
CONVERGENCE OF THE RANDOMIZED BLOCK GAUSS-SEIDEL METHOD

WEI MAGGIE WU

SPONSOR: DEANNA NEEDELL

ABSTRACT. The Randomized Gauss-Seidel Method (RGS) is an iterative algorithm that solves
large-scale systems of linear equations Ax = b. This paper studies a block version of the RGS
method, the Randomized Block Gauss-Seidel Method (RBGS). At each step, the algorithm greed-
ily minimizes the objective function L(x) = ‖Ax−b‖2

2 with respect to a subset of coordinates. This
paper describes the RBGS method, which uses a randomized control method to choose a subset
of columns of A at each step. We show this method exhibits an expected linear convergence
rate that can be described by the properties of the matrix A and its column submatrices. The
analysis demonstrates that convergence of RBGS improves upon RGS when given an appropriate
column-paving of the matrix, a partition of the columns into well-conditioned blocks. The main
result yields a RBGS method that is more efficient than the classical RGS method, and bridges
existing theory on the related block Kaczmarz method and the convergence analysis of classical
RGS.

1. INTRODUCTION

The Randomized Gauss-Seidel Method (RGS) [LL10, MNR15] is an iterative algorithm for
solving large-scale linear systems of equations. This approach has gained recent attention
in applications like digital image and signal processing due to its simplicity of implementa-
tion and its ability to find the solution without needing access to the entire system at once
[Xu18, HNR17, MNR15, Nat01, GBH70, CZ97]. In the RGS method, each iteration greedily min-
imizes the objective function L(x) = ‖Ax −b‖2

2 with respect to a selected coordinate, and the
results converge to the least-squares solution at a linear rate. Another algorithm widely used for
solving linear systems of equations is the Randomized Kaczmarz method (RK) [Kac37, SV09]. In
RK, each iteration projects the estimate from one equation’s solution space (hyperplane) to the
other, converging to the solution of a consistent system (or close to the solution of an inconsis-
tent system [Nee10]) at a linear rate. The block version of the RK algorithm [Elf80] was analyzed
in [NT13], utilizing a row-pavingof the matrix, which is a partition of the matrix into blocks
of rows such that each block submatrix has bounded singular values. With this assumption,
linear convergence with improved computational complexity was possible. While the simple
Kaczmarz algorithm enforces one single constraint at each iteration, the block update enforces
multiple constraints simultaneously at each iteration. The row-paving of the matrix guarantees
that each subset of constraints yields a well-conditioned system.

Contribution. Inspired by the block Kaczmarz algorithm, this paper demonstrates that the
block approach can also be applied to the Randomized Gauss-Seidel Method to improve the
convergence. We view our work as a bridge between the convergence results for the block RK

Date: October 5, 2018.
This work was supported by NSF CAREER grant #1348721, and the Alfred P. Sloan Fellowship. Wu is at Scripps

College, Claremont CA 91711. Needell is at the University of California, Los Angeles, 90095.

 Copyright © SIAM
 Unauthorized reproduction of this article is prohibited

369

WEI MAGGIE WU SPONSOR: DEANNA NEEDELL

method [NT13] and for the classical RGS method [MNR15]. The latter work analyzes the Gauss-
Seidel method in parallel to the Kaczmarz method, proving convergence bounds and compar-
ing the two approaches in various settings. We view our work as completing the convergence
framework for these approaches.

1.1. Model and Notation. The `p vector norm for p ∈ [1,∞] is denoted ‖ · ‖p , and the usual
inner (dot) product by 〈·, ·〉. For matrices, ‖ · ‖ denotes the spectral norm and ‖ · ‖F denotes
the Frobenius norm. The set of columns of A is denoted {A1, A2, ..., An}, and the set of rows
is denoted {A1, A2, ..., Am}. For a set of row indices τ, Aτ denotes the submatrix of A indexed
by a set τ (for which we will always use Greek letters and should be clear from context). In
block RK, Aτ denotes the row submatrix and in RBGS, Aτ denotes the column submatrix; the
distinction should be clear from context. For a Hermitian (self-adjoint) matrix, λmin and λmax

are the algebraic minimum and maximum eigenvalues. For an m ×n matrix A, the singular
values are arranged such that

σmax(A) :=σ1(A) ≥σ2(A) ≥ ... ≥σmin{m,n}(A) =:σmin(A). (1)

We also define the condition numberκ(A) :=σmax(A)/σmin(A) and the scaled condition num-
ber K (A) := ‖A‖F /σmin(A). Note that κ(A) ≤ K (A). The adjoint (transpose) of a matrix or vector
A is denoted A∗. The Moore-Penrose pseudoinverse of matrix A is denoted A†. When matrix A
has linearly independent columns, the pseudoinverse A† = (A∗A)−1 A∗. Lastly, we write e(j) for
the j th coordinate basis column vector, which has a 1 in the j th position and 0 in the rest of the
entries.

