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Abstract: 

In this paper, we consider the deterministic paths traversed by a particle in a randomly 

configured infinite cylinder. We derive a formula for the expected value of the number of 

loops that a particle takes around the cylinder in one period of the path given that the path 

is periodic.  

Introduction: 

In this paper, we consider the problem of finding the expected number of loops a particle 

takes around a randomly configured infinite cylinder in one period of a periodic path. A 

detailed description of this problem will be given later. We are not aware of any other work 

that considers this problem. We consider this problem due to our interest in a particular 

class of problems known as deterministic walks in random environments [1, 2, 3, 4, 5, 6, 7, 

8, 9, 10, 11]. Some of the most prominent open problems in this area of research are in a 2 – 

dimensional context, and the techniques used in 1-dimensional results do not directly 

generalize to problems in 2 dimensions. The problem we solve in this paper also belongs to 

deterministic walks in random environments, though it is slightly different from those 

considered in other works. This problem shares features with 2-dimensional problems, but 

it has proven to be more amenable to analysis than them. We hope that the techniques and 

ideas we introduce in this paper will spark new strategies to solve the outstanding open 

problems in this field that have eluded researchers for several decades.  

Deterministic Walks in Random Environments  Copyright © SIAM
  Unauthorized reproduction of this article is prohibited

400



 

Deterministic Walks in random environments (DWRE) occupy an intermediate position 

between purely random and purely deterministic processes. These models combine random 

and deterministic properties in a very special way, making the study of this topic immensely 

interesting. In a DWRE, the initial configuration of a particular system is determined in a 

completely random manner using a given probability distribution; however, once the initial 

configuration is determined, the system follows a specific deterministic rule. These models 

have several important applications such as in analyzing the Lorentz Lattice Gas (LLG) [1, 2, 

3, 6]. 1-dimensional DWRE models have proven to be quite amenable to analysis. Define 

Rigidity as an integer-valued function 𝑟(𝑧) where 𝑧 is a vertex of the underlying graph of the 

DWRE. 𝑟(𝑧) represents the number of times a particle must visit a vertex in order to change 

the types of the edges (i.e. open or closed) connected to the vertex 𝑧. In fact, 1-dimensional 

models with constant rigidity have been found to be completely solvable [6]. Furthermore, 

1-dimensional models with non-constant rigidity have also been attacked in the past, and

several results are known about them such as Theorem 5 in [6]. However, as mentioned

earlier, these 1-dimensional results do not directly generalize to problems in two

dimensions, such as DWRE models on a regular 2 – dimensional lattice. The model we

consider, an infinite cylinder, is a 2-dimensional model, but it is different from a regular

lattice in the sense that in a 2D lattice, both of the dimensions extend infinitely but in the

infinite cylinder, the vertical dimension extends infinitely whereas the horizontal dimension

is a finite compact dimension. Hence, our model is closer to the other 2-dimensional models

compared to the 1-dimensional models, due to which we believe that our techniques would

generalize to other 2-dimensional DWRE problems more directly.

Now we give a detailed description of the problem considered in our paper. Please refer to 

figure 1 while reading the description of the problem. We shall begin by describing the 

infinite graph which forms the base of the model studied in this paper. Firstly one takes an 

infinite sequence of identical cycles … ,𝐶()
(*+,), 𝐶()

(*), 𝐶()
(*-,), … on 2𝑐 vertices, given by a

parameter 𝑐. For odd 𝑖 all odd vertices in the cycle 𝐶()
(*) are connected to the corresponding

vertex of 𝐶()
(*-,)(i.e. there is an edge between the first vertex in 𝐶()

(*)	and the first vertex of

𝐶()
(*-,),	the 3rd vertex of 𝐶()

(*)....). Likewise if 𝑖 is even, then even vertices in the cycles 𝐶()
(*)

and 𝐶()
(*-,) are connected. Bond percolation is then performed only on the edges connecting 
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the cycles, each such edge is retained with probability 1/2. A deterministic random walk is 

then run on the percolated cylinder, the rule this walk follows is to rotate around the cycles 

counter-clockwise alternately trying to take edges going "up" or "down" between cycles. 

Each of the cycles 𝐶()
(*) are referred to as “levels” in the rest of the paper. The edges

connecting the cycles in the underlying infinite graph prior to bond percolation are referred 

to as “connections”  in the rest of this paper. A connection is said to be open if it is retained 

after the bond percolation. Similarly, a connection is said to be closed if it is not retained 

after the bond percolation. Moreover, we refer to a deterministic random walk on the 

percolated cylinder as a path. Note that our system has infinite rigidity, which means that 

once the state of a connection is determined, the state of the connection will remain the 

same for the rest of the walk i.e. an open connection will remain open for the entire path 

and a closed connection will remain closed for the entire path. Furthermore, note that 

vertices on each cycle are equally spaced from each other. Also note that the particle that 

will trace a path on this percolated cylinder starts on a level such that there are infinitely 

many levels both above and below it. The problem considered in our paper is to find an 

exact formula for the expected number of loops taken by a particle in one period of a 

periodic path on this percolated cylinder in terms of 𝑐. We have given an illustrative 

example of a path on the infinite percolated cylinder described above in the next page.  

It is not very difficult to see that a path in this environment is periodic with probability 1. 

First, notice that if the space which is accessible to the particle is bounded, then the path of 

the particle is periodic, since the particle can visit only finitely many connections and the 

state of the connections remain the same. The space accessible to a particle is guaranteed 

to be bounded if there exists a level above it such that all of the connections to that level 

from the level below it are closed, and if there exists a level below it such that all of the 

connections to that level from the level above it are closed. Evidently, such levels exist with 

probability 1 because if such levels did not exist, then there would have to be at least one 

open connection between every pair of adjacent levels, which has probability 0, as we shall 

show below.     
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Fig 1. 
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This is an example of a path on the infinite cylinder described earlier, where c = 3. Note that 

there are 3 connections between each pair of adjacent levels in this example (the black lines 

are a part of the border of the cylinder; they are not connections). Green lines depict 

unvisited connections. Blue lines depict connections that the particle visits which are open. 

