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1. Introduction

The research on tumors is a significant scientific challenge of our time. Most insights into the
micro environment of a tumor are gained via invasive methods, which can change the outcomes of the
experiments. Other non-invasive methods like PET imaging cannot provide resolutions needed for
detailed quantification of the tumour microenvironment (see Dasu, 2004 [1], p.9f). As a consequence
it is crucial to come up with a suitable mathematical model for the theoretical analysis of tumor
tissue.

One important aspect which can already be modeled using a partial differential equation is the
oxygenation of a tumor which influences the success of radiation therapy (see also Brizel et al,
1997 [5]). Therefore, a valid mathematical model can be helpful to predict the outcome of a therapy
and may help to improve therapy methods.

First simulations using a finite element method software generated promising results (compare
Dasu, 2004 [1]). But due to limitations in computational power, the calculable area is bounded
when non-specialized tools are used. Hence, adapting simple mathematical methods to lessen the
overhead of memory during the calculation is essential.

The aim of this project is the development and analysis of a program which can calculate larger
domains in two space dimensions, while needing only a minimum amount of storage space and
reasonable computation time.

Our approach towards this task is to use a finite difference method for the given partial differential
equation. We describe different ways to generate a suitable domain for a tissue and develop and
analyze a discretization of this domain with a structured grid. One significant aspect in terms of
memory is the data format we developed as an output for the discretization. To solve the emerging
system of equations we employ suitable iterative methods.

Following this approach we were able to obtain satisfying results. These show that our program
manages to solve the equation on large domains with a user chosen resolution. The accuracy of the
solution can be estimated using an a-priori error estimator.

2. Application

Considering tumor radiative treatment one has to take into account the special structure and
characteristics of the tumor. The following sections show briefly how the physiology of the tissue
influences radiotherapy (compare also Dasu 2004 [1]). These points all lead to the development of
theoretical models for tumor oxygenation as described in the next section and they were also the
reason for us to build up a new simulation software adapted to the problem.

2.1. Tumour micro-environment and oxygenation. The reason tumor treatment is difficult
is the special micro-environment of its tissue. Altogether this results in a vascular network of the
tumor that is highly irregular, which is different from normal tissue. Another important point is the
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fact that tumors do not have any lymphatic vessels. Without these lymphatic vessels the pH may
decrease which leads to a lack of oxygen in some regions of the tissue away from the vessels.

Additionally tumor cells consume much more glucose than normal cells. An important link to
radiotherapy is that the DNA repair mechanisms do not work properly in that case of a glucose
deprivation, which is interesting for acute and chronic hypoxia (Denekamp and Dasu 1999 [4]).

2.2. Acute and chronic hypoxia. Hypoxia means a lack of oxygen in a cell. This may result
from a large distance of the cell to the next blood vessel or a low oxygen level inside the blood vessel
itself.

Chronic hypoxia describes a permanent oxygen defect that does not depend on time. In contrast
to that, acute hypoxia is the result of an instantaneous oxygen deprivation that does not remain for
such a long time. The typical time scale for acute hypoxia in tumour tissue varies between minutes
and hours (compare [10]). Hence, the oxygen diffusion itself can still be modelled as a stationary
process.

The reason for perfusion limited hypoxia, a type of acute hypoxia, is the temporary occlusion or
collapse of certain vessels inside the tumor. This happens because of the rigidity of red blood cells
induced by the lack of glucose and a low pH.

2.3. Influences on radiotherapy. In general, one can say that there is an increase in radiosensi-
tivity of the tumor cells if the level of oxygenation rises. It is supposed that the different forms of
hypoxia also have different impacts on the success of radiative treatment. According to Denekamp
and Dasu 1999 [3] chronically hypoxic cells that lack both oxygen and glucose are not able to
activate their DNA repair mechanisms, so that they are more sensitive to radiation than normal
cells. Depending on the conditions a chronically hypoxic cell may also be more sensitive than an
oxygenated and glucose-fed cell. In contrast to that, acute hypoxia leads only to a temporary lack
of oxygen, so that the repair mechanisms might still be working due to the short time of lacking
oxygen. Therefore, acute hypoxic cells are radioresistant to a certain extent (compare Dasu 2000
[4]). This is one of the reasons why tumor oxygenation is considered one of the most important
factors that determine the failure of radiation treatment (see e.g. Brizel et al 1997[5]). Thus, it
is necessary to distinguish between these effects by predicting for example the amount of oxygen in
different regions of the tissue.

In order to get information about the oxygenation of certain parts of a tumor one could try to
measure oxygen values experimentally. The problem is that those measurement methods are mostly
invasive and can therefore spoil the quality of the measurement itself or the resolution is very poor
and not at all sufficient. Additionally, the methods are most often not able to give any information
about whether they measure acute or chronic hypoxia. For more information see Dasu 2004 [1].

At this point theoretical modeling of tumor oxygenation seems the only possibility to overcome
those problems because it can quickly give very good results depending on the model. Due to this we
will describe a model of a virtual tumor that enables the efficient simulation of tumor oxygenation.

3. Theoretical Modeling

3.1. Mathematical modeling of tumor oxygenation. The problem of tumor oxygenation can
be described as a diffusion equation for the partial pressure p of oxygen in the tissue. The partial
pressure serves as a representative value for the oxygen content.

The stationary diffusion equation for p reads

−D∆p(x) = f(p, x), x ∈ G ⊂ Rn.(1)

G is the spatial domain representing a tumor tissue with a specific number of blood vessels
inside. The term on the left describes the diffusion caused by the concentration difference in the
domain. The standard form (f = 0) of the diffusion equation is a linear partial differential equation.
Therefore, a linear numeric solver would be sufficient to solve that equation.
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For describing the process of tumor oxygenation the diffusion equation is supplemented with the
loss term f = −q(p), which describes the oxygen consumption of the tissue.

q(p) = qmax
p

p+ k
(2)

In this equation qmax is the maximum consumption rate and k is the partial pressure at which
the consumption rate decreases to one half of the maximum value.

