
An Alternating Minimization Method
to Train Neural Network Models

for Brain Wave Classification

Grant Sheen ∗

Abstract

An alternating minimization (AM) method, which updates variables one-by-one
while fixing the rest, is developed to train a neural network with low rank weights
for brainwave classification. The training involves minimizing a non-smooth and non-
convex cross entropy loss function. The neural network model does a projection inside a
hidden layer for low dimensional feature extraction. The sub-problem for each variable
is shown to be either convex or piece-wise convex with a finite number of minima. The
sub-problems are solved using the bisection method with bisection intervals analytically
derived. The overall iterative AM method is descending and convergent, free of step size
(learning parameter) in the standard gradient descent method. Experiments consist of
noninvasive multiple electrode recordings and the classification of brain wave data. The
AM method significantly outperforms the standard neural network model trained by
the gradient descent method in classifying four thoughts for both normal and Alzheimer
subjects.
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1 Introduction

Brain wave classification is a fascinating and challenging topic with a broad range of appli-
cations in brain-computer communication, health sciences, and biomedical engineering. In
this paper, I develop and analyze a neural network (NN) model to study classification of
brain waves from daily thoughts (resting, reading, eating, walking etc.) of both normal and
Alzheimer subjects. Such capability can serve as mind aids for Alzheimer patients who have
lost vision or speech [12]. Electroencephalography (EEG) is an electrophysiological method
to record electrical activity of the brain. Noninvasive EEG involves placing electrodes along
the scalp. While a subject thinks, the recorded brain signals show as wavy lines with peaks
and valleys (left plot of Fig. 3). Analyzing EEG brain waves can help us understand and
detect brain disorders (dementia/seizure/stroke), conduct brain imaging, analyze thoughts,
control robots, and play video games using the mind (see [13, 19, 6, 10, 11, 17, 14, 21] among
others). However, EEG data sets even for normal people are rather limited in the public do-
main, in sharp contrast to the abundant image and speech data driving the recent advances
of artificial intelligence. For this reason, part of my work also concerns data collection.

A good description of classical brain signal processing and classification methods is [13].
The basic procedure consists of preprocessing, feature extraction and classification. Prepro-
cessing removes noise and artifacts (e.g. muscle movement) in frequencies outside of the
brain wave range [1, 42] Hertz (Hz). Feature extraction involves Fourier or wavelet trans-
forms so a meaningful interpretation is possible. For example in the Fourier (frequency)
domain, a feature vector gives the energy distribution (so called power spectrum density) in
the [1, 42] Hz for a 1 second duration of brain wave. The power spectrum densities typically
have different shapes for brain waves from different thoughts (right plot of Fig. 3). The
representative classifiers in the last step are: statistical, large margin (support vector ma-
chines), and neural networks. The classifiers are related in various ways. The most general
form of classifiers is neural networks (NN). The NNs are nonlinear classifiers with multiple
hidden layer structures [22] capable of extracting hierarchical features like the mammalian
brain, provided there are sufficient data to train them. Due to the small size data sets in
EEG brain waves, a multi-layered NN (or deep neural net) can cause overfitting [21].

On the hardware side, traditional EEG recording requires a subject to wear a cap em-
bedded with electrodes that are lubricated by conductive gel and wired to a computer for
digitization. However, wireless headsets have been gaining popularity in the last decade.
As a result, recording brainwaves transitioned from a pure lab environment to virtually any
location for research, as wireless headsets became available for EEG recordings. The top of
the line wireless headsets are Epoc and Epoc+ manufactured by Emotiv [5]. They have as
many as 14 saline hydrated sensors, see [14] for an application of Epoc in a 3 class task (left,
right, center) of a gaming system.

The recording of normal subjects in our study uses Epoc+ (14 channel wireless) headset
in a home setting, while that of an Alzheimer subject is done by a 66 channel EEG cap in a
lab. To reduce noise and variability of the features, dimensional reduction is necessary. This
has been done in the past by principal component analysis (PCA), and linear discriminant

50



analysis (LDA), [3, 19]. My main contributions here are: 1) accomplished dimensional re-
duction within an NN by training a low rank factored form of network weights, 2) developed
a descending and convergent alternating minimization method for network training based on
the piecewise convex properties of the objective function instead of the standard stochastic
gradient descent (SGD) method, 3) achieved 4 class thought classification results, signifi-
cantly out-performing those from the standard (non-factored form) NN trained by SGD.

I would like to point out that the alternating minization (AM) method and similar
approaches based on variable splitting has a long history, see the recent book [7] for an
overview. Some examples are Boltzmann machine learning [2], matrix completion [9], and the
alternating direction method of multipliers (ADMM) which has been applied to NN training
lately [20]. The AM for Boltzmann machine learning [2] concerns matching a parametrized
probability distribution to an observed distribution, however does not involve non-smooth
activation function as in my NN model. ADMM involves a Lagrange multiplier to handle
variable splitting while AM does not. My AM method of NN training appears to be first
in that it exploits the piece-wise convex structure of the objective function and the scaling
property of the non-smooth activation function of NN for minimization in each dimension
via the bisection method.