Red lines depict connections that the particle visits which are closed. The purple dot on the 

cylinder represents the starting point of the particle. The arrows represent the path of the 

particle. Note that this is a periodic path, and the number of loops the particle takes in each 

period of the path is equal to 1. This is because in one period of the path, the particle goes 

around the cylinder exactly once, as can be seen in the diagram. Note that the difference 

between the solid lines and the dashed lines is simply that the solid lines depict the lines in 

the foreground of the cylinder and the dashed lines depict the lines in the background of the 

cylinder.  

Now we explain why the probability that there is at least one connection between each pair 

of adjacent levels equal to 0. Note that the probability that all connections between two 

adjacent levels is closed is  ,
(2

 , where c is the number of connections. So the probability that 

at least one connection is open is 31 − ,
(2
6, since at least one path being open is the 

complement of all paths being closed. So, if there are n pairs of adjacent levels, the 

probability that there is at least one connection between each of these pairs of levels is 

31 − ,
(2
6
7
	, since the parity of different connections are independent of each other. Recall

that we are considering a cylinder with infinitely many levels, so n tends to infinity. Although 

31 − ,
(2
6 can get very close to 1, it is still less than 1 since there are a finite number of 

connections. Since it is less than 1, raising it to the power of n where n tends to infinity will 

give us 0, as desired.   
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Numerical Simulations: 

We have carried out numerical simulations for walks to give the reader a taste of what are 

the expected values of the number of loops approximately equal to, before we jump to the 

main result. The results of the numerical simulations are given in the table below. Note that 

to compute an approximation for the expected value of the number of loops, we took an 

average of the number of loops for 100,000 random simulations. 

Number of connections (c) Approximation for the expected 

value of the number of loops  

1 3.00194 

2 4.43459 

3 5.81465 

4 7.11357 

5 8.40251 

6 9.65118 

Now we will explain how we carried out the numerical simulations. Note that since we are 

dealing with an infinite cylinder, we cannot determine at once whether all connections in 

the system are open or closed. Hence, we determine whether a connection is open or 

closed as we pass it. Before each time a particle passes a connection, we check whether the 

particle has already passed that connection with the help of a dictionary of the coordinates 

of all the connections passed. If the connection was previously traversed, then we need to 

ensure that the parity of the connection is the same as before i.e. if the connection was 

closed, then it will remain closed and if it was open, it will remain open. Note that this is an 

important distinction between a completely random walk and a deterministic walk in a 

random environment. In a completely random walk, the parity of the connection will be 

randomly determined using the given probability distribution each time we pass the 

connection. However, in a deterministic walk in a random environment, only the initial 
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parity of the connection (i.e. whether the connection is open or closed) is randomly 

determined using the given probability distribution. After that, the parity of the connection 

is governed by a deterministic rule, which in this case is that the parity of the connection 

remains the same as its initial state even if the particle traverses it again.  

Coming back to the numerical simulation, if the connection was not previously traversed, 

then we randomly determine the parity of the connection such that the probability of it 

being closed is ½ and the probability of it being open is also ½. So, now we know the parity 

of the connection being traversed regardless of whether it was traversed earlier or not, 

hence now we can determine the coordinates of the next connection that we will traverse, 

and if the connection we just passed was not previously traversed, we would add it to the 

dictionary mentioned above. If the connection is closed, we would stay on the same level 

and move in the counter-clockwise (the direction was chosen arbitrarily) direction to the 

next connection.  

Preliminary Definitions: 

Adjacency Matrix – The adjacency matrix is a square matrix used to represent a finite graph. 

The number of rows and the number of columns of the matrix are each equal to the number 

of vertices of the finite graph. Each element of the adjacency matrix indicates whether there 

is an edge between a pair of vertices in a graph: The element is equal to 1 if such an edge 

exists but the element is equal to 0 if such an edge does not exist. Note that the adjacency 

matrix is a symmetric matrix, because if there is an edge connecting the second vertex to 

the third vertex, the same edge also connects the third vertex to the second vertex. 

However, this is not the case for the adjacency matrix of a directed graph, where each edge 

is assigned an orientation. In these kinds of graphs, each element of the adjacency matrix 

indicates whether there is an edge from a particular vertex to another vertex.  

Example: 

𝐴 = :
0 1 0
1 0 1
1 1 0

< 
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Consider this adjacency matrix of a directed graph. Note that the corresponding directed 

graph has exactly 3 vertices, since the number of rows and columns are 3 each. 𝐴,,= = 0, so 

there is no edge from the first vertex to the third vertex. However, 𝐴=,, = 1, so there is an 

edge from the third vertex to the first vertex. One property of adjacency matrices is that 

higher powers of the adjacency matrix gives the number of paths of a particular length from 

one vertex to another. Considering our previous example, 𝐴,,=(  is equal to the number of 

paths of length 2 from the first vertex to the third vertex. Similarly, 𝐴,,==  is equal to the 

number of paths of length 3 from the first vertex to the third vertex, and so on. This 

property is pivotal for our solution to the problem being addressed by this research paper.  

De Bruijn Graph – For the purpose of this paper, we are restricting the definition of De 

Bruijn Graphs to only those which concern binary strings. In this case the n – dimensional De 

Bruijn Graph is a directed graph having 27 vertices, where each vertex represents a binary 

string of length n. There exists an edge from vertex A to vertex B if and only if the last n – 1 

digits of the binary string represented by vertex A are the same as the first n – 1 digits of the 

binary string represented by vertex B. Concretely, what this means is that the second digit 

of the binary string of vertex A is equal to the first digit of the binary string of vertex B, the 

third digit of the binary string of vertex A is equal to the second digit of vertex B, and so on. 