Consider a system of linear equations

Ax = b, (2)

where A is a real m ×n matrix1. We consider the interesting case when the system is overdeter-
mined (m ≥ n) and we seek the least squares solution:

argmin
x

‖Ax −b‖2
2. (3)

For convenience, we assume that A is standardized, in other words each row Ai of A has

‖Ai‖2 = 1 for each i = 1, ...,m.

In the following discussion, we will utilize the following convention.

Definition 1. Define the unique minimizer of (3), x∗. We also introduce the residual vector r∗ :=
Ax∗−b. Subsequently, b = Ax∗− r∗.

1.2. Organization. The next subsection discusses related work and introduces the relevant it-
erative methods. Section 1.4 derives our formulation of a block RGS method. Section 2 lays out
the main theorem concerning the convergence rate and the expected error bound, followed by
a detailed proof and an analysis of the result. Section 3 analyzes the results of the experiments
comparing RBGS with different sizes of partitions applied to both consistent and inconsistent
systems and synthetic and real data. Section 4 concludes the paper and indicates future direc-
tions of work.

1.3. Related Works.

1There is nothing preventing the use of complex-valued matrices, we simply use real matrices for simplicity of
presentation.

370

CONVERGENCE OF THE RANDOMIZED BLOCK GAUSS-SEIDEL METHOD

1.3.1. The Randomized Gauss-Seidel Method (RGS). Taking A,b as input and beginning from
an arbitrarily chosen x0, the RGS Method, also known as the Randomized Coordinate Descent
Method, repeats the following in each iteration.

First, a column j ∈ {1, ...,n} is selected at random with probability proportional to the square
of its Euclidean norm:

Pr(column = j) = ‖A j‖2
2

‖A‖2
F

. (4)

We then minimize L(x) = 1
2‖b − Ax‖2

2 (equivalent to minimizing (3)) with respect to the se-
lected coordinate to get

xt := xt−1 +
(

A j
)∗

(b − Axt−1)

‖A j‖2
2

e(j), (5)

where e(j) is the coordinate vector defined above. The method continues with these updates,
where in each iteration a new column index j is selected at random (typically uniformly at
random, with replacement). This method is described in Algorithm 1 below. Leventhal and
Lewis [LL10] show that this algorithm has an expected linear convergence rate, as given by the
following theorem.

Algorithm 1 The Randomized Gauss-Seidel (RGS)

1: procedure (A, b, T ,h) .m ×n matrix A, b ∈Cm , maximum iterations h
2: Initialize x0 = 0, r0 = b − Ax0

3: for t = 1,2, ...,h do
4: Choose j uniformly from {1, . . . ,n}.

5: Set xt = xt−1 +
(

A j
)∗

(b−Axt−1)

‖A j ‖2
2

e(j)

6: Update rt = b − Axt .
7: end for
8: Output xt

9: end procedure

Theorem 1 (from [LL10]). Given any linear system Ax = b, where the matrix A is a non-zero
m ×n matrix, define the least-squares residual and the error by

L(x) = 1

2
‖Ax −b‖2

2 and δ(x) = L(x)−L(x∗),

where x∗ is a least-squares solution. Then the iterates described by (5) converge linearly in expec-
tation to a least-squares solution for the system: for each iteration t = 0,1, ...,

E[δ(xt)] ≤
[

1− σ2
min(A)

‖A‖2
F

]
δ(xt−1),

where the expectation is taken with respect to the i.i.d. uniform at random selection of the column
indices j .

Notice that when the system Ax = b is consistent, b = Ax∗ and L(x∗) = 0. The above inequal-
ity can be reinterpreted as

E
[‖Axt − Ax∗‖2

2

]≤ (1−γ1)t‖Ax0 − Ax∗‖2
2, (6)

where γ1 = σ2
min(A)

‖A‖2
F

.

371

WEI MAGGIE WU SPONSOR: DEANNA NEEDELL

1.3.2. The Randomized Kaczmarz Method (RK). The RK method we discuss here was first an-
alyzed in [SV09]. At each iteration, the RK method projects the current estimate orthogonally
onto the solution hyperplane 〈Ai , x〉 = bi . The algorithm is described as

xt+1 = xt + bi −〈Ai , xt 〉
‖Ai‖2

2

Ai , (7)

where Ai denotes the i th row of matrix A and each row is selected with probability propor-
tional to its Euclidean norm. When we assume a standardized matrix A, each row is selected
uniformly at random. Vershynin and Strohmer [SV09] proved a linear rate of convergence that
only depends on the scaled condition number of A but not on the number of equations in the
system. Given any initial estimate x0,

E‖xt −x∗‖2
2 ≤

[
1− 1

K (A)2

]t

‖x0 −x∗‖2
2.