The rest of the paper is organized as follows. In section 2, I introduce my proposed neural
network model in low dimensional (factored) form and the quadratically regularized cross
entropy (QRCE) function for training in the binary classification case. I show the alternating
minimization (AM) method based on a division of variables and the convex or piecewise
convex structure in each variable. The multi-class classification model and a convergence
theory for AM follow with a summary of algorithm. For minimizing QRCE in each variable, a
bisection method is effective, for which I derive the bisection intervals analytically. In section
3, I describe the recording, preprocessing, and numerical experiment. A comparison of AM
and SGD in terms of the descent vs. oscillatory behaviors of objective values is illustrated,
along with a visualization of the two and three dimensional feature vectors colored according
to their class labels. The AM trained NN in factored form outperforms the SGD trained
standard NN model by a 10 % margin in 4-class classification tasks for both normal and
Alzheimer subjects. I conclude with remarks in section 4.

2 Neural Network and Nonconvex Optimization

Let the input data be feature vectors in RD, D � C, C the total number of classes. I study
training of a neural network (NN) to reduce feature dimension and perform classification.
Dimension reduction in NN has been shown to out-perform PCA on image data [8]. I first
consider binary classification, demonstrate the piecewise convexity property of the training
objective function, and present the alternating minimization (AM) method. The extensions
to multi-classes will follow. For an introduction to neural networks, see section 14.7 of [15]
and chapter 4 of [22].
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Figure 1: Left: schematic of the forward NN model (2.1)-(2.3) omitting (c0, d0). Right: input
to output map of a neuron operation in the hidden layer and its mathematical expression.

2.1 Binary Classification Model

Let p be a “principal component” (a “neural discriminant vector”) where each input data is
projected, p ∈ RD. The output of a neural network with a single hidden layer for an input
vector x ∈ RD is:

z1 = c0 +
H∑
i=1

ci φ(ri (x · p)), (2.1)

z2 = d0 +
H∑
i=1

di φ(ri (x · p)), (2.2)

where (ci, di, ri)’s (i = 1, 2, · · · , H) are the weights between neurons; (c0, d0) the bias, and
φ is the activation function or the rectified linear unit (ReLu): φ = φ(u) = max(u, 0). The
scaling property of ReLu: φ(µu) = µφ(u), if µ > 0, will be utilized later, see also [16] on
its role in network learning. For normalized data centered at zero with unit variance, I have
ignored the bias parameters inside φ for simplicity and efficiency. The parameter H is the
number of hidden neurons. The model (2.1)-(2.2) has a projection (x · p = ~x · ~p) inside
hidden layer. A schematic is shown in Fig. 1. The operation inside φ is same as input x
left multiplied by a rank-1 matrix [r1, · · · , rH ]′p, hence a factored form instead of the H×D
dimensional full weight matrix in a general NN with one hidden layer. The output (z1, z2)
(excitation) is mapped into class probabilities by the softmax function:

Pi =
exp{zi}

exp{z1}+ exp{z2}
, i = 1, 2, (2.3)
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so that Pi ≥ 0, P1 + P2 = 1. The weight and bias parameters are chosen to minimize the
averaged cross-entropy (CE):

JCE :=
1

M

M∑
m=1

(
−

C∑
i=1

Pemp(i|om) logPnn(i|om)

)
, (2.4)

where Pemp(i|om) is the empirical probability of class i observed on the training data set
denoted by {om,m = 1, · · · ,M}, and Pnn is NN’s class probability output (2.3). A common
choice is a hard class label, Pemp(i|o) = 1 if i = c, zero otherwise; where c is the class label
for an observation o in the training set. Then

−
C∑
i=1

Pemp(i|om) logPnn(i|om) = − logPcm(om), (2.5)

the negative log-likelihood, cm being the class label of om.

Let xi,m (m = 1, · · · ,M) be the vector input data from class i (i = 1, 2), where each
class has the same number M of data points. The k-th component of vector xi,m is denoted
by xi,m,k. It follows from (2.4)-(2.5) that:

0 ≤ 2M JCE = −
M∑
m=1

log P1(x1,m)−
M∑
m=1

log P2(x2,m)

= −
M∑
m=1

log
exp{c0 +

∑H
i=1 ciφ(ri(x1,m · p)}

exp{c0 +
∑H

i=1 ciφ(ri(x1,m · p))}+ exp{d0 +
∑H

i=1 diφ(ri(x1,m · p))}

−
M∑
m=1

log
exp{d0 +

∑H
i=1 diφ(ri(x2,m · p))}

exp{c0 +
∑H

i=1 ciφ(ri(x2,m · p))}+ exp{d0 +
∑H

i=1 diφ(ri(x2,m · p))}

= −
M∑
m=1

(
c0 + d0 +

H∑
i=1

ciφ(ri(x1,m · p)) +
H∑
i=1

diφ(ri(x2,m · p))

)

+
M∑
m=1

log

(
exp{c0 +

H∑
i=1

ciφ(ri(x1,m · p))}+ exp{d0 +
H∑
i=1

diφ(ri(x1,m · p))}

)

+
M∑
m=1

log

(
exp{c0 +

H∑
i=1

ciφ(ri(x2,m · p))}+ exp{d0 +
H∑
i=1

diφ(ri(x2,m · p))}

)
.

(2.6)

Given the data (x1,m, x2,m), the NN training minimizes a high dimensional non-convex
and non-smooth objective function (2.6) over (c, d, r, p). Non-smoothness is due to φ being
piecewise linear. The cross entropy function (2.6) grows at most linearly in these variables
and is often regularized by quadratic functions to reduce overfitting [22]. The quadratically
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regularized cross entropy function for the binary classification problem is:

2M JQRCE =
λ

2
‖(c, d, r, p)‖22 −

M∑
m=1

(
c0 + d0 +

H∑
i=1

ciφ(ri(x1,m · p)) +
H∑
i=1

diφ(ri(x2,m · p))

)

+
M∑
m=1

log

(
exp{c0 +

H∑
i=1

ciφ(ri(x1,m · p))}+ exp{d0 +
H∑
i=1

diφ(ri(x1,m · p))}

)

+
M∑
m=1

log

(
exp{c0 +

H∑
i=1

ciφ(ri(x2,m · p))}+ exp{d0 +
H∑
i=1

diφ(ri(x2,m · p))}

)
.