Because of the fact that this term is non-linear, the whole PDE has to be solved with a non-linear
solver.

The diffusion coefficient D in (3) implies the assumption of being independent of x. This is only
valid if the tissue is homogeneous, which is a valid simplification in this project. This finally leads
to equation (3).

−D∆p+ qmax
p

p+ k
= 0(3)

This equation can be classified as an elliptic equation. Hence, the problem is a boundary value
problem. As the partial pressure inside the blood vessels is typically constant, the vessels serve as
boundaries additionally to the border of the domain. Here lies the challenge because of the difficult
approximation of the circular vessel boundaries.

For the project we have considered two different boundary models. Both have in common that
the variable p at the boundary of the blood vessels inside the tissue is set to a user-specified value
which serves as a boundary condition. Therefore the area of interest contains a huge number of
boundaries. The simulation with a common finite element method software using an unstructured
grid therefore results in a grid with very high resolution and many grid points near the vessels. This
leads to a higher memory consumption. An alternative to the finite element approach is to use a
Cartesian grid with properly discretized vessels (see Section 3.3).

In the first boundary model we have considered the boundary of the tissue to be a Dirichlet
boundary. That means the pressure at the outer boundary is set to a certain value.

Concerning the second boundary model we have considered the domain to be periodic. So one
does not need to impose values for p on the boundary of the domain.

Parameters. The given equation (3) is composed of the different parameters D, qmax, k and the
variable p. In order to include these in the model one has to take a closer look at their influence in
the equation and their units. In the given model the used measurement unit for length is µm.

All blood vessels have a constant specific value for their partial pressure. The unit of the pres-
sure is 1 mmHg ≈ 133 Pa corresponding to the pressure occurring in a 1 mm mercury column. A
representative value for the pressure in blood vessels is 40 mmHg (Thomlinson and Gray, 1955
[3]).

The diffusive term of the equation contains the diffusion coefficient D. As the unit µm2

s depicts,
it describes how much oxygen diffuses across an area in a certain time along the pressure gradient.
It can also be described as the mobility of oxygen particles. The diffusion coefficient in the tumor
tissue is of the order 103. A higher diffusion coefficient means a higher diffusion of oxygen from the

blood vessels into the tissue. For example it can be set to 2 · 103 µm2

s (compare Tannock, 1972 [6])
depending on the temperature of the body.

The consumption term (2) stands for the consumption of oxygen in a part of the tissue with
a certain pressure. The expression p

p+k is a value between 0 and 1. Therefore, the maximum

consumption qmax in front of the expression makes sense. A representative value in a tumor tissue
is a maximum consumption of 15 mmHg

s (Thomlinson and Gray, 1955[3], Tannock, 1972 [6])
and k can be set to 2.5 mmHg (Dasu, 2004 [1]).
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3.2. Tissue generation. The task of tissue generation is to specify the domain on which the PDE
(3) will be solved. In order to generate a meaningful tumor tissue one has to choose the size of the
domain and then decide on a certain distribution of blood vessels inside the domain afterwards. Here
the size can be specified by the length and width of the domain as we only consider 2D domains.

As in Dasu, 2004 [1] for the distribution of the vessel in the area we use a normal distribution of
the minimal distance between two vessels. A normal distribution can be described by two parameters
mean µ and variance σ2.

The calculation of the minimal distances between two vessels dimin
is done in two different ways.

In the case of Dirichlet boundaries it is the distance to another vessel or to the boundary. For
periodic boundaries dimin

has to be computed over the boundaries in order to get the right distance
to the next vessel.

To assign the centers of the vessels we have investigated two methods, described in the following
sections.

Scattered grid. By using the scattered grid method n vessels will be placed in the domain so that
the distance in x- and y-direction is equal for each vessel. Afterwards each vessel will be moved
a certain distance into a random direction. The choice of the direction is done using a uniform
distribution, while the distance is chosen from a normal distribution with µ = 0 and σ2 equal to the
value specified by the user. An example for the application of this method is given by the following
Figure (1) which can be compared to images of vascular structures (see Dasu 2004 [1] and also
Konerding et al. 1999 [9]).

In applications, one can see that a higher variance results in a more unstructured grid, whereas
a small variance leads to an almost equidistant distribution of blood vessels.

An advantage of this method is that the number of vessels is only dependent on the mean and is
therefore the same for different values of σ2. A drawback of this is that the mean distance between
the vessels will be significantly smaller than specified by the user because of the scattering.

Dart throwing. In the dart throwing method for each vessel a normal-distributed distance will be
chosen. Afterwards the vessel is placed at a random position and it is tested if no other vessel lies
inside a radius of the chosen distance. If this test fails, the vessel is removed and placed at another
random position and so on.

Figure 1: Vessel distribution, left: scattered grid, right: dart throwing

The number of vessels inserted by this method is smaller than the number of vessels placed by
the scattered grid method. Therefore, the amount of placed vessels can vary in a large range so the
results are less comparable. In contrast to that the value for the variance and especially the mean
is closer to the ones the user specified.
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3.3. Discretization. The first step when solving a non-linear partial differential equation is the
discretization of the related domain and the differential operator, which will be discussed in the
following sections.

