nMax

· For m = 1 ,. . . , nMax

· Find candidate λnm using eqn (12)

· If candidate λnm > k2, break

· Elseif candidate not in eigenvalues, add to eigenvalues with multiplicity 1

· Elseif candidate is in eigenvalues, multiplicity += 1

Step 3: Sort eigenvalues in ascending order
Step 4: Iterate through the ordered list starting from the second element, and for each element add the
multiplicity value of the previous element to that of the current element

Output Set of tuples of the eigenvalues and the number of eigenvalues less than or equal to that
eigenvalue.

Per the goal of comparing the ECFs of shapes whose asymptotic term is defined by (8), we applied
algorithm 1 to compute the ECFs of the square with sidelength s =

√
π. The results of this computation

are documented in figure 1.

(a) (b)

Figure 1: The Calculated ECFs and the leading Weyl Term on the Square with sidelength
√
π up until

(a) k = 15 and (b) k = 150
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2.2 The Unit Disk

Our next 2D object of consideration is the disk of unit radius centered at the origin. Filonov et al
recently analytically proved the conjecture (7) for the disk [7]. In fact, the unit disk is the only non-tiling
subset of R2 for which the conjecture has been proven. Thus, here we visualize this theorem by calculating
the ECFs on the disk. Here we use the standard Polar coordinate transformation (x, y)→ (r, ϕ), where
r is the distance from the origin and ϕ is the angle from the x-axis. The Helmholtz equation in Polar
coordinates is

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂ϕ2
= −λu. (14)

The Dirichlet BCs are u(1, ϕ) = 0 and the Neumann BCs are ∂u
∂r |r=1 = 0. It is also necessary to take

periodic BCs on ϕ such that u(r, 0) = u(r, 2π). With these BCs, separation of variables can be applied
such that, for n ∈ N ∪ {0} and m ∈ N, the Dirichlet eigenfunctions on the unit disk are

unm(r, ϕ) = Jn(jn,mr) · (sin(nϕ) + cos(nϕ)), (15)

and the Neumann eigenfunctions are

unm(r, ϕ) = Jn(j
′
n,mr) · (sin(nϕ) + cos(nϕ)), (16)

where Jn(x) is the nth order Bessel function of the first kind, jn,m is the mth non-zero root of Jn(x), j
′
n,m

is the mth non-zero root of dJn

dx .

It is now necessary to describe Bessel functions and their properties.

Definition 2.2.1 Bessel functions of order n are solutions to Bessel’s differential equation:

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0. (17)

As a second-order differential equation, (17) has two independent solutions, denoted Jn and Yn.
However, Yn diverges at zero and therefore is not continuous on [0, 1] and can’t be used to construct valid
solutions to (14).

Remark : Equation (17) allows valid solution for any real number n, but the only valid solutions to
(14) require n to be a nonnegative integer.
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Figure 2: The First Five First-kind Bessel Functions of integer order, produced in Matlab

Figure 2 visualizes some relevant traits of the Bessel functions. Observe that they are oscillatory, as
their asymptotics resemble a combination of sines and cosines. This also implies that the roots always
”cross” the x-axis. For further detail, see [16]. Furthermore, the distribution of their roots has multiple
established characteristics. Every Jn with n > 0 has a trivial root at zero. Firstly, the roots are interlaced
based on order, as described by the following set of inequalities [13]:

jn,m ≤ jn+1,m ≤ jn,m+1. (18)

Next, the values of jn,1 and j′n,1, the first roots, grow as a function of n, which is encoded as:

n ≤ j′n,1 < jn,1. (19)

For more details, see reference [13].

In the greater context of spectral geometry, the roots of Bessel functions play another important role
as optimizers for the first non-zero eigenvalues of arbitrary geometries. Specifically, for a bounded Ω ⊂ Rd,

µ2(Ω) ≤
(
|Bd|
|Ω|

) 2
d

(j
′
d
2 ,1

)2 ≤
(
|Bd|
|Ω|

) 2
d

(j d
2−1,1)

2 ≤ λ1(Ω). (20)

The left inequality is the Szegö-Weinberger inequality and the right inequality is the Faber-Krahn inequality.
The middle inequality is equivalent to j

′
d
2 ,1

≤ j d
2−1,1, which follows from ND

Bd
(k) ≤ NN

Bd
(k). For more

details, see [7], [1] and [4].