(2.7)

Factoring out exp{c0 +
∑H

i=1 ciφ(rix1,m + si)} (exp{d0 +
∑H

i=1 diφ(rix2,m + si)}) from the
third (fourth) term, I arrive at a compact form of (2.7):

2M JQRCE =
λ

2
‖(c, d, r, p)‖22 +

M∑
m=1

log

(
1 + exp{(d0 − c0) +

H∑
i=1

(di − ci)φ(ri(x1,m · p))}

)

+
M∑
m=1

log

(
1 + exp{(c0 − d0) +

H∑
i=1

(ci − di)φ(ri(x2,m · p))}

)
. (2.8)

2.2 Alternating Minimization (AM) and Piecewise Convexity

I shall minimize (2.7) block by block: after an initialization, first minimize over (c, d)’s with
(r, p)’s fixed, then minimize over (r, p)’s with (c, d)’s fixed, and iterate till convergence. When
(r, p)’s are fixed, the 2nd term of (2.6) is linear in (c, d)’s, the 3rd and 4th terms are convex
in (c, d)’s. This can be seen from a composition property of convex functions:

Proposition 2.1 (chapter 3, [1]). Let Hj(y), j = 1, 2, · · · ,m, be convex in y ∈ Rn, then the
function log(

∑m
j=1 exp{Hj(y)}) is convex in y.

Proposition 2.1 follows from the function log(
∑m

j=1 e
zj) being convex and non-decreasing

in each argument zj, and Hj being convex. The 3rd and 4th terms of (2.7) are convex

because H1 = c0 +
∑H

i=1 ciφ(ri(xj,m · p)) is linear in ci’s and H2 = d0 +
∑H

i=1 diφ(ri(xj,m · p))
is linear in di’s, i = 0, 1, · · · , H, j = 1, 2. Hence the objective is convex and smooth in each
pair of (c0, d0) or (cj, dj) with (r, p)’s fixed.

Consider minimizing 2M JQRCE over (ci, di) for some i, with (cj, dj) (j 6= i) and (rl, pl),
∀l, fixed. The quadratically regularized two dimensional sub-problem takes the form:

J1 = −ci
M∑
m=1

φ1,i,m − di
M∑
m=1

φ2,i,m +
M∑
m=1

log(Ai,m e
ciϕ1,i,m +Bi,m e

diφ1,i,m)

+
M∑
m=1

log(Ei,m e
ciϕ2,i,m + Fi,m e

diφ2,i,m) + λ (c2i + d2i )/2, (2.9)
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where φ1,0,m = φ2,0,m = 1, φk,i,m := φ(ri(x
k
m · p)) (k = 1, 2), if i ≥ 1; λ ∈ (0, 1); and the

positive quantities (Ai,m, Bi,m, Ei,m, Fi,m) are defined as follows:

Ai,m := exp{c0 +
H∑

j=1,j 6=i

cjφ(rj(x1,m · p))}, Bi,m := exp{d0 +
H∑

j=1,j 6=i

djφ(rj(x1,m · p))}

Ei,m := exp{c0 +
H∑

j=1,j 6=i

cjφ(rj(x2,m · p))}, Fi,m := exp{d0 +
H∑

j=1,j 6=i

djφ(rj(x2,m · p))}

Setting the gradient of J1 to zero gives the critical point equations:

0 =
∂J1
∂ci

= λ ci−
M∑
m=1

φ1,i,m+
M∑
m=1

Ai,m φ1,i,me
ciφ1,i,m

Ai,m eciφ1,i,m +Bi,m ediφ1,i,m
+

M∑
m=1

Ei,m φ2,i,me
ciφ2,i,m

Ei,m eciφ2,i,m + Fi,m ediφ2,i,m

(2.10)
and

0 =
∂J1
∂di

= λ di−
M∑
m=1

φ2,i,m+
M∑
m=1

Bi,m φ1,i,m e
diφ1,i,m

Ai,m eciφ1,i,m +Bi,m ediφ1,i,m
+

M∑
m=1

Fi,m φ2,i,m e
diφ2,i,m

Ei,m eciφ2,i,m + Fi,m ediφ2,i,m
.

(2.11)
For any λ > 0, adding (2.10) and (2.11) yields:

λ(ci + di) = 0, or di = −ci. (2.12)

Equation (2.12) provides a reduction to a single variable in searching for a minimal point.
It suffices to consider (2.10) which becomes:

M∑
m=1

Bi,m φ1,i,m e
−ciφ1,i,m

Ai,m eciφ1,i,m +Bi,m e−ciφ1,i,m
= λ ci +

M∑
m=1

Ei,m φ2,i,m e
ciφ2,i,m

Ei,m eciφ2,i,m + Fi,m e−ciφ2,i,m

or:

Γ = Γ(ci) := λ ci +
M∑
m=1

Ei,m φ2,i,m

Ei,m + Fi,m e−2ciφ2,i,m
−

M∑
m=1

Bi,m φ1,i,m

Bi,m + Ai,m e2ciφ1,i,m
= 0. (2.13)

Since the left hand side of (2.13) is strictly increasing in ci from −∞ to +∞, there is a
unique value of c∗

i,λ satisfying (2.13), which can be obtained by a bisection algorithm (see

e.g. subsection 14.5.1 of [15]).