Domain discretization. In this project, a regular grid is used for the discretization of the domain
of interest. The granularity can be chosen by a certain grid spacing, or resolution, that represents
the distance between two adjacent points on the grid. For the sake of simplicity, the grid spacing
∆x = ∆y = h is equal in both directions and has a constant value in the whole domain, therefore
adaptivity is not taken into account. The motivations are the reduced implementation effort and the
large memory consumption of an adaptive grid. The total number of points of the domain is therefore
given as n = (length/h+ 1) · (width/h+ 1). Note that n grows quadratically if the resolution h gets
smaller, which is important for memory consumption throughout the whole development process of
our software project.

Vessel discretization. In order to translate the continuous model into a discrete model, one must
choose a way to discretize the vessels, which are modeled as disks in the continuous model and serve
as boundaries for the domain. In the mathematical, model a vessel is represented by the coordinates
of its center, its diameter and its internal pressure. Different pressures in the vessels correspond
to different oxygen distributions, so that one could also use a certain pressure distribution in an
advanced model. The center is placed somewhere in the domain and does not necessarily have to
be a grid point. The discretization of the vessels is now the task to identify those grid points that
belong to the vessel. These points later have a constant pressure value defined by the pressure value
of the vessel they belong to. Such a point is called a vessel point. There are many different ways of
choosing the correct vessel points. During our project we investigated three methods, but we will
only present here the method that proved the best suited.

For the vessel points one chooses every grid point that is geometrically inside the vessel and adds
all those grid points that are adjacent to one of the others and are also not more than ∆x

2 away from
the circle, either in x- or in y-direction. This means that in addition to the points geometrically
inside the vessel, the distance from the intersections of the grid lines with the circle and the grid
points has to be computed and this distance has to be smaller than ∆x

2 in order to exclude points
that are quite far away from the vessel.

Figure 2: Discretization results of two standard methods (left and middle) and our new method
(right)

Figure 2 shows a vessel of diameter 6 with 4x = 1 where the center of the vessel is exactly at a
grid point. When using the above discretization method, one can see that it does a good job in this
example, because it only chooses a grid point outside the vessel if it is sufficiently near to the vessel.
The two standard methods on the left and in the middle do not show similarly good results.
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The behavior of this discretization method is investigated in detail in Section 4. Several tests
have been done and the error between the exact and numerical solution has been computed in order
to characterize the method with respect to the discretization error and rate of convergence.

As for the storage of the vessel points, we use a specialized data structure. Instead of storing
every vessel point, for each row of a vessel we store the index of the first and last vessel point of
that vessel in that row. In addition, we only need the number of the vessel, to be able to distinguish
between the vessels and assign individual pressure values or delete vessels from the data format
afterwards. Due to this, we have developed a new approach to simulate acute hypoxia.

It is important to state, that our special data structure reduces the memory consumption overhead
from quadratic to linear.

Equation discretization. When working on a Cartesian grid with equal distances in each direction
a finite difference approach is simple and efficient because one can easily exploit information on
adjacency and the structure of the emerging matrices.

The terms of the equation (3) have to be evaluated at the individual grid points. In order to
approximate the differential Laplacian, we use the standard, centered five point stencil. For an
equidistant grid with 4x = 4y = h, this simplifies to

−∆p|i,j ≈
−pi−1,j − pi,j−1 + 4pi,j − pi,j+1 − pi+1,j

h2
= −∆hp|i,j .(4)

3.4. Structure of discrete system. An important part of the whole problem is the assembly and
solution of the system of equations that has to be solved numerically. In order to understand the
difficulties and our solution approach better we now explain the structure of the equation system.

As an example for the structure of the system matrix A and the right hand vector b, we consider
the problem (3). By using the discrete Laplacian from (4), one can write the resulting linear system
of equations in matrix vector form Ap+ q(p) = b after assembling all the unknowns on the left hand
side and all the known boundary values on the right hand side. Let the oxygen pressure value inside
the vessel be denoted as p0 and the distance between adjacent grid points be h. Furthermore, we
assume homogeneous Dirichlet boundary conditions.

The consumption term reads

(q(p))i = 0, index corresponds to a vessel point,(5)

(q(p))i =
pi

pi + k
otherwise.(6)

For the explanation of the structure of the matrix, we first consider the so called vessel points,
which are located inside the vessel. These points have a constant predefined oxygen pressure value
p0, so the equation for those points is just

pi = p0(7)

Therefore, the matrix has only a 1 on the diagonal in the vessel point-rows and the right hand
side vector b has a p0 in the corresponding entry.

As the pressure at these vessel points is already known, the contributions from these points to
the other equations are moved to the right hand side vector b. So for every vessel point neighbor of
an arbitrary point, one has to add p0 to the corresponding entry in b. The other values emerge from
the standard five point stencil for the Laplacian (4).

3.5. Numerics. When using finite differences for the Laplacian the non-linear, partial differential
equation (3) becomes a non-linear system of equations

f : Rn → Rn f(p) = DAp+ q(p)−Db = 0(8)

with n as the number of points. Here, A and b belong to the linear system of the Laplacian.
Note that it is crucial to set q(p) = 0 for all points in the vessels to guarantee that equation

(7) holds for these points. To solve this equation numerically we use Newton’s algorithm as it is a
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simple and low memory-consuming algorithm with a good speed of convergence.

Newton’s algorithm is a special form of a fixed-point iteration described by the equation

pk+1 = pk − (f ′(pk))−1f(pk)(9)

with a start value p0 and

f ′ : Rn → Rn×n f ′(p) = D ·A+ q′(p).(10)

In (10) q′(p) describes the differentiated consumption term (2):

q′(p) = qmax ·
k

(p+ k)2
.(11)

As (10) is a convex function with values of q′(p) between 0 and qmax, a good convergence of
Newton’s algorithm is guaranteed. In general its convergence order is quadratic (see Section 4.3).