This property of a De Bruijn graph allows us to form any binary string by traversing a path on 

the graph. For instance, in the 4 – dimensional De Bruijn graph, the binary string 101101 can 

be formed by starting at the 1011 vertex, then going to the 0110 vertex, and then ending 

the path on the 1101 vertex. Furthermore, each vertex is labelled according to the base 10 

value of the binary string. For instance, 0010 has a base 10 value of 2, so it’s the third vertex 

in the 4 – dimensional De Bruijn Graph (0000 is the first vertex). Now let’s consider the 

adjacency matrix of a De Bruijn Graph. Observe that for an n – dimensional De Bruijn Graph, 

the binary string with base 10 value of x will only lead to binary strings whose base 10 value 

is either 2x + 1 (mod 27) or 2x (mod 27). This is because multiplying by 2 causes all of the 

binary digits to shift one place to the left, and we can choose the last digit to be either 1 or 

0, (hence corresponding to 2x + 1 and 2x respectively). Now, if we perform mod 27, we 
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basically remove the leftmost digit of the new binary string, so the last n – 1 digits become 

the first n – 1 digits, as desired. Hence the adjacency matrix of the n – dimensional De Bruijn 

Graph is such that for a given value of i, the value of the element is 1 if and only if 𝑗 ≡

2𝑖	(𝑚𝑜𝑑	27) or 𝑗 ≡ 2𝑖 − 1	(𝑚𝑜𝑑	27). This is because the ith vertex corresponds to the 

binary string whose base 10 value is i – 1. So, by the result previously established, the base 

10 values of the binary strings which this vertex leads to are 2i – 2 (mod 27) and 2i – 1 (mod 

27). Hence, these correspond to the (2i)th and the (2i – 1)th vertices, as desired. 

Example: 

C

1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

D 

Above is the adjacency matrix of the 4 – dimensional De Bruijn Graph. 

Main Result: 

In our paper, we show that the expected number of loops the particle takes around the 

random cylinder in one period of a periodic path is given by the following formula: 

32𝑐 − 1𝑐 − 1 6

2() +	F𝑛
𝑓)I𝑀7,)

() K +L (2M − 1)ℎMI𝑃7,)KM
2(7)

P

7Q(

We shall now describe all of the terms in the formula above. Over here, the parameter c is 

the number of connections between two adjacent levels. To define the other entities used 

in this formula, we must define certain auxiliary objects. Given a binary string, let the r-value 

of each digit d be 𝑑 ×	(−1)S, where m is the number of 0s in the binary string which are to 

the left of the digit d. Furthermore, let a binary string be called good if the sum of r-values 

of its digits is 0.  
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Now, we define a sequence of matrices 𝐴,, 𝐴( … such that 𝐴7 is a 2(7 × 2(7 matrix 

where	(𝐴7)*T = 1 if and only if 𝑗 ≡ 2𝑖	(𝑚𝑜𝑑	2(7) or 𝑗 ≡ 2𝑖 − 1	(𝑚𝑜𝑑	2(7). After that, we 

define a sequence of matrices 𝑇,, 𝑇( …  such that to obtain 𝑇7, you need to take 𝐴7	and 

change 	(𝐴7)*T to 0 if i or j correspond to a good binary string.  

Now, we shall define an operation we call the skewed product, which is denoted by the 

symbol ×V) . Given two 2(7) × 2(7)  matrices A and B, consider the elements 𝐴*T	and 𝐵*T  

such that (𝑖 − 1) · 2()	(𝑚𝑜𝑑	2(7)) < 𝑗 ≤ 𝑖 · 2()	(𝑚𝑜𝑑	2(7)). If 𝑖 · 2()	(𝑚𝑜𝑑	2(7)) = 0, then 

change it to 2(7) in the inequality .	It is evident that there are 2((7-,))  such ordered pairs (i, 

j). We call these ordered pairs skewed. Then, C = A ×V)  B is a 2((7-,)) × 2((7-,)) matrix 

such that 𝐶*T  = 𝐴*\T\ · 𝐵*]T], where (𝑖,, 𝑗,) is the 𝑖^_ skewed ordered pair in dictionary order 

and (𝑖(, 𝑗() is the 𝑗^_  skewed ordered pair in dictionary order. Now we are ready to define 

the matrices 𝑀7,) . The matrix 𝑀7,) can be defined recursively by:  

𝑀(,) = 𝑇) and 𝑀(7-,),) = (𝑀7,)
()  ×V)  𝑀7,)

() ) ∘	𝑇7)  

where ∘	denotes the Hadamard product or element-wise product of two matrices and ×V)  

denotes the skewed product which was defined above. 

Now, let 𝑋) be the set of all ordered pairs (i, j) such that if we concatenate the first 2c digits 

of the binary string corresponding to i with the binary string corresponding to j, the resulting 

binary string is good. Then, we define the function 𝑓)(𝑀), where M is a matrix, such that 

𝑓)(𝑀) = b 𝑀*T
(*,T)∈d2

. 

For a positive integer k and a matrix M, the function ℎM is such that ℎM(M) is equal to the 

number of entries 𝑀*T  in the matrix which are equal to k and such that concatenating the 

binary strings corresponding to i and j gives us a good binary string. Thus, in the main 

formula, k takes on all positive integer values q such that at least one entry in the matrix 𝑃7,) 

is equal to q. 
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Call a binary string as interesting if its length is a multiple of 2c and its sum of r-values is 1. 

Then, we define 𝑃7,) to be the 2((7+,)) 	× 2((7+,))		matrix such that 	(𝑃7,))*T  is the number 

of interesting proper substrings of the binary string of length 2nc which results from 

concatenating the binary strings corresponding to i and j. If it is not possible to concatenate 

these binary strings or if the resulting binary string contains a good proper substring, then 

the entry of the matrix at (i, j) will be 0. Note that we will derive a recursive method to 

compute the matrices 𝑃7,) later in the paper.  