By substituting (15) and (16) into (14). It can be seen that the Dirichlet eigenvalues of the disk
are

{λnm} = {j2nm ∀n ∈ N ∪ {0},m ∈ N},

and the Neumann eigenvalues are

{µnm} = {(j′nm)2 ∀n ∈ N ∪ {0},m ∈ N}.
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As far as multiplicity, it should be noted that (15) and (16) are each describing two eigenfunctions for each
set of indices, one for sine and one for cosine. However, when n = 0, sin(nϕ) = 0, which isn’t acceptable
for eigenfunctions. Thus jn,m has multiplicity 1 when n = 0 and multiplicity 2 otherwise. Lastly, as can
be seen in 2, dJ0

dx has a root at 0 which produces a non-zero constant Neumann eigenfunction that must
be accounted for. With all this in mind, we can construct an algorithm for calculating the ECFs on the
unit disk by using the local root finding fsolve algorithm to find the roots of Bessel functions below a
given input k:

Algorithm 2 Calculating the Dirichlet ECF on a disk

Input Maximum value k
Step 1: init nMax = ⌊k⌋
Step 2: for n = 0 ,. . . , nMax

· Find all roots of Jn(x) on interval [n, k]

· If n == 0, assign root multiplicity 1, else assign multiplicity 2

Step 3: Sort eigenvalues in ascending order
Step 4: Iterate through the ordered list starting from the second element, and for each element add the
multiplicity value of the previous element to that of the current element

Output Set of tuples of the eigenvalues and the number of eigenvalues less than or equal to that
eigenvalue.

The Neumann ECF algorithm is similar but uses the derivatives of Bessel functions. The inequalities
in (19) ensure that the interval [n, k] collects all the roots of Jn smaller than k, and (18) ensures that
nMax is the highest order we need to check.

(a) (b)

Figure 3: The Calculated ECFs and the leading Weyl Term on the Unit Disk up until (a) k = 15 and (b)
k = 150

We implemented Algorithm 2 in Python using fsolve (see supplemental material) and Bessel function
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implementations from the SciPy library, and the results are summarized in figure 3. As expected
analytically, the Dirichlet and Neumann ECFs stay below and above the leading term respectively. The
validity of our results is verified by comparison of figure 3a with figure 1 in [7], which is the same plot.

2.3 Comparison of 2D Geometries

We seek to compare a square and disk with equal area to visualize differences in lower-order asymptotics.
The unit disk and square with sidelength

√
π have the same area of π and thus the same leading Weyl

term of k2

4 . Their difference lies in their perimeters, so they have different second Weyl asymptotics. The
two-term Weyl asymptotics for the square with side length

√
π and the unit disk are

N□(k) =
k2

4
± k√

π
+ o(k) (21)

and

N◦(k) =
k2

4
± k

2
+ o(k) (22)

respectively. Observe that as the unit disk has a smaller perimeter than the square with sidelength
√
π,

its second Weyl term is smaller in magnitude than the square’s second term. However, as can be seen in
figure 4, this difference can be difficult to visualize with the standard ECF because the like k2/4 term
dominates the behavior of both functions for each shape. Thus, to highlight this difference, we also plotted
one-term normalized ECFs defined by subtracting off the leading Weyl term for both the unit disk and
the square. In general, we define the one-term normalized ECFs as

N (1)
Ω (k) = NΩ(k)− Cd|Ω|dkd. (23)

These new functions are visualized in figure 5 and illustrate the larger second Weyl term for the square.

(a) (b)

Figure 4: The Calculated ECFs and the leading Weyl Term for the Unit Disk and the Square with
sidelength

√
π up until (a) k = 15 and (b) k = 150
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(a) (b)

Figure 5: The one-term normalized ECFs for the Unit Disk and Square with sidelength
√
π up to (a)

k = 15 and (b) k = 150. Sampled points are where the original ECF changes.