Now the task is to solve a linear system of equations

Ax = b with A ∈ Rn × Rn, b ∈ Rn(12)

corresponding to f ′(pk)y = f(pk) and update the solution vector p for every iteration step.
To handle the challenge of a low memory consumption we have to use appropriate methods for

the solution of the linear system. Therefore, we especially do not want to store the large matrix
A of the equation system. This can be achieved by using methods working on the evaluation of
the matrix by multiplying a vector so that the matrix-vector product can be directly evaluated.
The direct evaluation of these matrix-vector products without storing the matrix takes advantage
of the good structure of the matrix introduced in Section 3.4. On top of that, the boundary values
of the vessels are directly included in the matrix-vector product which is a benefit for the issue
of memory consumption. The evaluated product is stored in a vector. So our approach is to use
suitable numerical methods that only use operations on matrices resulting in vectors. There are
several ways to treat linear equation systems (12) numerically. We choose two different iterative
methods instead of a matrix decomposition. These are the Conjugate Gradient Method and the
Conjugate Residual method which are both Krylov subspace methods. Both methods guarantee
convergence for symmetric positive definite matrices. As the derivative of the consumption term
added to the diagonal of the system matrix discussed in Section 3.4 is nonnegative, the resulting
matrix is symmetric positive definite. For more information on the convergence see Section 4.3 and
Meister 2008 [8].

4. Results

Having modeled the problem and developed a specialized software we can now present our first
simulation results of tumor oxygenation. Additionally, we first validate the numerical solution
against a simplified model problem and derive a simple but efficient a priori error estimator. We
investigate a novel approach of modeling acute hypoxia and take a look at the convergence and
runtime of the numerical methods used during the simulation. As memory consumption has been
identified as the main bottleneck in recent applications concerning tumour oxygenation (see Dasu
2004 [1]), we show that our implementation is able to reduce memory storage significantly. The
following tests were carried out on standard personal computers with between 3 and 8 GB of random
access memory and a CPU frequency of 2.67 GHz.

4.1. Validation.
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Exact solution of simplified problem. In order to validate the program and to investigate the differ-
ences between various settings, especially with respect to the discretization methods, one needs an
exact solution of the problem to compare it to the numerical results. However, deriving an exact
solution for the non-linear partial differential equation is not trivial. Therefore, we restrict ourselves
to a simpler problem.
The non-linear PDE reads

−D4p+ q(p) = 0(13)

Now we assume q(p) ≡ 0, which means that we have no oxygen consumption. This simplification
is valid for very small values of p, as the consumption term q(p) = qmax · p

p+k goes to zero for

vanishing values of p.
Notice that even though the PDE is simplified compared with the non-linear equation, it still contains
the important Laplacian. By neglecting the non-linear consumption term the type - and therefore
also the behavior of the equation - is the same. Thus, by the investigation of different discretization
methods, one can get results that are also valid for the general case.
Furthermore, we need to prescribe boundary conditions on a domain in order to make the derivation
of an exact solution possible. For the domain, we choose the area between two concentric circles. As
boundary values we choose constant values p0 for the inner boundary and P0 for the outer boundary.

With the help of polar coordinates, the solution reads as follows

p(x, y) =
p0 − P0

ln(r0)− ln(R0)
(ln(

√
(x− x0)2 + (y − y0)2)− ln(r0)) + p0(14)

Here (x0, y0) denotes the center of the vessel. As expected p decreases from p0 on the inner circle
to P0 on the outer circle.

Comparison of exact and numerical solution. With the help of the exact solution we can now inves-
tigate the quality of the numerical solution. In order to obtain the same PDE we set D = 1 and the
parameter qmax is set to zero, therefore the consumption term in the equation vanishes as well. Now
we embed a quadratic numerical domain into a disk and place a vessel in the middle. With the help
of the exact solution it is now possible to compute the values of p at the boundary of the numerical
domain, since the numerical domain is enclosed by the circle with radius R0. Using those values as
Dirichlet boundary conditions for the numerical simulation, we can compare the exact solution with
the numerical solution afterwards.

In order to examine the convergence rate as a function of ∆x and the discretization method, we
compare different test cases. For a first comparison between different discretization methods, we
use a grid of size 200 × 200µm and let the vessel in the center have radius r0 = 20µm. The exact
solution on the domain can be computed using the formula above, resulting in the oxygenation map
in Figure 3 on the left. The pointwise error on the whole domain can be seen in Figure 3 on the
right.

As a first observation, the overall error is quite small compared with the other methods which
we tested separately. Furthermore, the error occurs in the region near the vessel boundary, where
certain areas show a larger error than others. Here the error is large near the upmost part of the
vessel, for example. The large error in those regions occurs due to the distances of the vessel points
to the real vessel boundary. This is also comparable to the discretization results in Figure 2.

The overall relative error can additionally be derived and is 0.00108 for our discretization method
and the specific test case. In fact, a relative error of about 0.1% is quite a good result for a resolution
of only 1µm.

In order to improve the significance of these first results we extended the test using different
settings. Here we present a second test that used a 200 × 200µm domain and r0 = 30µm in order
to have larger vessels and to have more boundary effects in the results. We computed the absolute
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Figure 3: Left: Exact solution for the first test. Right: Error distribution for first test.

error for ∆x varying from 8µm to 1
32 µm and present the results in a double log-plot in order to

obtain a rate of convergence easily. The results of this test can be seen in Figure 4.