Derivation of the result: 

Let c be the number of connections between two adjacent levels. The particle starts at a 

point between two connections, i.e. the particle cannot start at a connection. Let a move be 

a movement of the particle by a distance of 1/2c times the circumference of the cylinder 

around the cylinder counter-clockwise (so a loop is basically 2c moves). Hence, the particle 

passes exactly one connection each move. First, note that given a position p of the particle 

which is between two connections, there is only one position q from which the particle can 

reach the position p in exactly one move, given that we know whether the connection 

adjacent to p in the clockwise direction is open or closed. Therefore, the path of the particle 

is periodic if and only if the particle revisits its initial point.  

The Case with One Connection: 

It is easy to see from the numerical simulations that when the number of connections is 1, 

the expected value of the number of loops seems to be very close to 3. In fact, the expected 

value of the number of loops is exactly equal to 3, which will be shown in this section. 

Notice that the particle must take an entire loop of a level if it visits that level. This is not 
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very hard to see. Firstly, when a particle visits a level, it automatically traverses half of that 

level since each level is only adjacent to two connections. Then if the next connection is 

closed, then the particle traverses the other half of the level as well, completing the loop. If 

the next connection is open, then the particle will move one level away from the initial level, 

and since there is exactly one connection between two adjacent levels, the particle must 

revisit that connection since it needs to revisit the initial point (recall the observation made 

earlier – the path of the particle is periodic if and only if it revisits its initial point). When the 

particle traverses that connection for the second time, it traverses the other half of the 

level, completing the loop, as desired. Since the particle takes a loop of every level it visits, 

the expected value of the number of loops is equal to the expected number of levels visited 

by the particle, as desired. 

Notice that the particle must take a loop of the initial level in order to revisit its initial point. 

Now we will find the expected number of levels the particle visits above the initial level, and 

using symmetry this number will also be equal to the expected number of levels the particle 

visits below the initial level. Recall that each connection is open with a probability of 1/2. So, 

the particle visits no level above the initial level if the first connection is closed, which has 

probability 1/2. If the particle visits exactly one level, the first connection must be open and 

the second connection must be closed, which has a probability of (1/2)2 = 1/4. If the particle 

visits exactly two levels, the first 2 connections must be open but the third connection must 

be closed, which has a probability of 1/8, and so on. So, the expected value of levels visited 

above the initial level is: 

b
𝑛− 1
27

P

7Q,

	= b
𝑛 − 1
27

P

7Q(

= 	b
𝑛

27-,

P

7Q,

Thus, let 𝑆 =b 7+,
(g

P

7Q,
= 	b 7

(gh\

P

7Q,
 . Note that: 

411



 

	𝑆 = b
𝑛 − 1
27

P

7Q,

= 	b
𝑛
27

P

7Q,

−	b
1
27	

P

7Q,

= 	2b
𝑛

27-,

P

7Q,

− 1 = 2𝑆 − 1		

This implies that 𝑆 = 1.	

Thus, we have shown that the expected value of levels visited above the initial level is 1. 

Using symmetry, the expected value of levels visited below the initial level is also equal to 1. 

So, the expected number of levels visited is 1 + 2(1) = 3 (recall that the particle also takes a 

loop around the initial level in order to revisit its initial point, as mentioned earlier). So, the 

expected value of the number of loops of the particle is equal to 3 when there is one 

connection, as desired.  

The General Case: 

Now, we establish a bijection between a path of the particle and a binary string, where a 0 

represents the particle passing a closed connection and a 1 represents the particle passing 

an open connection, and the binary string ends when the initial point is revisited. It was 

previously mentioned that the path of the particle is periodic if and only if the particle 

revisits its initial point. This implies two properties about a binary string corresponding to a 

periodic path. Firstly, it implies that the length l of the binary string must be a multiple of 2c, 

because the number of moves the particle must make in order to revisit its initial point is a 

multiple of 2c. The second property is as follows.  

Given a binary string, let the r-value of each digit d be 𝑑 ×	(−1)S, where m is the number 

of 0s in the binary string which are to the left of the digit d. If the path of the particle is 

periodic, then the sum of the r-values of all of the digits in the corresponding binary string is 

0. 

The property above follows from the idea that after a closed connection is encountered, the 

direction in which the particle moves through open connections (i.e. up or down) gets 
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reversed. Furthermore, the sum of r-values being 0 is equivalent to the particle returning to 

its initial level. Hence, note that the two properties mentioned above are simply equivalent 

to the particle revisiting its initial point, hence these two properties are equivalent to the 

path of the particle being periodic.  

However, we must note that there exist binary strings that fulfill the two properties above 

but don’t correspond to any path on the cylinder. This problem may arise due to 2 reasons. 

Firstly, the initial point may be revisited before the end of the string, contradicting a major 

condition involved in the bijection. Secondly, the same connection may be treated as both 

open and closed in a binary string. For example, if c = 3, the binary string 001000100000 

corresponds to a path which treats the same connection as both open and closed. Note that 

the same connection being treated as both closed and open is equivalent to the particle 

revisiting a particular point which is not the initial point. Hence, we can combine the two 

reasons mentioned above into one condition which is that the particle cannot revisit any 

point before the end of the path. To comply with the condition in the previous sentence, we 

can impose a simple restriction on the binary string which is mentioned below. 

The binary string cannot have any proper substring which fulfills both of the properties 

mentioned below: 

(1) Its length is a multiple of 2c

(2) The sum of r-values of its digits is 0

Hence, this restriction prevents the particle from visiting the same point more than once, as 

it prevents any proper substring from corresponding to a closed path.  

Now, we need to count the number of binary strings which satisfy conditions (1) and (2) 

above in addition to the following condition: 

(3) It does not contain any proper substring that satisfies both conditions (1) and (2)

A binary string is said to be true if it satisfies the three conditions mentioned above 
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Proposition 1: The number of true binary strings of length 2c is 32𝑐 − 1𝑐 − 1 6. 