Let us summarize the above as:

Proposition 2.2. The reduced objective J1 from 2M JQRCE is strictly convex and has unique
minimal point when restricted to the two variables (ci, di) for any i = 0, 1, · · · , H with other
variables fixed. The minimal point is of the form ci(1,−1) with ci equal to the unique root
c∗
i,λ of the scalar increasing function Γ of (2.13).
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The next step is to fix all (cl, dl) = (cl,−cl)’s and minimize 2M JQRCE over ri for some
i with p and rj fixed (j 6= i). Since the ri variable is inside the piecewise linear function
ϕ, the objective is piecewise convex. This is also the case when updating p componentwise
with (c, d, r) fixed. See Fig. 2. I shall treat these sub-problems in detail in the setting
of multi-class classification model of the next subsection. By the end of p update, one has
completed a full cycle of AM iteration, which repeats till convergence of the objective values.

2.3 Multi-class Classification Model

I extend my neural network model with a projection inside a hidden layer from binary to
multi-class problems. Let pj be the “principal directions” (“neural discriminant vectors”),
j = 1 · · · , J . If C is the class number, J is typically C−1, similar to LDA [3]. Let the input
vector be ~xin = (xin,1, xin,2, · · · , xin,D) ∈ RD. The network output (excitation) is:

zc = bc +
H∑
i=1

wci ϕ(
J∑
j=1

rij (~xin · ~pj)), (2.14)

where ~xin · ~pj is the inner product of ~xin and ~pj ∈ RD, and c is a class label from 1 to C.
The output class probabilities are:

Pc(~xin) =
exp{zc(~xin)}∑C
n=1 exp{zn(~xin)}

. (2.15)

The vector arrows on xin and pj will be ignored from here on. The m-th input vector from
class c is xc,m. The excitation of the standard one hidden layer network is of the form:

zc = bc +
H∑
i=1

wci ϕ(
D∑
k=1

uikxin,k). (2.16)

Notice that the weight matrix inside ϕ of (2.14) is a factored from of (uik) in (2.16).
The total number of parameters in (2.14) is JD + JH + CH + C while that of (2.16) is
HD+CH+C. Typically H = ρJ , J = C−1, ρ = 2(3) to reduce variance, then the number
of parameters of (2.16) exceeds that of (2.15) by (ρ − 1)JD − JH = J [(ρ − 1)D − H] =
(C − 1)[(ρ − 1)D − ρ(C − 1)]. For D = 420, C ∈ [3, 10], ρ = 2(3), this number is in the
range [832, 3618] ([1668, 7317]). Let U = (uij), R = (rij), P = stacking up pj’s, then (2.14)
is a low rank (=J) approximation of (2.16) in the sense that U ≈ RP , rank(U) = H > J .
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The multi-class quadratically regularized cross entropy function is:

MQRCE =
λ

2
‖(b, w, r, p1, p2, · · · , pJ)‖2 −

M∑
m=1

C∑
c=1

log Pc(xc,m)

=
λ

2
‖(b, w, r, p1, p2, · · · , pJ)‖2 −

M∑
m=1

C∑
c=1

[bc +
H∑
i=1

wci ϕ(
J∑
j=1

rij(xc,m · pj))]

+
M∑
m=1

C∑
c=1

log(
C∑
n=1

exp{bn +
H∑
i=1

wni ϕ(
J∑
j=1

rij(xc,m · pj))}). (2.17)

At fixed (r, pj) (j = 1, · · · , J), MQRCE is smooth and strictly convex in (b, w). At the
minimal point, I have ∂MQRCE

∂bk
= 0, ∀k = 1, · · · , C, or:

0 = λ bk −M +
M∑
m=1

C∑
c=1

exp{bk +
∑H

i=1wki ϕ(
∑J

j=1 rij (xc,m · pj))}∑C
n=1 exp{bn +

∑H
i=1wni ϕ(

∑J
j=1 rij (xc,m · pj))}

(2.18)

which gives by summing over k = 1, · · · , C:

C∑
k=1

bk = 0. (2.19)

The estimate:

λbk −M ≤
∂MQRCE

∂bk
≤ λbk +M(C − 1) (2.20)

gives the bisection interval [−1 + λ−1(1− C)M, 1 + λ−1M ] for bk of equation (2.18).

Similarly, I have from ∂QRCE
∂wki

= 0:

0 = λwki −
M∑
m=1

ϕ(
J∑
j=1

rij (xk,m · pj))

+
M∑
m=1

C∑
c=1

ϕ(
∑J

j=1 rij (xc,m · pj)) exp{bk +
∑

iwki ϕ(
∑

j rij (xc,m · pj))}∑C
n=1 exp{bn +

∑
iwniϕ(

∑
j rij (xc,m · pj))}

(2.21)

implying when summing over k = 1, · · · , C:

C∑
k=1

wki = 0, ∀ i = 1, · · · , H. (2.22)

The derivative bounds:

∂MQRCE

∂wki
≥ λwki −

M∑
m=1

ϕ(
J∑
j=1

rij (xk,m · pj)),

57



and

∂MQRCE

∂wki
≤ λwki −

M∑
m=1

ϕ(
J∑
j=1

rij (xk,m · pj)) +
M∑
m=1

C∑
c=1

ϕ(
J∑
j=1

rij (xc,m · pj)),

give the following bisection interval on wki of equation (2.21):