Figure 4: Error for test on 200 × 200µm domain with vessel of radius 30 (yellow line), first order
convergence for comparison (blue line)

Concerning the rate of convergence one can easily compute a curve fitting by linear regression of
the double log data from 4. After that the slope of the line is the rate of convergence for the specific
test case and method. This yields a numerical convergence rate of 1.2277. We also obtained similar
results with other test cases. For comparison, Figure 4 also shows a line with slope 1. One can see,
that the numerical method yields a better rate of convergence than one.

In summary, it is shown that the numerical solution of our software converges to the exact solution.
This has been verified by comparison with the exact solution of a simplified problem. We were able
to obtain a convergence rate of 1.2, which is a quite good result compared with a minimum memory
storage overhead.

4.2. A priori error estimator. In practical applications one is interested in a priori error estimates
in order to choose the right resolution. The choice of the resolution is very important, because it
determines the number of grid points and therefore also the computational effort needed to solve the
problem. So if one wants to get a numerical solution that is sufficiently accurate, it makes no sense
to choose the smallest resolution possible because one then needs a lot of time to get this solution.
It is reasonable to look for the largest resolution that will give the numerical solution that has the
desired accuracy.
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For the derivation of an a priori error estimator, we assume linear convergence as shown by the
comparison of the exact and numerical solution in Section 4.1. As we are concerned with calculating
the number of hypoxic cells inside a tumor tissue, a possible criterion for the accuracy of the solution
could be, how well the fraction of these hypoxic cells is approximated by the numerical solution.
Similarly, one could take the fraction of vessels that have a certain oxygen pressure value. So we
take a function f̃ : R→ R that depends on the resolution. The value f(h) represents the percentage
of values within between 20 mmHg and 25 mmHg. The numerical solution gives this approximate
value. The percentage of the exact solution is denoted by f = f̃(0). Now, one wants to estimate the
error

|f̃(h)− f |.(15)

For the a priori error estimator, we employ the following ansatz for the calculation of the difference
between two resolutions

|f̃(h1)− f̃(h2)| ≈ C · |h1 − h2|k(16)

where C is a constant and k is the rate of convergence. The error in (15) can then be derived as

|f̃(h)− f | = |f̃(h)− f̃(0)| ≈ C · |h− 0|k(17)

The value of C still has to be computed by comparison of different resolutions. Therefore we
follow the estimation ansatz (16) and calculate C using two different resolutions as follows

C ≈ |f̃(h1)− f̃(h2)|
|h1 − h2|k

(18)

In order to get a value for C we will further assume k = 1. Nevertheless, the following derivation
is also possible without this assumption. After having derived a value for C the a priori error
estimation reads

|f̃(h)− f | = |f̃(h)− f̃(0)| ≈ C · |h− 0| ≈ C · h.(19)

The values f̃(h1), f̃(h2) and f̃(h3) have to be computed by numerical simulations. Therefore we
consider the following test case: Take a domain of size 400 × 400µm with vessels of radius 5µm
and a mean distance of 120µm using the scattered grid distribution. Then we simulate the oxygen
distribution by running the software and calculate the percentage of values within certain ranges of
oxygen pressure values.

In our simulation, one can see that most of the cells have values of about 5 mmHg − 10 mmHg
and only very few cells have very high values. But the most important fact is that the percentage of
values seem to stabilize for finer meshes. The values of the numerical solution get nearer to the exact
values, so one can assume that the exact value is approximated in the limit h → 0, corresponding
to f = f̃(0). Furthermore, the values are still changing a lot for resolutions 8µm and 4µm. When
the resolution is about 0.5µm the values are almost the same as for finer grids. So a reasonable
value for the resolution seems to be 0.5µm because smaller values do not increase the accuracy of
the simulation very much and lead to higher computational costs.

It is now possible to estimate the value of C using the values from the simulation in order to

compute an error bound and choose the resolution according to that. Here we choose f̃ = f̃0−5 to
be the percentage of hypoxic cells, specifically the percentage of cells that have an oxygen value of
0 mmHg − 5 mmHg.
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Deriving C from equation (18), one obtains different values depending on the choice of h1, h2.
The values are different from each other, so we take the maximum of the relevant values for our
estimate:

C = 7998 ≈ 8000.(20)

So, for an relative accuracy of 1% = 0.01, it is approximately sufficient to use a resolution of
0.25µm according to the following derivation; here we assume the exact value f0−5 ≈ 0.25 which
seems reasonable when compared to our simulations where f0−5 stabilizes at about 0.24:

|f̃0−5(1)− f0−5|
|f0−5|

≈ C · |0.25µ|1

|f0−5|
= 8000 · 0.00000025

0.25
= 0.008 < 1%(21)

Note that, as this is only an error estimate, it does not necessarily hold for every application, but
it can give useful information on how to choose the resolution in general. It is also important to say
that the values of C differ, when considering different functions for f̃ , for example the percentage
of oxygenated cells (in our example the other values were smaller, which means that the choice of
0.25µm is still quite conservative).

We expect the results to be valid for other applications with larger domains and more vessels.
Therefore, the user is now able to choose an appropriate value for the resolution without calculating
a numerical solution first.

4.3. Convergence results for numerical methods. Memory consumption is not the only con-
sideration, we should also keep in mind the runtime of the simulation. Therefore it is important to
analyze the assumptions made on the convergence of the different numerical methods used.

Convergence of Newton’s algorithm. The inequality

||pk+1 − p∗|| ≤ C · ||pk − p∗||2(22)

holds for Newton’s algorithm under several conditions. First, the Jacobian f ′(p) should be invertible
and Lipschitz continuous. Furthermore, the initial values should be chosen in an appropriate way
which is discussed later on. Looking at the Jacobian f ′(p) given by (10), we can directly state that
it is invertible as the matrix occurring from the discretization has full rank. Additionally we state
for a p ≥ 0 and s ≥ 0,

||f ′(p)− f ′(s)|| = ||q′(p)− q′(s)|| ≤ ||q′′(ξ)||∞ · ||p− s|| = L||p− s||.(23)

As q′′(ξ) is bounded in the domain of the solution, the Jacobian is Lipschitz continuous. Therefore
we expect local quadratic convergence for special start values.