1.3.3. The Block Randomized Kaczmarz with row-paving condition. Elfving and Eggermont [Elf80]
first proposed a block RK method. The method we consider here first partitions the rows {1, ...,m}
into N blocks, and the partition is denoted τ{1,...,N }. At each iteration, a block τi is uniformly se-
lected at random, and the current estimate is projected orthogonally onto the solution space
Aτi x = bτi . The algorithm is described as

xt+1 = xt + (Aτi)†(bτi − Aτi xt), (8)

where Aτi and bτi respectively denote the row submatrix and the subvector of b indexed by τi .
To prove convergence, Needell and Tropp [NT13] utilized a row-paving. A row-paving with

parameters (s,α,β) is defined as a partition P = τ{1,...,s} such that

α≤λmin(AτA∗
τ) and λmax(AτA∗

τ) ≤β for each τ ∈ P.

In other words, s determines the size of the partition, and α and β restrict the lower and
upper bound of the singular values of the partitioned submatrices. As a simple but illustrative
example, consider the 40×10 matrix that consists of four copies of the identity matrix stacked on
top of each other. Then a row-paving of this matrix with s = 4 might correspond to the partition
τ1 = {1, . . .10}, τ2 = {11, . . .20}, τ3 = {21, . . .30}, and τ4 = {31, . . .40}. Then since each block in the
partition consists of a single copy of the 10×10 identity matrix, the singular values of each block
are all 1. Thus we have α=β= 1 in this case.

Now consider the least-squares problem (3) when a row-paving P = (s,α,β) is applied to ma-
trix A with full column rank. We have the expected error bound

E‖xt −x∗‖2
2 ≤

[
1− σ2

min(A)

βm

]t

‖x0 −x∗‖2
2 +

β

α

‖r∗‖2
2

σ2
min(A)

,

where x∗ and r∗ are defined in Section 1.1.
[NT13] also cites [Ver06] and [Tro09] to demonstrate that every standardized matrix has a

good row-paving.

1.4. The Randomized Block Gauss-Seidel (RBGS).

372

CONVERGENCE OF THE RANDOMIZED BLOCK GAUSS-SEIDEL METHOD

1.4.1. Deriving the Algorithm. Our goal here is to utilize a paving in order to analyze a block
variant of RGS. However, contrary to RK, which projects the current state onto a row plane or
space, RGS selects one coordinate (one column) at each iteration. As a result, we partition the
columns, not the rows, for RGS. At each iteration, the objective L(x) = 1

2‖b − Ax‖2
2 will be min-

imized with respect to all the coordinates represented in the selected partition, thereby mini-
mizing through multiple directions at the same time.

Given the system (2) and a block τ ∈ P = τ{1,...s}, we want to minimize L(xt+1) = 1
2‖b− Axt+1‖2

2
given xt and the residual vector rt = b − Axt . Inspired by the classical RGS method, we presup-
pose

xt+1 = xt +
T∑

k=1
αk ek , (9)

where T is the number of coordinates included in the selected τ. We write the set τ= {c1,c2, ...,cT },
where ci is a column index for the subset. The set {e1,e2, ...,eT } is one-to-one with the set
τ, where ∀i ∈ {1,2, ...,T }, ei is the ci th coordinate basis column vector (ei = e(ci)). The set
{α1, ...,αT } is the set of constants which minimizes L(xt+1) given xt .

To find {α1, ...,αT }, we want to minimize L(xt+1) = 1
2‖ 2

2b − Axt+1‖ ,

and minα1,...,αT L(xt+1) = minα1,...,αT

1

2

(
m∑

i=1
〈Ai , xt +

T∑
k=1

αk ek〉−bi

)2

. (10)

Taking the derivative of L(xt+1) with respect to αu and setting it to zero, we find that

0 =−‖Au‖2
2αu +〈rt , Au〉−

T∑
k 6=u

αk〈Ak , Au〉.

To solve (10), we now have to solve the system of equations

∀u ∈ {1, ...,T },
T∑

i=1
αi 〈Au , Ai 〉 = 〈rt , Au〉. (11)

With some close observation, the above system is actually equivalent to

A∗
τ Aτα

∗ = (r ∗
t Aτ)∗, (12)

where α denotes the vector (α1, ...,αT), and Aτ recall denotes the column submatrix of A in-
dexed by τ. We can solve (12) and get

α∗ = (A∗
τ Aτ)−1(r ∗

t Aτ)∗ = (A∗
τ Aτ)−1 A∗

τrt = A†
τrt . (13)

Next, to fully determine a block Gauss-Seidel algorithm, we must decide on what blocks of
indices are acceptable. We propose a selection method by two design decisions. First, inspired
by [NT13], we define a column-paving of A as row-paving of A†. We again define the row-paving
of A† with (s,α,β) as a partition P = τ{1,...,s} on A† such that

α≤λmin(A†
τA†∗

τ) =σ2
min(A†

τ) and σ2
max(A†

τ) =λmax(A†
τA†∗

τ) ≤β for each τ ∈ P, (14)

where s is called the size of the partition, and α and β determine the lower and upper bound.
Notice that α = 0 unless A†

τ is a “fat" submatrix which has more columns than rows. The row
paving guarantees that each block is well-conditioned, so that when we project onto that block’s
solution space, we make substantial progress toward the solution of the overall system. Indeed,

373

WEI MAGGIE WU SPONSOR: DEANNA NEEDELL

in the proof of our main result we will see that these bounds on the singular values are crucial
in order to bound the improvement in the solution error.