Proof: 

Let a binary string be called good if the sum of r-values of its digits is 0. If the length of the 

string is exactly 2c, then the third condition is always satisfied. Hence we just need to count 

the good binary strings of length 2c. It is evident that the number of ones in the binary 

string must be even for the sum of r-values to be 0. So let the number of ones be 2k. Now 

define the sequence	𝑎,, 𝑎( … 𝑎()+(M-, such that 𝑎, is the number of ones before the first 0, 

𝑎(	is the number of ones between the first 0 and the second 0, and so on, and 𝑎()+(M-, is 

the number of ones after the last 0. For the sum of r-values to be 0, 𝑎, + 𝑎= + ⋯ 

+	𝑎()+(M-, must be equal to 𝑎( + 𝑎k + ⋯+ 𝑎()+(M . Since the total number of ones in the

binary string is 2k, both of the sums must be equal to k. Using stars and bars, the number of

possibilities of  𝑎, + 𝑎= +⋯+ 𝑎()+(M-, = k is 3𝑐𝑘6. Similarly, using stars and bars, the 

number of possibilities of 𝑎( + 𝑎k +⋯+ 𝑎()+(M  = k is 3𝑐 − 1𝑘 6. Since both of the equations 

are independent of each other, the total number of good binary strings of length 2c having 

2k ones is 3𝑐𝑘6 3
𝑐 − 1
𝑘 6. Note that k can be any value except c as for the binary string to be

good, there must be at least one 0 so that the sign of the r-values of the digits changes at 

least once in the string. Hence, the total number of good binary strings of length 2c = 

b 3𝑐𝑘6 3
𝑐 − 1
𝑘 6 .

)+,

MQm
 Using Vandermonde’s identity, b 3𝑐𝑘6 3

𝑐 − 1
𝑘 6	

)+,

MQm
= 32𝑐 − 1𝑐 − 1 6, as 

desired.  Q.E.D 

Hence we have found the number of true strings of length 2c. However, if the length is not 

2c, then the third condition applies due to which this method will not work if the length is 

greater than 2c. Below, we consider the case where the length of the binary string is a 

multiple of 2c which is strictly greater than 2c.  
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First, we define a sequence of matrices 𝐴,, 𝐴( … such that 𝐴7 is a 2(7 × 2(7 matrix 

where	(𝐴7)*T = 1 if and only if 𝑗 ≡ 2𝑖	(𝑚𝑜𝑑	2(7) or 𝑗 ≡ 2𝑖 − 1	(𝑚𝑜𝑑	2(7). Recall that 𝐴7 is 

simply the adjacency matrix for the directed De Bruijn graph which contains all binary 

strings of length 2𝑛 as its vertices and the index corresponding to each binary string is 

simply its value in base 10. For example	(𝐴7),( corresponds to the whether there is an edge 

from the binary string of length 2n with a denary (base 10) value of 1 to the binary string of 

length 2n with a denary value of 2. Now we define a sequence of matrices 𝑇,, 𝑇( …  such 

that to obtain 𝑇7, you need to take 𝐴7	and change 	(𝐴7)*T to 0 if i or j correspond to a good 

binary string. Note that 𝑇7 is simply the adjacency matrix of the directed De Bruijn graph 

from which we have removed all vertices corresponding to good binary strings. Now, let 𝑋) 

be the set of all ordered pairs (i, j) such that if we concatenate the first 2c digits of the 

binary string corresponding to i with the binary string corresponding to j, the resulting 

binary string is good. Lastly, we define the function 𝑓)(𝑀), where M is a matrix, such that 

𝑓)(𝑀) = b 𝑀*T
(*,T)∈d2

 . It is easy to see that 𝑓)(𝑇)()) gives us the number of strings of length 

4c that satisfy the three properties mentioned earlier, as this follows directly from the 

definitions of 𝑇7 and 𝑓) , and the fact that raising the adjacency matrix of a graph to a 

particular number m gives us the number of paths of length m for each ordered pair of start 

and end vertices.  

Proposition 2:  𝑓)(𝑇)()) gives us the number of true strings of length 4c. 

Proof: 

Note that (𝑇)())*T  gives us the number of paths of length 2c from the vertex corresponding 

to i to the vertex corresponding to j which does not pass through any vertex corresponding 

to a good binary string. Since each vertex is a binary string of length 2c, each path 

corresponds to a binary string of length 4c not containing any good binary string of length 

2c. Hence, 𝑓)(𝑇)()) gives us the number of good binary strings of length 4c which do not 

have any good proper substring of length 2c, as desired.  Q.E.D 
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Now we will create a sequence of matrices 𝑀7,) for n ≥ 2 such that 𝑓)I𝑀7,)
() K gives the 

number of true binary strings of length 2nc. By proposition 2, we know that 𝑀(,) = 𝑇) . 

Before we find 𝑀7,)  for all n ≥ 2, we must define a particular operation on matrices called 

as the Skewed product denoted by the symbol ×V) . 

Given two 2(7) × 2(7)  matrices A and B, consider the elements 𝐴*T	and 𝐵*T  such that 

(𝑖 − 1) · 2()	(𝑚𝑜𝑑	2(7)) < 𝑗 ≤ 𝑖 · 2()	(𝑚𝑜𝑑	2(7)). If 𝑖 · 2()	(𝑚𝑜𝑑	2(7)) = 0, then change it 

to 2(7) in the inequality .	It is evident that there are 2((7-,))  such ordered pairs (i, j). Call 

these ordered pairs as skewed. Then, C = A ×V)  B is a 2((7-,)) × 2((7-,)) matrix such that 

𝐶*T  = 𝐴*\T\ · 𝐵*]T], where (𝑖,, 𝑗,) is the 𝑖^_ skewed ordered pair in dictionary order and 

(𝑖(, 𝑗() is the 𝑗^_  skewed ordered pair in dictionary order. The reason behind taking into 

account only skewed ordered pairs is that these are the only pairs for which it is possible to 

concatenate the two binary strings. This is because the last 2(n – 1)c digits of the first string 

must be the same as the first 2(n – 1)c digits of the second string and the length of each 

string is 2nc. So we must first multiply the base 10 value of the first string with 22c to shift 

the digits 2c places to the left, and then we take its mod	2(7) to remove the first 2c digits, 

so that the last 2(n – 1)c digits of the first binary string become the first 2(n – 1)c digits of 

the second binary string, as desired. The expression for j is an inequality because the last 2c 

digits of the second binary string can be anything, hence exactly 22c values of j are 

permitted, as can be seen in the inequality above. Note that since we have considered the 

skewed ordered pairs in dictionary order, they represent the binary strings of length 2(n + 

1)c in their normal order (i.e. in the order of their base 10 values) because i is the first string

in the concatenation, so if the i values are different, the j values don’t play any role in

determining which binary string has a larger base 10 value, just as in dictionary order.