3 3D Geometries

Now we move on to more complex geometries in R3. We first examine the unit ball, then the unit
cube, and finally the cylinder. Like all shapes in R2, Weyl’s law (5) regarding the leading asymptotic
term is proven for these shapes. However, only the Dirichlet Polya Conjecture has been proven for the
unit ball by Filonov et. al. in [7]. Therefore, we validate their Dirichlet proof and check the Neumann
Polya Conjecture by calculating the ECFs of the Unit ball. Furthermore, since it is predicted by (6) that
the leading terms C3|Ω|3k3 and Cb,3|∂Ω|k2 are functions that solely depend on the volume and surface
area of 3D shapes, we take as examples cylinders with the same volume and surface area of the unit cube.
Per equation (6), the leading asymptotic term for the unit cube is

NΩ(k) =
k3

6π2
+

3k2

8π
+ o(k2). (24)

As in the 2D section, by comparing the ECFs between a unit cube and some specific cylinders with
identical predicted asymptotic terms, we can study what extra geometric features may be represented in
these ECFs.

3.1 The Unit Ball

Our first 3D object is the ball with a unit radius and centered at the origin. Filonov et al. recently
analytically proved the Dirichlet conjecture (i.e. Left inequality in (7)) for the unit ball [7]. We also know
that the unit ball is a non-tiling subset of R3. Thus, this half-proven conjecture marks the maiden attempt
in a new area. In this section, we visualize this problem by calculating the ECFs on the ball. We use the
following Spherical coordinate transformation (x, y, z)→ (r, ϕ, θ), where r is the distance from the origin
ϕ is the angle from the z-axis, and θ is the angle from the x-axis. The Helmholtz equation in Spherical
polar coordinates is

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
∂2u

∂ϕ2
+

cosϕ

r2sinϕ

∂u

∂ϕ
+

1

r2sin2ϕ

∂2u

∂θ2
= −λu. (25)
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The Dirichlet BCs are u(1, ϕ, θ) = 0 and the Neumann BCs are ∂u
∂r |r=1 = 0. It is also necessary to enforce

periodicity on both θ and ϕ such that u(r, ϕ, θ = 0) = u(r, ϕ, θ = 2π) and u(r, ϕ = 0, θ) = u(r, ϕ = π, θ).
With these BCs, separation of variables can be applied such that, for n ∈ N∪{0} and m ∈ N, the Dirichlet
eigenfunctions on the unit ball are

unm(r, ϕ, θ) =

√
π

2sn,mr
· Jn+ 1

2
(sn,mr)

n∑
t=−n

anmt · Yt
n(θ, ϕ), (26)

and the Neumann eigenfunctions are

unm(r, ϕ, θ) =

√
π

2s′n,mr
· Jn+ 1

2
(s′n,mr)

n∑
t=−n

anmt · Yt
n(θ, ϕ), (27)

where anmt is a constant that depends on m, n, and t, Jn(x) is the nth order Bessel function of the first
kind, sn,m is the mth non-zero root of the n-order Spherical Bessel function of the first kind, Sn(x), and
s′n,m is the mth non-zero root of dSn

dx . The functions of the angular parts ϕ and θ are combined into a
spherical harmonic, Yt

n(θ, ϕ), with t = {−n, . . . , 0, . . . , n}. For more details, see chapter 12 in [14].

It is now necessary to describe Spherical Bessel functions and their properties.

Definition 3.1.1 Spherical Bessel functions of order n are solutions to the following differential equation:

x2 d
2y

dx2
+ 2x

dy

dx
+ (x2 − n(n+ 1))y = 0. (28)

As a second-order differential equation, (28) also has two independent solutions, denoted Sn and Yn.
However, Yn diverges at zero and therefore is not continuous on [0, 1] and can’t be used to construct valid
solutions to (25). Sn takes the form Sn(x) =

√
π
2xJn+ 1

2
(x), and thus defines the radial component of the

eigenfunctions of the unit ball.

Remark : Equation (28) allows valid solution for any real number n, but the only valid solutions to
(25) require the order n to be a non-negative integer.

Figure 6: The First Five First-kind Spherical Bessel Functions of integer order, produced by Python
Matplotlib
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Figure 6 exhibits some relevant features of the Spherical Bessel functions. Just like the Bessel function
in Figure 2, the Spherical Bessel functions are also oscillatory, and the roots also ”cross” the x-axis
regularly. Meanwhile, the distribution of their roots has similar characteristics. Every Sn with n > 0
has a trivial root at zero and they still satisfy inequalities (18) and (19). For more details, see [13]. By
plugging both (26) and (27) into the Helmholtz equation (25), we can see that the Dirichlet and Neumann
eigenvalues are

{λnm} = {s2n,m ∀n ∈ N ∪ {0},m ∈ N},

and
{µnm} = {(s′n,m)2 ∀n ∈ N ∪ {0},m ∈ N},

respectively.