Secondly, at each iteration, independent of all previous choices, we select a block τ uniformly
at random from the partition P . These two decisions lead to Algorithm 2 described below. Sim-
ilar to the RGS method (Algorithm 1), the RBGS Method iteratively improves the approximation
by adjusting the value of multiple coordinates (adding the vector α to the current estimate),
which finally converges to the least-squares solution x∗.

Algorithm 2 The Randomized Block Gauss-Seidel (RBGS)

1: procedure (A, b, T ,h) .m ×n matrix A, b ∈Cm , T = n
s the number of coordinates in each

block τ, maximum iterations h
2: Initialize x0 = 0, r0 = b − Ax0

3: for t = 1,2, ...,h do
4: Choose τ uniformly from partition P = τ{1,...,s}, assume τ= {c1, ...,cT }.
5: Create a block of A, Aτ containing columns of A indexed by τ.
6: Generate E , an n ×T matrix. ∀i ∈ {1, ...,T }, the i th column of E , E i , has all zeros with

a 1 in the ci th position, where ci is the i th entry in the selected τ as indicated above.
7: Set xt = xt−1 +E A†

τrt−1

8: Update rt = b − Axt .
9: end for

10: Output xt

11: end procedure

2. ANALYSIS OF THE RANDOMIZED BLOCK GAUSS-SEIDEL METHOD

This section states our main result, which gives linear convergence for the RBGS Method
described in Algorithm 1. The proof itself is inspired by [NT13] on the linear convergence of the
block RK method and by [MNR15] on the linear convergence of the RGS method.

2.1. Main result.

Theorem 2. Given a standardized real m ×n matrix A and an m ×1 vector b, let P be a column
partition (s,α,β) as defined in (14). Consider the least-squares problem

minimize ‖Ax −b‖2
2.

Let x∗ be the unique minimizer, and define the residual r∗ := Ax∗−b. For any initial estimate
x0, the Randomized Block Gauss-Seidel Method (RBGS) described in Algorithm 1 produces a se-
quence {xt : t ≥ 0} of iterates that satisfies:

E‖xt −x∗‖2
2 ≤ κ2(A)γt‖x0 −x∗‖2

2, (15)

where γ= 1− ασ2
min(A)

s and κ(A) is the condition number.

Before we prove the main result, we prove three lemmas.

Lemma 1. A(xt −xt−1) and A(xt −x∗) are orthogonal.

374

CONVERGENCE OF THE RANDOMIZED BLOCK GAUSS-SEIDEL METHOD

Proof:
According to the update rule in Algorithm 1,

xt = xt−1 +E A†
τrt−1

where E is a n ×T matrix. In addition, ∀i ∈ {1,2, ...,T }, the i th column of E has all zeros with a 1
in the ci th position when τ= {c1, ...cT } and T = n

s .
Multiplying both sides of the above equation with A, we get

A(xt −xt−1) = AE A†
τrt−1 = AτA†

τrt−1.

Now note that classical analyses (e.g. [MNR15]) observe that when only selecting one column
j at a time, A(xt − xt−1) is parallel to A j . Since ∀ j ∈ τ, A(xt − xt−1) is parallel to A j , A(xt − xt−1)
is “parallel” to the column space of Aτ.

By the way we derive our algorithm in (10), ∀u ∈ τ, ∂L(xt)
∂Au

= 0. Since u is chosen arbitrarily,
∂L(xt)
∂Aτ

= 0, so A(xt −x∗) is orthogonal to the column space of Aτ. Then A(xt −xt−1) is orthogonal
to A(xt −x∗).

Lemma 2. For any vector u, E‖AτA†
τu‖2

2 ≥
ασ2

min(A)
s ‖u‖2

2.

Proof: First, we have

E‖Aτv‖2
2 =

1

s

∑
τ∈P

‖Aτv‖2
2 =

1

s
‖Av‖2

2 ≥
1

s
σ2

min(A)‖v‖2
2.

Now take v = A†
τu. Then

E‖AτA†
τu‖2

2 ≥
1

s
σ2

min(A)E‖A†
τu‖2

2

≥ 1

s
σ2

min(A)E[σ2
min(A†

τ)‖u‖2
2] ≥ α

s
σ2

min(A)‖u‖2
2.

Lemma 3. We have A†
τr∗ = 0.

Proof: Recall that the residual error r∗ = Ax∗−b is orthogonal to every column of A. ∀ column
A j in Aτ, 〈A j ,r∗〉 = 0, so A∗

τr∗ = 0.
Then

A†
τr∗ = (A∗

τ Aτ)−1 A∗
τr∗ = 0.

The proof for the main result follows directly from the above three lemmas.
Proof (of Theorem 2):

According to Lemma 1,

‖Axt − Ax∗‖2
2 = ‖Axt−1 − Ax∗‖2

2 −‖Axt − Axt−1‖2
2.