Let 𝑀7,)  be the 2((7+,)) × 2((7+,))  adjacency matrix of the directed De Bruijn graph of 

binary strings of length 2(n – 1)c which are not good and do not contain any good proper 

substring whose length is a multiple of 2c (note that 𝑀7,)  does contain binary strings which 

are good or which have good proper substrings as vertices, but all the edges connected to 

these binary strings are removed). Let the binary strings be indexed according to their value 

in base 10. This definition of 𝑀7,) is consistent with 𝑓)I𝑀7,)
() K giving the number of true 
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strings of length 2nc and it is also consistent with 𝑀(,) = 𝑇), so all that is left now is to 

create an equation which gives 𝑀7,) . Since we know 𝑀(,) , we can find 𝑀7,)	for all n > 2 by 

finding an appropriate recursive formula, which is done below.  

Proposition 3:  𝑀(7-,),) = (𝑀7,)
()  ×V)  𝑀7,)

() ) ∘	𝑇7) , where ∘	denotes the Hadamard product or 

element-wise product of two matrices.  

Proof: 

Note that I𝑀7,)
() K

*T   gives the number of binary strings of length 2nc which do not have any

good proper substring whose length is a multiple of 2c, and which starts and ends with 

particular strings of length 2(n - 1)c, namely i and j respectively. Since n ≥ 2,  2(n – 1)c ≥ 𝑛𝑐. 

Therefore, there is at most one binary string of length 2nc which starts with a particular 

binary string of length 2(n - 1)c and ends with a particular binary string of length 2(n - 1)c. 

This is because both of these strings take up at least half of the binary string of length 2nc as 

shown by the inequality above, due to which every digit of the binary string of length 2nc 

will be uniquely determined by these two binary strings. As a result, I𝑀7,)
() K

*T   = 0 or 1.

𝑇7) is the adjacency matrix of the directed De Bruijn graph of the binary strings of length 

2nc which are not good. Hence, to get 𝑀(7-,),) from 𝑇7) , we need to remove all the binary 

strings which contain a good proper substring whose length is a multiple of 2c from the 

graph of 𝑇7). Hence, (𝑇7))*T  must be changed to 0 if either of the binary strings 

corresponding to i or j have a good proper substring of length 2c. It follows from the 

definition of the skewed product that each index (i, j) of the skewed product of 𝑀7,)
()  with 

itself corresponds to an ordered pair of the ith and jth binary strings of length 2nc, since the 

skewed ordered pairs in dictionary order correspond to the binary strings of length 2nc in 

their normal order (i.e. according to their values in base 10). Furthermore, note that  

(𝑀7,)
() 	×V) 𝑀7,)

() )*T  = 1 if and only if the ith and jth binary strings of length 2nc don’t contain 

any good proper substrings whose length is a multiple of 2c. Hence, taking the Hadamard 
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product of 𝑇7) with (𝑀7,)
() 	×V) 𝑀7,)

() ) will change (𝑇7))*T  to 0 if and only if either of the ith

and jth binary strings of length 2nc have a good proper substring of length 2c, as desired.      

  Q.E.D 

Now, at first glance, it may seem that we can compute the expected value by simply 

knowing the number of true strings of lengths which are a multiple of 2c, which is equal to 

the number of valid paths on the infinite cylinder of the corresponding number of loops. 

Recall that the corresponding number of loops is the length of the string divided by 2c. 

However, we must note that paths with the same number of loops may have different 

probabilities, depending on the number of connections which are traversed twice. For 

instance, if there exist two paths of the same length with one path passing through 10 

distinct connections (both open and closed) but the other passing through 11 distinct 

connections, the latter path will have a probability which is half of that of the path with 10 

distinct connections, since each distinct connection would be either open or closed with a 

probability of ½ for each choice. As a result, we must count the number of paths of each 

length in which n distinct connections are traversed, for all permissible values of n. First, we 

must notice that for each connection that is traversed twice in the path, there exists a 

proper substring of the corresponding binary string such that the length of the proper 

substring is a multiple of 2c and its sum of r-values is 1. This is because for the same 

connection to be crossed twice, the particle must land up on the point exactly one level 

above or one level below (depending on the orientation of the connection) the point from 

which the connection was crossed. The sum of r-values must be 1, and not -1 because if the 

orientation of the connection is downwards, then the particle must land up on the point 

exactly one level below, so the negative signs due to the orientation and change in level 

cancel out, leading to a sum of r-values of 1.  So the problem mentioned earlier in the 

paragraph translates to finding the number of paths of each length which have n proper 

substrings, each of which has a length of 2kc, for some positive integer k, and a sum of r-

values of 1.  

To solve this problem, we must first define a 2() dimensional vector such that the ith 

element of the vector is 1 if the binary string of length 2c having a base 10 value of i has a 

sum of r-values of 1. Otherwise, the ith element of the vector is 0. Call this vector 𝐶,.   
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Now let’s define another 2() dimensional vector such that the ith element of the vector is 1 

if the binary string of length 2c having a base 10 value of i ends with a substring (not 

necessarily a proper substring) whose length is a multiple of 2c and whose sum of r-values 

of 1. Call this vector 𝐵,. Note that 𝐶, = 	𝐵,, but treating them as separate vectors will help 

us in generalizing our solution.  