[−1− λ−1
M∑
m=1

∑
c6=k

ϕ(
J∑
j=1

rij (xc,m · pj)), 1 + λ−1
M∑
m=1

ϕ(
J∑
j=1

rij (xk,m · pj))]. (2.23)

For fixed (b, w, r), I update pj,k, the k-th component of pj, by writing the sum inside ϕ as:

J∑
l=1

ril (xc,m · pj) = rij (xc · pj) +
∑
l 6=j

ril (xc,m · pl)

= rij xc,m,kpj,k + rij(
∑
l 6=k

xc,m,l pj,l) +
∑
l 6=j

ril (xc,m · pl)

:= rij xc,m,k pj,k + τc,i,m. (2.24)

I sort the numbers τc,i,m/(rij xc,m,k) in increasing order as −∞ < a1 < a2 < · · · < aS1 <
+∞, S1 ≤ MCH (excluding any (m, c, i) where rij xc,m,k = 0). Over each finite interval
(−as+1,−as), s = 1, · · · , S1, the objective is convex and the local minimum is found via
bisection. Over the semi-infinite interval (−a1,+∞), an interior minimum exists if and only
if the objective is decreasing near −a1 which can be detected by comparing the objective
value at a point slightly to the right of −a1 with that at −a1. If the local minimum exists,
I determine the bisection interval by lower bounding the partial derivative:

∂ MQRCE

∂pj,k
= λpj,k −

∑
m,i,c

wic rij xc,m,k ϕ
′(
∑
j

rij (xc,m · pj))

+
∑
m,c

∑
n(
∑

iwin rij xc,m,kϕ
′(
∑J

l=1 ril (xc,m · pl))) exp{bn +
∑

iwni ϕ(
∑J

l=1 ril (xc,m · pl))}∑
n exp{bn +

∑
iwni ϕ(

∑J
l=1 ril (xc,m · pl))}

≥ λpj,k −
∑
m,c,i

|xc,m,k wci rij| − (
∑
m,c

|xc,m,k|) (max
n

∑
i

|wni rij|), (2.25)

which is positive if

λ pj,k >
∑
m,c

|xc,m,k|
∑
i

|wci rij|+ (
∑
m,c

|xc,m,k|) (max
n

∑
i

|wni rij|).

In particular, a finite bisection interval on (−a1,+∞) is:

[−a1, 1 + |a1|+ λ−1
∑
m,c

|xc,m,k|
∑
i

|wci rij|+ λ−1(
∑
m,c

|xc,m,k|) (max
n

∑
i

|wni rij|)]. (2.26)
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Similarly, a bisection interval for locating the minimum of the objective over pj,k < −aS1 is:

[−1− |aS| − λ−1
∑
m,c

|xc,m,k|
∑
i

|wci rij| − λ−1 (
∑
m,c

|xc,m,k|) (max
n

∑
i

|wni rij|),−aS]. (2.27)

For fixed (b, w, p), I update rij by writing the inner sum inside ϕ as:∑
l

ril(xc,m · pl) = rij (xc,m · pj) +
∑
l 6=j

ril (xc,m · pl) := rij (xc,m · pj) + νc,m. (2.28)

I sort the numbers νc,m/(xc,m · pj) in increasing order as αs, s = 1, · · · , S2, S2 ≤ MC
(excluding any (c,m) where (xc,m · pj) = 0). Over each finite interval (−αs+1,−αs), s =
1, · · · , S2, the objective is convex and the local minimum is found via bisection. Over the
semi-infinite interval (−α1,+∞), an interior minimum exists if and only if the objective is
decreasing near −α1. If the local minimum exists, I bound the partial derivative from below:

∂ MQRCE

∂ rij
= λ rij −

∑
m,c

wci (xc,m · pl) ϕ′(
∑
l

ril (xc,m · pl))

+
∑
m,c

∑
nwni (xc,m · pj)ϕ′(

∑J
l=1 ril (xc,m · pl))) exp{bn +

∑H
h=1wnh ϕ(

∑J
l=1 rlh (xc,m · pl))}∑

n exp{bn +
∑H

h=1wnh ϕ(
∑J

l=1 rhl (xc,m · pl))}

≥ λ rij −
∑
m,c

max
n
|wni (xc,m · pj)| −

∑
m,c

|wci (xc,m · pj)|, (2.29)

which is positive if:

λ rij >
∑
m,c

max
n
|wni (xc,m · pj)|+

∑
m,c

|wci (xc,m · pj)|.

A bisection interval for rij > −α1 is:

[−α1, 1 + |α1|+ λ−1(
∑
m,c

max
n
|wni (xc,m · pj)|+ |wci (xc,m · pj)|)]. (2.30)

Similarly, if a local minimum exists over rij < −αS, a bisection interval is:

[−1− |αS| − λ−1(
∑
m,c

max
n
|wni (xc,m · pj)|+ |wci (xc,m · pj)|),−αS]. (2.31)

Note that MQRCE as a piecewise convex function of rij, consists of multiple pieces
(generically M C+2). In Fig. 2, the multi-piece convex structure of MQRCE in a component
of r (left) and p (right) is illustrated through two instances during network training.

The alternating minimization method for (2.17) based on the above analysis is summa-
rized in Algorithm 1.
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Figure 2: Left (Right): Multi-piecewise convex structure of the quadratically regularized
average cross entropy function in a component of r (p) in multi-class classification.