At each iteration, the expected value is taken conditional on the first t −1 iterations, so we have

E‖Axt − Ax∗‖2
2 = ‖Axt−1 − Ax∗‖2

2 −E‖Axt − Axt−1‖2
2. (16)

By the definition of the algorithm estimate,

xt = xt−1 +E A†
τrt−1 = xt−1 +E A†

τ(b − Axt−1) = xt−1 +E A†
τ(Ax∗− r∗− Axt−1),

375

WEI MAGGIE WU SPONSOR: DEANNA NEEDELL

where the third equation is based upon Definition 1.
We then apply Lemma 3 to get that

A(xt −xt−1) = AτA†
τ(Ax∗− Axt−1 − r∗)

= AτA†
τ(Ax∗− Axt−1)− AτA†

τr∗
= AτA†

τ(Ax∗− Axt−1),

and
E(‖A(xt −xt−1)‖2

2) = E(‖AτA†
τ(Ax∗− Axt−1)‖2

2 (17)

If we combine (16) and (17), we have

E‖Axt − Ax∗‖2
2 = ‖Axt−1 − Ax∗‖2

2 −E
(
‖AτA†

τ(Ax∗− Axt−1)‖2
2

)
. (18)

Now according to Lemma 2, plug in u = Ax∗− Axt−1 to the inequality, we have

E‖AτA†
τ(Ax∗− Axt−1)‖2

2 ≥
ασ2

min(A)

s
‖Ax∗− Axt−1‖2

2. (19)

Now plug in (19) to (18), we have

E‖Axt − Ax∗‖2
2 ≤ ‖Axt−1 − Ax∗‖2

2 −
ασ2

min(A)

s
‖Ax∗− Axt−1‖2

2

=
[

1− ασ2
min(A)

s

]
‖Ax∗− Axt−1‖2

2.

Finally, notice that

‖xt −x∗‖2
2 = ‖A† A(xt −x∗)‖2

2 ≤ ‖A†‖2‖A(xt −x∗)‖2
2.

Then,

E‖xt −x∗‖2
2 ≤ E‖A†‖2‖A(xt −x∗)‖2

2 ≤ ‖A†‖2E‖Axt − Ax∗‖2
2

≤σ2
max(A†)

[
1− ασ2

min(A)

s

]
‖A‖2‖x∗−xt−1‖2

2

≤σ2
max(A†)σ2

max(A)

[
1− ασ2

min(A)

s

]
‖x∗−xt−1‖2

2

= σ2
max(A)

σ2
min(A)

[
1− ασ2

min(A)

s

]
‖x∗−xt−1‖2

2

= κ2(A)

[
1− ασ2

min(A)

s

]
‖x∗−xt−1‖2

2,

where κ(A) is the condition number of A.

By iterating the above result and taking γ= 1− ασ2
min(A)

s , we have

E‖xt −x∗‖2
2 ≤ κ2(A)γt‖x∗−x0‖2

2,

and we have proved our main result.

376

CONVERGENCE OF THE RANDOMIZED BLOCK GAUSS-SEIDEL METHOD

2.2. Interpreting the Result. First, we compare RBGS Method with the block RK Method. When
κ(A) is a constant, the convergence rate of RBGS only depends on the size and lower bound of
the partition. At the same time, even when the system is inconsistent, there is no “conver-
gence horizon” in the result; RBGS will always converge to the solution to the least-squares
problem of the system (3). On the other hand, the block RK Method will experience a conver-
gence horizon. This is intuitive by the geometry of the RK approaches, which projects iterates
onto hyperplanes, never allowing the method to converge to a least-squares solution [Nee10]
(note however, that properly chosen step sizes or residual projections can alleviate this issue
[CEG83, HN90, Tan71, WM67, Pop98, ZF13]). When restricting the partition, we want a small
s and a large α for a fast convergence rate. In addition, regardless of the characteristics of the
partition, RBGS performs especially well when the condition number of A is relatively small.

Second, we compare Theorem 2 with the results of classical RGS, Theorem 1. To better com-
pare Theorem 1 with the main result from Theorem 2, we may obtain a corollary from Theorem
2 when s = n.

Corollary 1. Given a standardized real m×n matrix A and an m×1 vector b. Let P be a column
partition of size n, in other words every Aτ only contains a column of A. Consider the least-
squares problem:

minimize ‖Ax −b‖2
2.

Let x∗ be the unique minimizer. Let L(x) and δ(x) be as defined in Theorem 1. Let α be the lower
bound of the partition P defined in (14). For any initial estimate x0, the RBGS Method described
in Algorithm 1 produces a sequence {xt : t ≥ 0} of iterates that satisfies

E‖Axt − Ax∗‖2
2 ≤ (1−γ2)‖Axt−1 − Ax∗‖2

2 (20)

where γ2 = ασ2
min(A)
n .

Let ρsimple and ρblock denote the convergence rate of the simple RGS and RBGS respectively.
Then we have ρsimple ≥ γ1 and ρblock ≥ γ2. Notice that when A is standardized, ‖A‖2

F = n and

α = β = 1, so that in Corollary 1, γ2 = σ2
min(A)

n = σ2
min(A)

‖A‖2
F

= γ1. In other words, when every subset

partitioned in RBGS only contains one column, its convergence rate is the same as the conver-
gence rate of the simple RGS, as expected.