Use these two vectors to create a 2() 	×	2() matrix called D1, such that 

(𝐷,)*T = (𝐶,)* + (𝐵,)T. For simplicity, call a binary string interesting if its length is a 

multiple of 2c and its sum of r-values is 1. It is easy to see that (𝐷,)*T	gives the number of 

interesting substrings of length 2c in the binary string of length 2c + 1 formed by 

concatenating the binary strings corresponding to i and j. However, (𝐷,)*T  gives us this 

value if and only if it is possible to concatenate the two binary strings in such a manner.  

Recall that the adjacency matrix of the De Bruijn graph containing all binary strings of length 

2c tells us whether it is possible to concatenate the binary strings corresponding to i and j in 

the manner described above. Using this insight about the adjacency matrix, we can create a 

function which when iterated an appropriate number of times will give us a matrix whose 

elements give the number of interesting substrings of length 2c in each binary string of 

length 4c. Before we create this function, let’s define a square matrix 𝐵,’ such that each row 

of 𝐵,’ is the row vector 𝐵,. 

Now, let g be a function which takes four square matrices W, X, Y, Z of the same dimensions 

as its input, and it outputs one matrix F of the same dimensions, such that: 

𝐹*M =b 𝑊*T · 𝑌TM ·
T

 I𝑋*T + 𝑍TMK 

If we set W and Y as the adjacency matrix 𝑇), X as 𝐷, and Z as 𝐵,’, F will be a matrix such 

that 𝐹*M gives us the number of interesting substrings of length 2c in the binary string of 

length 2c + 2 which results from the appropriate concatenation of the binary string 

corresponding to i and the binary string corresponding to k, assuming that it is possible to 

concatenate them so and assuming that they don’t contain any good substrings of length 2c. 
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If it is not possible to concatenate the binary strings of i and k, or if the resulting binary 

string of length 2c + 2 contains a good substring of length 2c, then 𝐹*T = 0. This is because 

then the corresponding value in at least one of the adjacency matrices will be 0 for each 

value of j, resulting in  𝐹*M = 0. Furthermore, if the resulting binary string is valid, then we get 

the number of interesting substrings of length 2c present in it, as mentioned earlier, 

because we add the number of interesting substrings in the first 2c + 1 digits with 1 if the 

last substring of length 2c is interesting and with 0 otherwise. At this point, you may have 

noticed the potential problem that due to the summation over all j, the number of 

interesting substrings of two different binary strings may be added together. However, note 

that given a concatenation of two binary strings, the string in the middle (i.e. from the 2nd 

digit to the (2c + 1)th digit) is uniquely determined by the 2 binary strings, so the problem 

mentioned in the previous sentence does not arise. Now, recall that the adjacency matrix 

squared tells us whether it is possible to concatenate two binary strings to get a binary 

string of length 2c + 2. Since 2c ≥ 2, each element of the matrix is either 0 or 1, which tells 

whether the concatenation is possible. Since the length of the string needs to be less than or 

equal to 4c for each element of the matrix to be either 0 or 1, we can repeat the process till 

we get a concatenation of length 4c. We will inherently assume this result later in the paper. 

Hence if we replace the initial W with 𝑇)( and if we replace X with the matrix F which was 

the output of the function, the function will now give us the number of interesting 

substrings in the binary string of length 2c + 3 which results from concatenating the binary 

strings corresponding to i and k. Now, we can repeatedly iterate this process with W being 

higher powers of the adjacency matrix and X being the output of the previous iteration to 

get a matrix representing the number of interesting proper substrings in each valid binary 

string (which does not contain a good substring of length 2c) of length 4c. It is not hard to 

see that for coordinates not corresponding to valid binary strings, the entry is 0, as then the 

corresponding entries in at least one of the adjacency matrices is 0. Using this matrix, we 

can get the number of true binary strings of length 4c with k interesting proper substrings 

by simply counting the number of entries in the matrix which are equal to k and such that 

concatenating the coordinates (binary strings corresponding to i and j) gives us a good 

binary string. Let the functions hk , for all positive integers k, be responsible for performing 

the above counting for entries equal to k.  
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Now, let’s generalize this process to binary strings of length 2kc. So let Cn be a sequence of 

vectors such that the nth vector in the sequence is a 2(7)	dimensional vector where the ith 

element in the vector is 1 if the binary string of length 2nc having a base 10 value of i is an 

interesting binary string, and it is equal to 0 otherwise. Let Bn be a sequence of vectors such 

that the nth vector in the sequence is a 2(7)	dimensional vector such that its ith element is 1 

if the binary string of length 2nc having a base 10 value of i ends with an interesting 

substring (not necessarily a proper substring) whose length is a multiple of 2c. Note that the 

binary strings can end with at most only one interesting substring whose length is a multiple 

of 2c as long as the binary string does not contain any good proper substring whose length is 

a multiple of 2c. Suppose otherwise. Then the sum of r-values of 2 substrings at the end 

with lengths 2ac and 2bc would both be equal to 1. However, this implies that there exists a 

proper substring with length 2|b – a|c whose sum of r-values is 0, a contradiction to the 

fact that the binary string has no good proper substrings whose length is a multiple of 2c. 