Algorithm 1 : AM for Quadratically Regularized Multi-Class Cross Entropy (2.17).

Input: data (xc,m), c = 1, · · · , C, m = 1, . . . ,M , centered at zero; positive integer H.
Initialize vectors: (b, w, r, pj)

(0), j = 1, · · · J .

for l = 0, 1, . . . do
for k = 1, . . . , C, do
bk ← the unique root of (2.18) via bisection, while fixing bn, n 6= k, and (w, r, p);

end for
for k = 1, . . . , C; i = 1, . . . , H, do
wki ← the unique root of (2.21) via bisection, while fixing wcj, c 6= k, j 6= i, and
(c, d, p).

end for
for j = 1, . . . , D; k = 1, . . . , J, do

update pj,k by minimizing MQRCE via bisection on sub-intervals formed by the finite
sequence (as), s = 1, . . . , S1 ≤MCH.

end for
for i = 1, . . . , H; j = 1, . . . , J, do

update rij by minimizing MQRCE via bisection on sub-intervals formed by the finite
sequence (αs), s = 1, . . . , S2 ≤MC.

end for
end for

Output at convergence l = L: (b, w, r, pj)
(L), j = 1, . . . , J .
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2.4 Convergence Analysis

I analyze convergence of the AM algorithm 1. Since the cross entropy function is nonneg-
ative, and each subproblem reduces the objective, the AM method is descending and its
objective values MQRCE((b, w, r, p)(l)) converge to a finite non-negative limit. The iterates
are uniformly bounded:

‖(b, w, r, p)(l)‖22 ≤ 2λ−1MQRCE((b, w, r, p)(l)) ≤ 2λ−1MQRCE((b, w, r, p)(0)), ∀l ≥ 1.
(2.32)

I prove further that:

Proposition 2.3. If in the (r, p) update of the AM algorithm 1, the nearest local minimum is
used instead of a global minimum, then the two adjacent iterates (b, w, r, p)(l+1), (b, w, r, p)(l)

satisfy the inequality:

MQRCE((b, w, r, p)(l))−MQRCE((b, w, r, p)(l+1)) ≥ η |(b, w, r, p)(l) − (b, w, r, p)(l+1)|2
(2.33)

for some positive constant η > 0 independent of iteration number l. It follows that:

lim
l→+∞

|(b, w, r, p)(l) − (b, w, r, p)(l+1)| = 0. (2.34)

Proof: In case of (b, w) updates, the objective is smooth and strongly convex, with second
partial derivative in each coordinate of (b, w) above λ. Since (b, w)(l+1) differs from (b, w)(l)

in one coordinate (call it ξ), and is the minimum in ξ, I have that (2.33) holds for positive
constant η = λ/4 if |(b, w, r, p)(l)− (b, w, r, p)(l+1)| is small enough. Here I assume that the ξ
component of (b, w)(l) is not at the minimum, otherwise, (b, w)(l+1) = (b, w)(l), and (2.33) is
true for any η. On the other hand, the objective function is above the quadratic λ‖(b, w)‖2/2.
With η = λ/4, (2.33) is valid for any (b, w, r, p)(l) away from (b, w, r, p)(l+1).

In case of (r, p) updates, the objective is Lipschitz continuous, piecewise smooth and
strongly convex. Assume that the coordinate of (r, p)(l) to be updated is not a local minimum
of the objective in this coordinate with all other variables fixed at iteration step l. If the local
minimum for the updated coordinate ξ falls in the interior of a sub-interval, the objective
is smooth and locally strongly convex, the above argument on (b, w) update applies. If the
local minimum occurs at an end point of a sub-interval, piecewise strong convexity implies
that (2.33) remains valid for ξ(l) in the left and right intervals around the minimum with
some positive constants η− and η+ respectively. Choosing η = min(η−, η+), I conclude (2.33).
�

Next I prove:

Theorem 2.1. If in the (r, p) update of the AM algorithm 1, the nearest local minimum is
used instead of a global minimum, then the sequence (b, w, r, p)(l) converges subsequentially
to a first order stationary point (b̄, w̄, r̄, p̄) in the sense that:

∇b,w MQRCE(b̄, w̄, r̄, p̄) = 0, 0 ∈ ∂r,p MQRCE(b̄, w̄, r̄, p̄), (2.35)

where the partial ∂r,p denotes sub-differential or the set of all sub-gradients in (r, p).
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Proof: Let (b, w, r, p)(lj) be a convergent subsequence consisting of iterates at the end of
outer iterations. By construction, an update in each coordinate ξ via bisection in the inner
iteration is a local minimum, so

0 ∈ ∂ξ MQRCE(ξlj+1, · · · ), (2.36)

where the dots denote all the other coordinates either at lj step values or lj + 1 step values
updated before ξ coordinate. The sub-differential in (2.36) is a closed interval with left and
right end values being the left and right derivatives on either side of ξ(lj+1) if it is located
at the end point of a sub-interval in (r, p) update, otherwise the sub-differential is zero. By
(2.34), (b, w, r, p)(lj), (b, w, r, p)(lj+1), and all intermediate values in the inner iterations in
between, converge to (b̄, w̄, r̄, p̄), as j → ∞. The end points of sub-intervals in ξ, satisfying
the bound (2.32), continuously depend on the variables inside · · · , so as j →∞:

∂ξ MQRCE(ξ(lj+1), · · · )→ ∂ξ MQRCE(b̄, w̄, r̄, p̄),

implying:
0 ∈ ∂ MQRCE(b̄, w̄, r̄, p̄).