Beyond the basic case, RBGS may significantly improve the convergence rate. When we have

partition P = (s,α,β), ρblock ≥ ασ2
min(A)

s . To achieve the same reduction in error, the simple RGS
method requires a factor nα

s more iterations than the RBGS method. Ideally, for better improve-
ment, nα

s should be as large as possible. In other words, each block Aτ should contain as many
columns as possible to make s small, while maintaining a great lower bound for the singular
values in Aτ. However, the most arithmetically expensive step in Algorithm 2 is computing
A†
τ, and containing as much columns as possible in Aτ might significantly lower the computa-

tional speed. There should be a balance between fast convergence rate and fast implementation
speed. See [NT13] for further discussion of this trade-off and for examples of matrices with fast
computations.

As the block method might involves more arithmetic than the simple method, it is more fair
for RGS to compare the convergence rate per epoch, which is the minimum number of itera-
tions the algorithm takes to hit each column of A once. For RGS, an epoch consists of n iter-
ations. For RBGS, an epoch consists of s iterations, where s denotes the size of the partition.
Under this new setting, both RGS and RBGS require similar amount of arithmetic in one epoch,

377

WEI MAGGIE WU SPONSOR: DEANNA NEEDELL

so we now consider the per epoch convergence rate. The new convergence rates of RGS and
RBGS become nρsi mpl e and sρblock , and we have

nρsi mpl e ≤σ2
mi n(A), sρblock ≤ασ2

mi n(A).

We see that, in theory, the per-epoch convergence of RBGS is worse, and the disadvantage
decreases with the lower bound α on the paving.

3. EXPERIMENTS

To test our algorithm, we used MATLAB random matrices as well as real data to test the con-
vergence of the RBGS method applied to overdetermined systems of equations.

In the first experiment, we wanted to see how the size of the partition influenced the con-
vergence rate for both consistent and inconsistent systems. To test the consistent system, we
created a 120×1 vector x∗ where each entry was selected independently from a standard nor-
mal distribution, and we set b = Ax∗. A was a random 300× 120 standardized matrix A, with
each entry of A selected independently from a normal distribution and then standardized. The
number 120 is selected so that it could divide 1,2,3 and 4. Notice that since x∗ is the solution to
the system Ax = b, it is also the least-squares solution to the problem (3). To test the inconsis-
tent system, we created a 300×1 vector b where each entry was selected independently from a
standard normal distribution, and we set x∗ = A†b, so that x∗ is the least-squares solution to the
problem (3). In the experiment, we took s = 120,60,40,30. After we had A, x∗, b and T as inputs
for our experiment, we randomly selected T columns from the matrix A to form a submatrix
Aτ. We updated iterate {xt : t ≥ 0} using Algorithm 2, and we stopped after 1000 iterations. For
both consistent and inconsistent systems, at each iteration, we recorded the error ‖xt − x∗‖2.
We then repeated the procedure 50 times and took the average of all the errors.

FIGURE 1. (RBGS method applied to consistent vs inconsistent matrix) The ran-
dom matrix A is 300×120. The error ‖xt −x∗‖2 is plotted against epochs for vari-
ous values of partition size s. Left: consistent system Ax = b. Right: inconsistent
system Ax = b + r .

The left panel in Figure 1 demonstrates convergence for the RBGS method when s = 120,
60, 40, 30 was applied to the consistent system, and the right panel demonstrates convergence
when s = 120,60,40,30 was applied to the inconsistent system. In both panels, the error was
plotted against the number of epochs. The case s = n = 120 is used as RGS so that we can
better observe RBGS’s improvement on the convergence rate. In the figure, it is clear that as
s decreases, the convergence rates didn’t change significantly. In other words, RGS and RBGS
show a similar rate of convergence, which is coherent with our discussion in section 2.2.

378

CONVERGENCE OF THE RANDOMIZED BLOCK GAUSS-SEIDEL METHOD

In the second experiment, we wanted to see how the size of the partition could change the
operation time for both consistent and inconsistent systems. We created A, x∗ and b the same
way as in the first experiment but change the size of A to 300× 100 and the size of x and b
accordingly. In addition, for more noticeable differences in the implementation speed, we used
a different variation of s, s = 100,20,10, 10

3 . We used the same update rule, and we stopped after
1000 iterations, recording the CPU time for each. We then repeated the procedure 50 times and
took the average of both the error vectors and the time vectors to eliminate discrepancies.

FIGURE 2. (RBGS method applied to consistent vs inconsistent matrix) The ma-
trix A is 300×100 Gaussian. The error ‖xt − x∗‖2 is plotted against CPU time in
seconds. for various values of partition size s. Left: consistent system Ax = b.
Right: inconsistent system Ax = b + r .