To calculate the multiplicity of each eigenvalue, observe that in the eigenfunction equations (26) and
(27) there are 2n+ 1 independent spherical harmonics of order n. Therefore, the eigenvalues λnm and
µnm both admit 2n+ 1 linearly independent eigenfunctions and have multiplicity 2n+ 1. Last but not
least, as can be seen in figure 6, dJ0

dx also has a root at 0 which produces a non-zero constant Neumann
eigenfunction that has to be covered in our counting functions. Here we construct a new algorithm for
calculating the ECFs on the unit ball by using the structure in algorithm (2).

Algorithm 3 Calculating the Dirichlet ECF in a Ball

Input Maximum value k
step 1: init nMax = ⌊k⌋
step 2: for n = 0,. . . ,nMax

· Find all roots of Sn(x) on interval [n, k]

· Assign root multiplicity 2n + 1

step 3: Sort eigenvalues in ascending order
step 4: Iterate through the ordered list starting from the second element, and for each element add the
multiplicity value of the previous element to that of the current element

Output Set of tuples of the eigenvalues and the number of eigenvalues less than or equal to that
eigenvalue.

The Neumann ECF algorithm is similar but uses the derivatives of Spherical Bessel functions. Addi-
tionally, we manually add the first eigenvalue µnm = 0 with multiplicity 1 in our Neumann algorithm.
The inequalities in (19) ensure that the interval [n, k] collects all the roots of Sn smaller than k, and (18)
ensures that nMax is the highest order we need to check.
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(a) (b)

Figure 7: The Calculated ECFs and the leading Weyl Term on the unit ball up until (a) k = 15 and (b) k
= 150

We implemented Algorithm (3) in Python using fsolve and Spherical Bessel function implementations
from the SciPy library, results are shown in figure 7. As expected analytically, the Dirichlet ECF stays
below the Weyl leading term. Furthermore, the calculated Neumann ECF stays above the Weyl leading
term for the range checked up to k=150, giving positive evidence to the Neumann Polya Conjecture on
the unit ball.

3.2 The Unit Cube

We now consider the ECFs of geometries where Polya’s conjecture is proven, so that we might compare
their counting functions. We start with the cube. We limit our focus to the unit cube, but the ECF
results can be extended to arbitrary cubes similar to the arbitrary square considered in Section 2.1. We
include the eigenvalues and eigenfunctions here for the sake of completeness. Just as in the 2D case, the
Helmholtz equation in 3D Cartesian coordinates is

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= −λu. (29)

With Dirichlet BCs and applying the method of separation of variables, we see that the Dirichlet
eigenfunctions are

unml(x, y) = sin(nπx) · sin(mπy) · sin(lπz), (30)

and with Neumann BCs we see that the Neumann eigenfunctions are

unml(x, y) = cos(nπx) · cos(mπy) · cos(lπz). (31)

These can be applied to (29) to find that the eigenvalues are

(32)λnml = π2(n2 + m2 + l2), 
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where n,m, l ∈ N in the Dirichlet case and n,m, l ∈ N ∪ {0} in the Neumann case. The ECFs of the cube
can be computed by simply modifying algorithm 1 to include a third for loop to account for the new
index. ECFs results for the unit cube can be seen in figure 8 in section 3.4.