Since MQRCE is smooth in (b, w), piecewise smooth and convex in (r, p), (2.35) follows. �

3 Numerical Experiments

In this section, I present numerical results of the neural network model (2.14)-(2.15) to
thought recognition experiment. The first part of the experiment is a five to ten minute
recording of EEG waves while a subject is sitting down and thinking of one of the four daily
thoughts (such as resting, reading, walking, eating). The recording is either by a 14 channel
wireless Epoc+ headset [5] at a home environment, or by a traditional EEG cap with 66
conductive gel lubricated electrodes in a lab environment. The recorded brain waves are
transmitted to a computer and digitized at 256 Hz sampling frequency. The second part
of experiment is data processing, training and testing of neural network models in thought
classification. The first type of brain wave data is measured from a normal individual by
myself. I recorded the wireless data at home environment following Emotive user guide [5].
The headset is slided on the head with saline hydrated felt pads installed on the sensors.
The second type of data is measured from an Alzheimer subject in a lab environment by a
trained professional using a traditional EEG cap at UC Irvine [18].

The recorded raw brain waves are in physical unit of microvolt, an illustration is in the
left frame of Fig. 3. The raw brain signals are band-passed to the frequency range [1, 42]
Hz, removing low frequency (under 0.16 Hz) background, and high frequency disturbance
(e.g. muscle movement). For each second of time domain samples from each channel, a
power spectrum density vector of dimension 30 is calculated. The right frame of Fig. 3
plots four power spectrum density vectors of dimension 30 each, showing distinct shapes
(peak and valley structures). The data matrix X is a stacking up of row vectors combining
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Figure 3: Left: one minute of raw data (microvolt) from electrode F7 of Emotiv headset
(Epoc+). Right: sample power spectrum densities of four thoughts vs. frequency.

power spectra from all electrodes. So each row vector has dimension (D) equal to 30 times
the number of electrodes (D = 420 for wireless Epoc+, D = 1980 for a traditional cap).
The number of rows n is roughly the duration of recording in seconds times the number
of thoughts (times 2 if the power spectra come from 50 % overlapping windows). For 5
to 10 minute recording, n is in the range of [300, 600] times the number of thoughts for
non-overlapping spectral windows. The pre-processing step above produces an n ×D data
matrix for a classification study where 50 to 80 % of the data (recorded earlier in time) will
be used for training, the remaining data (recorded later in time) for testing. Due to such
arrangement, the classification becomes a prediction problem, which is meaningful for the
classifier to assist late stage dimentia subjects with data collected from them earlier.

The regularization parameter of (2.17) is λ = 1. The tolerance width to terminate
the bisection method in the inner iterations is 0.001. Network parameters are: H = 2J ,
J = C − 1. The (b, w, r) are initialized independently from a unit normal distribution (cold
start). The p is initialized (warm start) by sparse linear discriminant analysis [3], via slda
function of the SpaSM (sparse statistical modeling) toolbox in Matlab. The AM method is
descending and typically converges in 10 outer iterations (left frame of Fig. 4). The loss
function in a stochastic gradient descent (SGD) method is oscillatory (right frame of Fig. 4).
Since SGD computes on small random samples (mini-batches) of data instead of the entire
training set, its runtime of an epoch (a full sweep through training data) is much shorter
than that of an AM cycle, by as much as a factor of 10.

I set the number of outer iterations to 10, and perform 6 runs with independent random
initialization except for p. The average accuracies of thought prediction and the standard
deviations for an Alzheimer subject are in Table 2 according to 50 to 80% of training data.
The high dimensional feature vectors (the training part of the row vectors of data matrix X)
are projected to (P1, P2) plane in the 3 thought case and (P1, P2, P3) space in the 4 thought
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Figure 4: Left: monotone decrease of quadratically regularized cross entropy (2.17) in the
number of outer iterations of AM method. Right: oscillatory behavior of the loss function vs.
the number of epochs (full sweeps through training data) of the stochastic gradient descent
method in a similar neural network training.

case. They are shown in Fig. 5 in case of the 80% training data. One sees that the 3
and 4 clusters are cleanly separated by colors corresponding to the class labels, indicating
that the trained neural discriminant vectors produce excellent low dimensional features. The
classification on the test data depends also on its variation from the training data. The more
the subject is focused on the thought, the better the test accuracy measured as percentage
correct in thought classification.

Table 1: Prediction accuracy by model (2.14) (average percentage correct and standard de-
viation over 6 random starts) for an Alzheimer subject using 66 channel EEG cap recordings
of 6 minutes. Four thoughts are: reading, resting, walking and eating. Three thoughts are:
reading, resting, and walking. Two thoughts are: reading and resting. Each row vector of
the first column lists 3 percentages of the training data for the (4,3,2) thoughts. To present
enough variation in the accuracies, the 3 percentages are not the same in case of (75,70,70)%.