Figure 2 shows the CPU time per iteration of the RBGS method for various block sizes. These
plots confirm that larger block sizes require more computation per iteration, as expected. One
may then question if there is a gain in convergence speed using larger blocks. Fortunately, due
to fast matrix multiplies, the increase in computation cost per iteration is overcome by the in-
crease in convergence rate of the entire method, as we see in the next experiment.

FIGURE 3. (RBGS method applied to consistent vs inconsistent matrix) The ma-
trix A is 300×100 Gaussian. The error ‖xt − x∗‖2 is plotted against CPU time in
seconds for various values of partition size s. Left: consistent system Ax = b.
Right: inconsistent system Ax = b + r .

Figure 3 demonstrates the error as a function of total CPU time when RBGS was applied to a
consistent and inconsistent matrix. Since no claim is made about the linear rate of convergence
against the operation time, the graphs are displayed in linear rather than logarithmic scale. We
see that larger blocks do indeed correspond to lower overall runtime, motivating the use of the

379

WEI MAGGIE WU SPONSOR: DEANNA NEEDELL

block method. This observation, although not guaranteed mathematically, is consistent with
empirical evidence for other types of block methods (discussed above).

Finally, we tested the usefulness of the RBGS algorithm with real data on wine quality and
bike rental data. Both data sets are obtained from the UCI Machine Learning Repository [Lic13].
The wine data set is a sample of m = 1599 red wines with n = 11 physio-chemical properties of
each wine, which gives us an m ×n matrix A. The entries correspond to the amount of each
physio-chemical present in the Portuguese "Vinho Verde" wine. The bike data contains hourly
counts of rental bikes in a bike share system. There are m = 17379 samples and n = 9 attributes,
including weather and seasonal data.

In each data source, the matrix A and the target vector b are given, and we want to find the so-
lutions to the system (3). As the size of A varies in each data set, we used partitions whose blocks
Aτ contain a fixed T columns. Due to the capacity of the computers used in the experiments, T
was set for 1,2,4 and 10, where T = 1 is the same as simple RGS. We updated iterate {xt : t ≥ 0}
using Algorithm 2, and we stopped after 1000 iterations. Without ground truth, we recorded the
errors ‖Axt −b‖2. We then repeated the procedure for 50 times and took the average of all the
errors.

FIGURE 4. (RBGS method applied to real data) The approximation error ‖Axt −
b‖2

2 is plotted against the number of iterations. Convergence for block sizes T =
1,2,4,10 are displayed. Left: approximation error as a function of the number
of iterations for the bike data. Right: approximation error as a function of the
number of iterations for the wine data.

The left panel in Figure 4 demonstrates convergence for the RBGS method when T = 1,2,4,10
was applied to the bike problem, and the right panel demonstrates convergence when T =
1,2,4,10 was applied to the wine problem. In both panels, the error was plotted against the
number of iterations. The case T = 1 is used as a basic case so that we can better observe RBGS’s
improvement on the convergence rate. In Figure 4, it is clear that as T increases (s decreases),
the convergence rates become significantly faster for both real problems, although the linear
convergence is less consistent compared to the computer generated systems.

4. FUTURE DIRECTIONS

There are still many interesting open questions associated with Algorithm 2 that were not
fully addressed in this paper. Firstly, in Algorithm 2, when the columns are already paved, each

380

CONVERGENCE OF THE RANDOMIZED BLOCK GAUSS-SEIDEL METHOD

block Aτ is selected uniformly for each iteration because we standardized the matrix A. For
non-standardized matrices, there exist many other ways to select the blocks that may improve
the rate of convergence and even reduce the dependence on characteristics of A (e.g.σ2

min(A)).
In addition, when choosing Aτ, it is highly possible that selecting with versus without replace-
ment might affect the convergence rate. In the experiments and convergence analysis, the
blocks are all chosen with replacement until every block has been used at least once. However, it
has been well observed that selecting without replacement often yields improved performance
[RR12].

Secondly, in the experiments described in Section 3, the columns are paved using a simple
random partition described and discussed by Needell and Tropp [NT13]:

Definition 2. (Random Partition) Suppose that π is a permutation on {1,2, ...,n}, chosen uni-
formly at random. In each iteration, define the set

τi = {π(k) : k = b(i −1)n/mc+1,b(i −1)n/mc+2, ...,bi n/mc}.

It is clear that T = τ1, ...,τm is a partition of {1, ...,n} into m blocks of approximately equal
sizes. In the experiments, we used the identical permutation π(i) = i for all the iterations after
the blocks are exhausted for the first round. It is possible that if we chose a different permuta-
tion for each round while retaining the same partition characteristics (s,α,β), the convergence
rate could be improved.

Thirdly, recall that in our main result, to get greater convergence rate, the size of the partition
should be as small as possible. In fact, in the optimally ideal case, we want to take the pseudo-
inverse of A to get the least-squares solution in one single step. However, for a large system,
it will be computationally impossible to invert the entire matrix and we have to take one or
several columns at a time, which inspires the idea of RGS and RBGS. Similarly, when s is too
small, it will be computationally expensive to take the pseudo-inverse of Aτ. Although we want
to achieve the desired error bound in the least iterations and the least operation time, the two
things cannot be achieved at the same time. Depending on the operational performance of the
devices used to implement the algorithm, the size s should be adjusted accordingly to achieve
a balance in both factors.