3.3 The Cylinder

The last 3D geometry we study is the Cylinder with radius R and height h, CR,h. Observe that the
Polya conjecture for the cylinder is true as a corollary to Filonov et. al.’s proof of the Unit Disk. This
is because CR,h = DR × [0, h], with DR the disk of radius R, satisfies the conditions of Proposition 1.4.
Thus, our interest lies not in numerically checking Polya’s conjecture but in comparing computed ECFs
to find evidence of meaningful differences in eigenvalue distribution between different shapes. We use
the cylindrical coordinate system defined by the map (x, y, z) → (r, ϕ, z) where r is the distance from the
z-axis and ϕ is the angle from the x-axis. The Helmholtz equation is expressed in this coordinate system
as follows:

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂ϕ2
+

∂2u

∂z2
= −λu. (33)

The Dirichlet BCs in this coordinate system are u(R,ϕ, z) = u(r, ϕ, 0) = u(r, ϕ, h) = 0 and the
Neumann BCs are ∂u

∂r |r=R = ∂u
∂z |z=0 = ∂u

∂z |z=h = 0. While separation of variables can once again be
utilized to generate the eigenfunctions and determine the eigenvalues that way, due to the previously
stated Cartesian product definition of the cylinder, it is possible to define the eigenvalues of the cylinder
in terms of the eigenvalues of the disk and the interval:

Theorem 3.3.1 The eigenvalues of the cylinder CR,h in the Dirichlet case are defined as

λnml(R, h) =
j2nm
R2

+
k2π2

h2
, (34)

and the eigenvalues in the Neumann case are

λnml(R, h) =
(j′nm)2

R2
+

k2π2

h2
, (35)

where n ∈ N ∪ {0}, m ∈ N, in the Dirichlet case l ∈ N and in the Neumann case l ∈ N ∪ {0}.

Proof The Dirichlet proof can be found in [3], and the Neumann proof follows from the same method.

Similar to the square and cube, the multiplicity of a given eigenvalue is a nontrivial problem based
on the parameters of a particular cylinder. [3] gives more detail about the multiplicity of Dirichlet
eigenvalues. Again similar to the square and cube, we circumvent this problem by using a naive algorithm
first to generate every eigenvalue on the disk and interval independently and then check every possible
sum between these two sets to see if it is below our given bound.
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Algorithm 4 Calculating the Dirichlet ECF on a Cylinder

Input Maximum value k
Step 1: init lMax = ⌊kh

π ⌋
Step 2: init eigenvalues as an empty list
Step 3: Using algorithm 2, make list λ of all disk eigenvalues below k2

Step 4:
For l= 1, . . . , lMax

· For λnm in λ

· Find candidate λnml = λnm + l2π2

h2

· If candidate λnml > k2, break

· Elseif candidate not in eigenvalues, add to eigenvalues with multiplicity 1 if n == 0 or
multiplicity 2 if n > 0

· candidate is in eigenvalues, multiplicity += 1

Step 5: Sort eigenvalues in ascending order
Step 6: Iterate through the ordered list starting from the second element, and for each element add the
multiplicity value of the previous element to that of the current element

Output Set of tuples of the eigenvalues and the number of eigenvalues less than or equal to that
eigenvalue.

3.4 Comparison of 3D Geometries

To compare the unit cube and cylinders of equal volume and surface area, we must first construct
such cylinders. Two variables define a unique cylinder, the radius r and height h. Given that we have two
constraint equations on the volume and surface area, this is a fully defined problem that produces the
following polynomial when solved:

πx3 − 3x+ 1. (36)

Specifically, the cylinder with r equal to a positive root of (36) and h = 1
πr2 has the same volume and

surface area as the unit cube. In fact, (36) has two positive roots, r1 ≈ 0.40071301 and r2 ≈ 0.713154.
From now on, we denote these cylinders as C1 and C2. Recall that since C1, C2, and the unit cube share
volume and surface area, they have the same predicted two-term Weyl asymptotics as per (24):

NΩ(k) =
k3

6π2
± 3k2

8π
+ o(k2).

As such, we expect them to have very similar ECFs, with any distinctions being defined by the o(k2) term.
We are interested in evaluating what additional geometrical information may be involved with the o(k2)
term, so we computed the ECFs for the three geometries and plotted them against each other. As with
the 2D analysis, we also normalized the ECFs for each shape to emphasize the behavior of the o(k2) term.
However, since the shapes are selected to have equal volume and surface area, in this case, we chose a
two-term normalization. For an arbitrary ECF on geometry Ω, we define the two-term normalized ECF as

N (2)
Ω (k) = NΩ(k)− Cd|Ω|dkd ∓ Cb,d|∂Ω|d−1k

d−1, (37)

with a minus for the Neumann case and a plus for the Dirichlet case. Due to the heavy overlap of (37)
between the Dirichlet and Neumann cases, they are split into two separate figures for clarity. The results
are in figures 8-10.
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(a) (b)