To analyze the convergence for the model one first must think about appropriate start values. As
the exact solution should show the chosen pressure values for the points belonging to the vessels,
the idea is to assign this pressure already to these points in the vector of start values. Our tests
validate this idea.

In order to analyze the occurring residuals for each step we make use of the ∞-norm of the
evaluation of the right hand side of the non-linear system as it is independent of the size of the
calculated area.

Table 1 shows the decrease of the residuals for different domain sizes or matrix dimensions. Here
the values in the first row stand for the length of the the quadratic area in mm2. One can get an
impression of how quick Newton’s method converges for even larger systems. It becomes clear that
the number of iterations does not depend on the dimension of the system to be solved. But for the
case of the area of 1 mm2 corresponding to a dimension of 1002001 there are more iterations needed
than for the other dimensions. This is due to the fact that in the case of a number of 64 vessels
with a radius of 5µm2 the resulting area has a lower mean intervascular distance. Therefore the full
range of the different pressure values is given in the whole area. In all other cases there are more
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Iterations 1000 2000 3000 4000
180000 180000 180000 180000

1 254.843 242.998 243.065 243.064
2 21.2117 3.99768 3.55857 3.55476
3 8.25828 0.768127 0.176955 0.176499
4 1.04148 0.096785 0.00931269 0.000825185
5 0.038891 0.000894985 9.87851e-05 1.56672e-06
6 0.000124126 3.05714e-07
7 4.82274e-07

Table 1: Decrease of the residual for different domain sizes or matrix dimensions

areas of low pressure so that the values for all points do not differ that much. This explains why the
change, as compared with the starting vector is smaller for these cases. As a result, the number of
iterations depends on the mean intervascular distance in the area denoted by the variance and, in
particular, the mean of the used distributions. In Dasu 2004 [1], a representative value of 100µm
for the mean intervascular distance is given.

For an order of convergence higher than 1, the estimate ||pk − p∗|| ≈ ||pk+1 − pk|| holds.
In table (2) we look at the same setup as in (1) for the area of 1 mm2. One notices that, for

the area densely filled with vessels, the quadratic convergence can be seen after 6 iterations as the
number of correct digits doubles.

Iterations Norm of yk
1 43.4475
2 18.337
3 11.4244
4 3.10141
5 0.3243
6 0.00404526
7 0.00000847614

Table 2: Norms of the update vectors for Newton’s algorithm

Convergence of Conjugate Gradients and Conjugate Residual. In the following we look at the con-
vergence of the linear numerical methods. Theoretically, both used methods should converge to
the exact solution in n iterative steps where n, as usual, denotes the dimension of the system of
equations. As already mentioned, the solution should be in the range of the approximation behavior
that can be reached by the discretization. So one gets a lower number of iterations than n. Table (3)
shows different numbers of iterations for different dimensions and different means for the distribution
of the vessels. They were calculated by using a residual of 0.0001 as a stopping criterion.

Dimension 1002001 (*) 9006001 9006001 (*)
Mean Iterations 780 435 802

Table 3: Mean number of iterations for the CG-method

The (*) denotes an area with a lower mean intervascular distance. Again, one notices that the
number of iterations to reach a certain residual does not depend on the dimension but on the mean
intervascular distance. This is the same result as for the number of iterations of Newton’s algorithm.
Note that the start value for each iteration is consistent with the solution y of the linear system
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for the old iteration so that the change of the old Newton step does not get lost and the starting
residual of the used linear method decreases during the iteration of the non-linear solver.

From experience, we know that other iterative methods, such as the Jacobi method, are not as
efficient as the CG-method and the CR-method since they need a much higher number of iterations.

To investigate the speed of convergence of the two methods used one can have a look at Figure
(5).

Figure 5: Development of residual of CG (blue) and CR (red)

The graph plots the normed error

log10(
||rk||∞
||r0||∞

)(24)

over the number of iterations. Both methods show a linear progression of −0.01 normed errors per
iteration denoting that they have the same speed of convergence. But one can see that for the first
iterations the Conjugate Residual method converges faster than the Conjugate Gradient method so
that it needs fewer iterations. Note that the convergence is measured in the ∞-norm. There will be
different results when measuring in the 2-norm or in the A-norm, as the Conjugate Gradient method
minimizes the A-norm of the error, whereas the Conjugate Residual method minimizes the 2-norm
of the residual. These results can be validated by similar results in Rabenseifner 2010 [8].

4.4. Memory requirements and runtime.

Memory requirements. Now it is important to check whether the goal of the project to minimize
memory requirements to ensure the calculation of large areas of tumor tissue is successfully met.
As the information on the discretization needs a small amout of memory that depends on the area
of interest and the resolution, the solution of the non-linear system is the most memory-intensive
part of the calculation. In the following, we will look more closely at the memory required by the
non-linear and linear numerics.

To calculate a step of Newton’s algorithm as described in Section 3.5, one needs two vectors of
dimension n, which denotes the number of points occurring from the discretization. Therefore they
depend on the size of the area of interest and not on the number of vessels in this area. This holds
for all vectors used while solving the system of equations which can be seen in table (4). It shows the
memory consumption of the solution methods on an area of 1 mm2 for different numbers of vessels.
Here one can observe that the used memory does not depend noticeably on the number of vessels in
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the domain.