ACKNOWLEDGEMENTS

We would like to thank Anna Ma for fruitful discussions that helped improve this manuscript,
and to Winston Ou as a second reader of the thesis that sparked this paper. We would also like
to thank the reviewers and editor who handled this paper for their helpful suggestions.

REFERENCES

[CEG83] Y. Censor, P. P. Eggermont, and D. Gordon. Strong underrelaxation in Kaczmarz’s
method for inconsistent systems. Numer. Math., 41(1):83–92, 1983.

[CZ97] Y. Censor and S. A. Zenios. Parallel optimization: Theory, algorithms, and applica-
tions. Oxford University Press on Demand, 1997.

[Elf80] T. Elfving. Block-iterative methods for consistent and inconsistent linear equations.
Numer. Math., 35(1):1–12, 1980. NUMMA7; 65F10; 583651 (83e:65059).

[GBH70] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques (ART)
for three-dimensional electron microscopy and x-ray photography. J. Theoret. Biol.,
29:471–481, 1970.

381

WEI MAGGIE WU SPONSOR: DEANNA NEEDELL

[HN90] M. Hanke and W. Niethammer. On the acceleration of kaczmarz’s method for incon-
sistent linear systems. Linear Alg. Appl., 130:83–98, 1990.

[HNR17] A. Hefny, D. Needell, and A. Ramdas. Rows vs. columns: Randomized kaczmarz or
gauss-seidel for ridge regression. SIAM J. Sci. Comput., 2017. To appear.

[Kac37] S. Kaczmarz. Angenäherte auflösung von systemen linearer gleichungen. Bulletin
International del Academie Polonaise des Sciences et des Lettres, 35:355–357, 1937.

[Lic13] M. Lichman. UCI machine learning repository, 2013.
[LL10] D. Leventhal and A. S. Lewis. Randomized methods for linear constraints: conver-

gence rates and conditioning. Math. Oper. Res., 35(3):641–654, 2010. 65F10 (15A39
65K05 90C25); 2724068 (2012a:65083); Raimundo J. B. de Sampaio.

[MNR15] A. Ma, D. Needell, and A. Ramdas. Convergence properties of the randomized ex-
tended Gauss-Seidel and Kaczmarz methods. SIAM J. Matrix Anal. A., 36(4):1590–
1604, 2015.

[Nat01] F. Natterer. The mathematics of computerized tomography, volume 32. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA; SIAM, 2001. 00A69 (44A12 65R10
68U99 92C55); 1847845 (2002e:00008); Fritz Keinert; Reprint of the 1986 original.

[Nee10] D. Needell. Randomized Kaczmarz solver for noisy linear systems. BIT, 50(2):395–403,
2010.

[NT13] D. Needell and J. A. Tropp. Paved with good intentions: Analysis of a randomized
block kaczmarz method. Linear Alg. Appl., 2013.

[Pop98] C. Popa. Extensions of block-projections methods with relaxation parameters to
inconsistent and rank-deficient least-squares problems. BIT, 38(1):151–176, 1998.
65F20; 1621092 (99d:65121); W. C. Rheinboldt.

[RR12] B. Recht and C. Ré. Beneath the valley of the noncommutative arithmetic–geometric
mean inequality: Conjectures, case studies, and consequences. In Proc. 25th Ann.
Conf. Learning Theory, Edinburgh, June 2012.

[SV09] T. Strohmer and R. Vershynin. A randomized kaczmarz algorithm with exponential
convergence. J. Fourier Anal. Appl., 15:262–278, 2009.

[Tan71] K. Tanabe. Projection method for solving a singular system of linear equations and
its applications. Numer. Math., 17(3):203–214, 1971.

[Tro09] J. A. Tropp. Column subset selection, matrix factorization, and eigenvalue optimiza-
tion. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 978–986, Philadelphia, PA, 2009. SIAM. 65F30 (15A18); 2807539
(2012i:65079).

[Ver06] R. Vershynin. Random sets of isomorphism of linear operators on Hilbert space, vol-
ume 51 of High dimensional probability, pages 148–154. Inst. Math. Statist, Beach-
wood, OH, 2006. 46B09 (46B07 46B20); 2387766 (2009h:46023); Dirk Werner.

[WM67] T. M. Whitney and R. K. Meany. Two algorithms related to the method of steepest
descent. SIAM J. Numer. Anal., 4(1):109–118, 1967.

[Xu18] Y. Xu. Hybrid jacobian and gauss–seidel proximal block coordinate update methods
for linearly constrained convex programming. SIAM J. Optimization, 28(1):646–670,
2018.

[ZF13] A. Zouzias and N. M. Freris. Randomized extended kaczmarz for solving least squares.
SIAM J. Matrix Anal. A., 34(2):773–793, 2013.

382