Figure 8: The Calculated ECFs and the leading Weyl Term for C1, C2 and the Unit Cube up until (a)
k = 15 and (b) k = 150

(a) (b)

Figure 9: The two-term normalized Dirichlet ECFs for C1, C2, and the Unit Cube up to (a) k = 15 and
(b) k = 150. Sampled points are where the original ECF changes.
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(a) (b)

Figure 10: The two-term normalized Neumann ECFs for C1, C2, and the Unit Cube up to (a) k = 15 and
(b) k = 150. Sampled points are where the original ECF changes.

As can be seen from figures 9b and 10b, there is certainly a difference in the behavior of the normalized
ECFs for the different shapes. While the variance of these functions appears to grow as a function of k
consistently, the variance for the two-term normalized ECF of the unit cube is greater than that of the
cylinders, reaching higher maxima and lower minima. As the cylinders have very similar behavior, this
could imply a functional difference between the ECFs for the cube and cylinder despite having the same
volume and area. Furthermore, while they tend to stay positive most of the time, the normalized ECFs
consistently fall below zero. Figure 10a shows the normalized ECF for C1 going below zero very early, before
k = 14. These crossings demonstrate that NN

Ω (k) is not always greater than Cd|Ω|dkd + Cb,d|∂Ω|d−1k
d−1

for d = 3.

4 Future Work

First of all, the set of 2D and 3D geometries we considered here is not exhaustive. In the 2D
case, we could also consider the arbitrary parallelogram, which is interesting because it is still convex
yet lacks the rotational symmetries of the disk or square. It would also be interesting to repeat the
experiment of comparing shapes with the same area and perimeter for the 2D case, to see if there are
distinctions like in the 3D case. While this experiment would be impossible using the unit disk, it
could be done with other convex shapes like the aforementioned parallelogram or the ellipse. In 3D,
further comparisons using objects with holes, such as a solid torus, could be intriguing. While it lacks an
analytical Helmholtz solution, its eigenvalues can be computed with finite-element software like FEniCS [2].

Another way to study the o(kd−1) term is to fit the normalized functions to polynomial or spline
curves. Then, we could study the o(kd−1) term by studying how the coefficients of fit change for different
objects. It would also be interesting to construct a measure for the variance of the normalized functions
for the 3D geometries as a function of k, and compare this measure for different shapes to see if there is
any interesting information. Future research could also consider different normalizations for the ECFs.

One other type of normalization that could be considered is of the form
N (2)

Ω (k)

kα , α > 0, which could force
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the ECF to a constant value. This constant value could then be compared to geometric parameters of Ω
to elucidate further information about the o(kd−1) term.

Lastly, some improvements can be made to our numerical analysis. Currently, we use the default
precision in Python, which is the same as the precision of Python float numbers. At the same time,
when using fsolve to find roots, we chose error tolerance xtol ≤ 10−8 to balance the calculation speed
and accuracy. It is known that Bessel functions ”dampen” asymptotically, with an ( 2

πx )
1/2 factor in the

asymptotic expansion [16]. Therefore our fixed-precision root-finding method will fail to find sufficiently
large roots. One method of resolving this could involve calling an external library such as MPMath
[17] that provides data types with arbitrary precision. Another method could involve switching from
root-finding algorithms and using matrix eigenvalue methods like those described in reference [9].
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A List of Symbols

Symbol Definition

Ω Subset of Rd

k Input of our eigenvalue counting functions
λ Eigenvalue
µ Neumann eigenvalue
Cd Weyl constant: 1

(4π)
d
2 Γ( d

2+1)

Cb,d Lower Weyl Constant: Cd−1

4

Spherical Coordinates θ: Angle from the x-axis, ϕ: angle from the z-axis
Jn(x) nth order Bessel Function of 1st kind
jnm The mth non-zero root of Jn(x)

j′nm The mth non-zero root of dJn

dx

Sn(x) nth order Spherical Bessel Function of 1st kind
snm The mth non-zero root of Sn(x)

s′nm The mth non-zero root of dSn

dx

N (1)
Ω (k) The one-term normalized ECF

N (2)
Ω (k) The two-term normalized ECF
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