Vessels 1 64 225
Peak Memory 56148 KB 58042 KB 59988 KB

Table 4: Peak Memory for different numbers of vessels

As we expect it to be, Figure (6) depicts the dependency of the used memory on the dimension.
Here, the red bars represent the memory used by the numerical methods and the blue bars the
additional memory. The additional memory increases linearly with the grid constant, whereas the
largest amount of the memory increases quadratically with the grid constant and, therefore, linearly
with the dimension.

Figure 6: Peak memory for different dimensions

To understand the amount of memory needed one should account for all the vectors used. The
numerical approaches to the linear system utilized are very low memory consuming. Both the CG
and the CR method make use of several vectors of the length n. Instead of storing the matrices of
the order of n2 the needed matrix vector products are directly evaluated so that the costs of memory
are reduced to the order of n.

The convenient algorithms for the Conjugate Gradient method and the Conjugate Residual
Method can be improved by reusing the old values for the correction factors and for the matrix
vector products of the last iteration step so that the number of needed vectors can be reduced from
5 to 3.

To calculate the residual, the linear and the non-linear solver need additional memory to store
the residual vectors for a short time. Further memory storage is required by the evaluation of the
matrix vector products. Due to this, one needs a maximum of 3 n-dimensional vectors in addition
to the 2 of Newton’s algorithm. When regarding the additional vectors for the linear solver, more
vectors turn into account. Here one gets a maximum of 4 vectors additionally to the existing 5.

To summarize these results, after optimizing the algorithms one gets a maximum storage of 9
n-dimensional vectors from the numerical methods. This is a promising result, as we have a linear
dependence of memory on the dimension. On top of that, the optimizations can be seen in the peak
memory. When looking again at Figure (6) and comparing these results to the peak memories of
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the program using the unoptimized algorithms for the numerical method one can clearly see the
effects of optimization. Before, one needed 407 MB of main memory as a peak value for a dimension
of 4004001, the peak memory of 297 MB for the optimized algorithm is a reduction of about 25
percent. Similar results occur for a dimension of 9006001. Here the old results for the peak memory
were 760 MB compared to the new peak memory of 620 MB.

Runtime. As already discussed in Section 4.3 Newton’s algorithm converges quadratically. Also, the
algorithms for the solution to the linear system ensure a good order of convergence as discussed in
4.3. For each step of these algorithms only up to two evaluations of the matrix vector product at
the cost of O(n) operations have to be computed. We achieve this by exploiting the sparsity of the
system matrix as specified in Section 3.4. To get a better sense for the runtime of the program we
will look at the runtime during solving the system of equations given in the table (4.4).

Dimension 1002001 (*) 4004001 9009001 9009001 (*) 16008001
Time in min 20 58 76 106 122

Table 5: Runtime for different dimensions

Here one can see the linear dependence on the dimension of the system as well as the influence of
the number of iterations for Newton’s algorithm, as the values with (*) represent runtime calculations
for areas with a dense structure of vessels.

To increase the speed of convergence of these iterative methods one has the possibility to use
preconditioning algorithms. In the case of the Conjugate Gradients method, a possible method
would be the Preconditioned Conjugate Gradient method. As the focus of the project is set to
minimizing the used memory a preconditioning method is not optimal for several reasons. First,
preconditioning means additional storage reserved for the preconditioning matrix and its evaluation.
Another problem is the destruction of the simple matrix introduced in Section 3.3 so that the
introduced data structure for the discretization becomes useless. The more simple and efficient way
to decrease the overall runtime would be to parallelize the program. For the used iterative methods,
this can be easily done as they are based on simple for-loops. Since memory-consumption is still an
issue in the program, it can benefit from the use of distributed memory clusters and MPI would be
the best approach. When using smaller cluster machines with large shared memory, the program
could be parallelized using OpenMP.

5. Application Results

5.1. Results of modeling hypoxia. Section 2.2 gives information on the two different forms of
hypoxia. Our program provides several new ways to model hypoxia in an easy way due to the
advantage that all parameters can be directly altered by the user and information on the radius and
the pressure of each vessel is stored.

Chronic hypoxia results from limited diffusion. This is the form of hypoxia that is directly
calculated in the model. To investigate the effects of chronic hypoxia, one can limit the diffusion
even more by changing the diffusion coefficient D.

Looking at the results of Figure (7) with a diffusion coefficient of 2000 and Figure (8) with
D = 1000 that were calculated in a 1 mm2 tissue one can see the impacts of chronic hypoxia on the
oxygenation of the tumor tissue. The left part of the Figure shows an oxygenation map showing the
values of the oxygen pressure for each point of the discretization. The red values stand for the high
pressure in the vessels whereas blue colors indicate areas of low pressure. On the right hand side
of the Figure one can see a histogram showing the percentages for the different pressure values of
the oxygenation map. In Figure (8) the histogram is shifted to the left since the oxygenations map
contains more areas of low pressure.
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Figure 7: Tumour tissue (D=2000)

Figure 8: Tumour tissue (D=1000)

Another form of hypoxia is acute hypoxia, which was characterized in Section 2.2. In the model,
there are different particular parameters for each vessel. The most apparent way to model less
perfusion is to delete an arbitrary number of vessels in the tissue.

Figure 9: Tumour tissue with acute hypoxia for 25 percent of the vessels

In Figure (9) 25 percent of the blood vessels were randomly deleted. The results of this are larger
areas of low pressure.

The program offers even more ways to simulate acute hypoxia. For example the radius of some
vessels can be decreased possibly representing partially blocked vessels shown in Figure (10). Here,
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instead of a radius of 10µm, some vessels have only 2µm. It is possible to prescribe different sizes
for each vessel in the domain.