Note that although Bn  =  Cn for n = 1, as noted earlier, this does not hold in general. So now, 

we will use a step of recursion to show how is it possible to get the matrix representing the 

number of interesting proper substrings for binary strings of length 2(k + 1)c from the 

corresponding matrix for 2kc for values of k ≥ 2. Call the corresponding matrix for 2kc as 

𝐺(M) . Now, we will convert 𝐺(M)  into a 2(uv dimensional vector which contains (𝐺(M))*T  for 

all skewed ordered pairs (i, j) in dictionary order (we defined skewed ordered pairs in our 

discussion of the skewed product). Note that the reason behind this is that each skewed 

ordered pair corresponds to a unique binary string of length 2kc, which is determined by 

concatenating the binary strings corresponding to i and j. It can also be seen that each 

binary string of length 2kc is accounted for by the skewed ordered pairs, and that they are in 

ascending order of their base 10 values since the skewed ordered pairs are in dictionary 

order. Now, we add Ck to this vector because we must also count the interesting substrings 

of length 2kc. Call the resulting vector as C. Then, we can define a matrix Dk as: 

(𝐷M)*T = 𝐶* + (𝐵M)T  

Note that this is analogous to how we defined 𝐷,. Now, we will define 𝐵M’ analogously as 

well, by letting it be a square matrix such that each of its rows is the row vector 𝐵M. Now we 
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can simply iterate the function g to get the corresponding matrix for 2(k + 1)c and we are 

done, but before that we must clarify what will the arguments of the function g be in this 

case. Y must be the adjacency matrix of the binary strings of length 2kc which do not have 

any good substrings (not necessarily a proper substring) whose length is a multiple of 2c 

(note that this adjacency matrix does contain binary strings with good substrings whose 

length is a multiple of 2c as vertices, but the edges connected to these vertices are 

removed). We have already found a formula for these adjacency matrices earlier in the 

paper and we had called the sequence of these adjacency matrices as 𝑀7,). Hence, Y must 

be 𝑀(M-,),). W is initially 𝑀(M-,),) and with each successive iteration W takes on the next 

higher power of 𝑀(M-,),). Concretely, W is initially 𝑀(M-,),), then it becomes 𝑀(M-,),)
(  for the 

next iteration, then it becomes 𝑀(M-,),)
=  and so on. Zij must represent whether the binary 

string corresponding to j ends with an interesting substring (not necessarily a proper 

substring) whose length is a multiple of 2c. Recall that a binary string can end with at most 

one interesting substring whose length is a multiple of 2c provided that the binary string 

does not contain any good proper substring whose length is a multiple of 2c. If it does 

contain a good proper substring whose length is a multiple of 2c, then at least one of the 

corresponding entries in the adjacency matrices would be 0, making the entire term 0. So 

we just need to consider whether the binary string ends with an interesting substring whose 

length is a multiple of 2c, which is exactly what Zij does. It is easy to see that such a matrix is 

the same as 𝐵M’. So Z will be equal to 𝐵M′ for all iterations. Lastly, X is initially 𝐷M and then it 

is the output of the previous iteration. The explanation for this is the same as that given for 

the case where k was equal to 1. So after iterating this function 2c – 1 times, we will get the 

corresponding matrix for 2(k + 1)c. 

Now, we are ready to figure out the expression for the expected value of loops for a path 

with c connections. First, let’s call the sequence of matrices obtained by the process above 

as 𝑃7,). So, 𝑃M,) represents the 2((M+,)) 	× 2((M+,))		matrix such that 	(𝑃M,))*T  is the number 

of interesting proper substrings of the binary string of length 2kc which results from 

concatenating the binary strings corresponding to i and j. If it is not possible to concatenate 

these binary strings or if the resulting binary string contains a good proper substring, then 
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the entry of the matrix at (i, j) will be 0 because then the corresponding entries in at least 

one of the adjacency matrices W and Y would be 0.  

Theorem 1:  The expression for the expected value is: 

32𝑐 − 1𝑐 − 1 6

2() +	F𝑛
𝑓)I𝑀7,)

() K +L (2M − 1)ℎMI𝑃7,)KM
2(7)

P

7Q(

Where k takes on all positive integer values q such that at least one entry in the matrix 𝑃7,) 

is equal to q.  

Proof: 

This expression follows from the fact that the expected value of loops can be represented in 

the form 1 x P(L = 1) + 2 x P(L = 2) … , where L is the number of loops and  

P(L = r) is the probability that the number of loops is equal to r. The 2M − 1 factor follows 

from the idea that if the number of interesting substrings increases by 1, then the number 

of distinct connections traversed decreases by 1, so the probability of that path occurring 

gets doubled. Since each path is accounted for once in 𝑓)I𝑀7,)
() K, the factor is 2M − 1 and not 

2M. Notice that in the summation, each term takes into account the probability of each path 

being periodic and it having n loops, rather than taking the probability of a periodic path 

having n loops. But, since a path on the cylinder is periodic with probability 1, both of the 

probabilities mentioned in the previous sentence are equal to each other. Hence, we have 

found an expression for the expected value of loops for periodic paths on an infinite 

cylinder, which was the ultimate goal of this paper.                                                                Q.E.D 

We have added the first few terms of the infinite series for c = 2 and c = 3 using a computer 

program.  
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The number of terms in the 

infinite series that were 

included in the sum 

c = 2 c = 3 

One term 0.5 0.3984375 

Two terms 0.921875 0.721435546875 

Three terms 1.40625 N/A 

Upon comparing the values in the table above with the numerical results table on page 6, 

we get a rough idea of how quickly the infinite series converges. Note that we could not add 

more terms of the infinite series because doing so is computationally very expensive. For 

instance, computing the fourth term of the infinite series for c = 2 involves computations 

with 65536 × 65536 matrices which are way beyond the capability of the standard PC. 

Similarly, computing the third term of the infinite series for c = 3 involves computations with 

262144 × 262144 matrices which again supersede the capabilities of the standard PC. 

Nevertheless, we hope that the values in the table above give the reader some insight into 

how quickly the infinite series converges.   

Conclusion: 

In this paper we have considered the deterministic walk taken by a particle on a cylinder 

with infinitely many levels whose connections are randomly decided to be open or closed. 

We have found a formula which gives us the expected value of loops a particle takes in one 

period of a periodic path on this infinite cylinder given the number of connections between 

two adjacent levels in the underlying graph. We hope that the techniques introduced in this 

paper to solve this particular problem regarding deterministic walks in random 

environments in 2 – dimensions helps solve some of the most prominent open problems in 

this area of research.   
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