%(training data) 4 thoughts 3 thoughts 2 thoughts

(80,80,80)% 94.92% (2.52%) 98.91% (0.37%) 99.48 % (1.61%)

(75,70,70)% 90.68% (1.48%) 96.28% (0.85%) 98.95% (1.74%)

(70,60,60)% 85.91% (0.89%) 96.95% (0.48%) 98.75% (0.67%)

(50,50,50)% 80.15% (2.61%) 95.75% (2.79%) 96.61% (0.12%)

The average accuracies of thought prediction and the standard deviations for a normal
subject are in Table 2. The feature vectors projected to (P1, P2) plane in the 3 thought

64



Figure 5: Left: 2 dimensional features of 66 channel EEG recording of an Alzheimer subject
on the (P1, P2) plane after model (2.14) training on 80% of data for three thoughts (reading,
resting, restroom) corresponding to colors (red, green, blue). Right: 3 dimensional features of
66 channel EEG recording of the Alzheimer subject in the (P1, P2, P3) space after model (2.14)
training on 80% of data for four thoughts (reading, resting, eating, walking) corresponding
to colors (red, green, blue, yellow) respectively.

case and (P1, P2, P3) space in the 4 thought case are shown in Fig. 6. The separation of
clusters from 14 sensors is less than that from the 66 channel EEG cap in Fig. 5, due to
less spatial resolution. Note also that the shapes of the clusters in Fig. 6 are quite different
from each other while those in Fig. 5 are more uniform. Despite the non-uniform feature
shapes, the neural network model (2.17) maintains the accuracies in the mid and upper
ninety percentages. The better focus of attention from a normal subject also helps.

I compare my model (2.14) trained by AM with the standard NN model (2.16) trained by
SGD in Matlab NN toolbox. The average prediction accuracies and standard deviations are
calculated from the testing results of trained network at the end of (10, 20, · · · , 60) epochs.
Results from 66 channel EEG cap’s 6 minute recording for an Alzheimer subject (same
as Table 1) are in Table 3 and those from 10 minute Epoc+ headset recording (same as
Table 2) for a normal subject are in Table 4. In both Tables, the AM and SGD trainings
are comparable for the 2 and 3 thoughts, indicating that 10 outer AM iterations reach a
similar stationary point as the SGD over 10 to 60 epochs. However, the AM training is
significantly better in the more challenging case of 4 thoughts (boldfaced). The projection
to the (P1, P2, P3) space captures the essential features and filters out noise in the data.
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Figure 6: Left: 2 dimensional features of 14 channel wireless Epoc+ headset recording
of a normal subject on the (P1, P2) plane after model (2.14) training on 80% of data for
three thoughts (resting, reading, eating) corresponding to colors (red, green, blue). Right:
3 dimensional features of 14 channel wireless Epoc+ headset recording in the (P1, P2, P3)
space after model (2.14) training on 80% of data for four thoughts (resting, reading, eating,
restroom) corresponding to colors (red, green, blue, yellow) respectively.

Table 2: Prediction accuracy by model (2.14) (average percentage correct and standard
deviation over 6 random starts) for a normal subject using 14 channel Epoc+ recordings of
10 minutes. Four thoughts are: reading, resting, eating, and restroom. Three thoughts are:
reading, resting, and eating. Two thoughts are: reading and resting.

%(training data) 4 thoughts 3 thoughts 2 thoughts

80% 94.87% (1.38%) 96.47% (1.89%) 99.66 % (0.01%)

70% 93.93% (2.73%) 95.87% (2.35%) 99.10% (0.01%)

60% 96.30% (0.73%) 94.72% (3.40%) 98.96% (0.07%)

50% 95.76% (1.21%) 94.49% (3.40%) 98.94% (0.06%)
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Table 3: Prediction accuracy by model (2.16) trained by stochastic gradient descent method
(average percentage correct and standard deviation over 60 epochs) for an Alzheimer subject
using 66 channel EEG cap recordings of 6 minutes. Four thoughts are: reading, resting,
walking and eating. Three thoughts are: reading, resting, and walking. Two thoughts are:
reading and resting. Each row vector of the first column lists 3 percentages of the training
data for the (4,3,2) thoughts.

%(training data) 4 thoughts 3 thoughts 2 thoughts

(80,80,80)% 74.47% (2.52%) 97.79% (2.62%) 99.18 % (1.20%)

(75,70,70)% 74.68% (0.27%) 97.58% (1.46%) 97.11% (2.65%)

(70,60,60)% 74.10% (1.13%) 97.05% (1.40%) 98.47% (1.81%)

(50,50,50)% 70.82% (0.47%) 92.29% (3.67%) 98.06% (0.20%)

Table 4: Prediction accuracy by model (2.16) trained by stochastic gradient descent method
(average percentage correct and standard deviation over 60 epochs) for a normal subject
using 14 channel Epoc+ recordings of 10 minutes. Four thoughts are: reading, resting,
eating, and restroom. Three thoughts are: reading, resting, and eating. Two thoughts are:
reading and resting.

%(training data) 4 thoughts 3 thoughts 2 thoughts

80% 79.70% (5.05%) 97.91% (0.34%) 98.85 % (0.42%)

70% 75.10% (1.19%) 96.48% (1.42%) 98.51% (0.47%)

60% 75.98% (3.88%) 94.35% (3.19%) 98.73% (0.11%)

50% 73.96% (1.36%) 91.00% (9.23%) 98.34% (0.65%)
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4 Concluding Remarks

I studied a neural network with low rank weights for increasing the accuracy of the clas-
sification of brain waves. Based on convex and piecewise convex structures of the training
objective function, I developed the alternating minimization method, and proved that it is
descending and convergent. The prediction of 4-class brain waves from normal and Alzheimer
subjects outperforms by 10 percentage points the standard neural network trained by the
stochastic gradient descent method. With enough EEG data collected in the future, it is
promising that my neural network model (2.14) may be extended to a wider and deeper
network for extracting features common to all subjects within a population so that thought
classification is free from individual training (similar to speech recognition [22]).
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