Figure 10: Tumour tissue with acute hypoxia modeled by radius

Less blood flow through the vessels can also be modeled by assigning lower pressure values to
the affected vessels. Assigning 5 mmHg instead of 45 mmHg to some vessels, as done in Figure (11),
leads to similar results as obtained by deleting these vessels. If one sets the pressure in the affected
vessels to 27.5 mmHg, as has been done in Figure (12), one can observe results similar to Figure
(10).

Figure 11: Tumour tissue with acute hypoxia modeled by pressure p = 5 mmHg in hypoxic vessels

Many tumours consist of necrotic cores in the center. This region is in general very different from
normal tumour tissue. We have not covered this topic in this paper. General valid assumptions for
modeling such necrotic regions are to alter the diffusion coefficient and to set the consumption term
to zero, as there are no living cells consuming oxygen inside the core.

5.2. Application Example. As a final result, we present the simulation of tumor oxygenation
in a large domain of interest. We consider a domain of length and width 3500µm. Real tumors
measure about 3−4 cm in diameter. The resolution during simulation is 1µm, corresponding to the
error estimator from section 4.2. So the number of hypoxic cells should be accurately resolved. For
the distribution of the vessels inside the domain we assume a mean intervascular distance of about
100µm together with a variance of circa 300µm2. This distribution results in a total number of
1296 vessels. The simulation on our desktop PC took approximately 30 minutes.
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Figure 12: Tumour tissue with acute hypoxia modeled by pressure p = 27.5 mmHg in hypoxic vessels

The numerical solution calculated using our program is shown Figure (13). One can see that
the tissue consists of large areas with hypoxic cells (represented by dark blue color). On the other
hand, there are regions with many vessels resulting in a high oxygen value. The figure shows, that
hypoxia only occurs in regions that show a large variation of intervascular distances due to the
chosen distribution. In regions where the vessels are almost equidistantly placed, the oxygen values
are above the hypoxic threshold.

This example demonstrates the good performance of our software program and verifies the benefits
of our work, as other tools are not able to reproduce these result due to their disadvantages regarding
memory consumption. We expect that the program can solve a domain measuring 4 cm2 by using a
peak main memory of about 30 gigabytes so that tumors of a size measured in cm2 can be modeled.
Using a third dimension would not disturb the linear increase of memory consumption with the
dimension of the system. An area measuring 0.4 mm2 could be calculated using 30 gigabyte by
introducing a third dimension.

6. Conclusion

Summarizing everything, we have successfully shown that it can be reasonable to invest time to
design numerical software for an explicit problem equation and problem domain. Our aim was to
develop a software program that overcomes the problems of high memory consumption needed for
storing the grid. Having achieved this, computations on larger domains can be started.

Our approach shows that very simple mathematical methods can be better than the more devel-
oped methods used in commercial tools. The impact of this can be seen in the discretization step
very clearly. Instead of using a very irregular grid, a simple equidistant grid reduces the memory
consumption greatly. One may need a finer grid resolution and therefore many more grid points, but
for each grid point very little information has to be stored. Our investigation of the discretization
of the vessels also achieves, that the circular borders can be represented accurately enough on such
a regular grid.

Using this simple but still flexible ansatz, we were able to design a new data format to save
the boundary information efficiently. Thus, it was possible to reduce the memory consumption even
more, so that the number of vessels inside the domain no longer dominates the memory consumption
of the whole simulation, as was the case for commercial software packages.

Using a standard finite differences approach, we could exploit the structure of the emerging system
of equations in order to solve the system quickly with the help of Newton’s method and a CG or
CR method.

For the validation of the model and the numerical solution we simplified the problem for the linear
case and derived an exact solution. Our simulation results show the convergence of the numerical
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Figure 13: Oxygenation map for the simulation of tumor oxygenation on a large domain of size
3500× 3500µm containing almost 1300 vessels

solution to the exact solution for vanishing resolution. In the context of this validation we obtained
the desired linear convergence rate.

In order to ease practical application, we derived an a priori error estimator. With this, it is
possible to choose a suitable resolution for a desired accuracy of the numerical solution. We showed
that it can be enough to use a resolution of 1µm for the accurate approximation of the number of
hypoxic cells.

As for the numerics part of our project, we could verify the convergence order of Newton’s
algorithm for our nonlinear equation system and have investigated the CG and CR method with
respect to memory consumption, runtime and convergence, too. Additionally we have shown that
the choice of the initial guess has less influence on the behavior of the solvers.

It is important to note that we were able to introduce three novel approaches of modeling acute
hypoxia that can possibly be used combined in order to get the most realistic results. Finally, with
the help of the achievements above it was possible to simulate tumor oxygenation for tissues that
have an area of several cm2. So far, there have only been successful simulations for tissues of about
1 mm × 1 mm. This means the outcome of our work on a specialized software is the step from the
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mm scale to the cm scale. This result is quite meaningful because a real tumor also would have
about 3− 4 cm in diameter. In this sense, the simulation of tumor oxygenation can truly be used in
practical applications.

Further work could be used to extend the model to a third dimension. The solution technique
in that case would remain the same as in the two dimensional case but the generation of a domain
would be more difficult as the vessels are no longer simple cylinders. Since our grid storage method
can approximate arbitrary shapes in two dimensional space, it is possible to extend this to a third
dimension. In three dimensions a second vessel point vector could be used, which stores a starting
and end point of the vessel in the new dimension.

It is also possible to improve the model, for example, by treating the vessel boundary as a
membrane. Due to the simplicity of the grid and the numerical methods our approach, an extend
model can be fitted without much overhead. To gain the full advantage of the improved memory
consumption of this solution, the program could also be useful to parallelize the program using
OpenMP or MPI.
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