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Abstract 

With cancer as a leading cause of death in the United States, the study of its 
related data is imperative due to the potential patient benefits. This paper examines 
the Surveillance, Epidemiology, and End Results program (SEER) research data of 
reported cancer diagnoses from 1973-2014 for the incidence of leukemia in young (0-
19 years) patients in the United States. The aim is to identify variables, such as prior 
cancers and treatment, with a unique impact on survival time and five-year survival 
probabilities using visualizations and different machine learning techniques.  This goal 
culminated in building multiple models to predict the patient's hazard. The two most 
insightful models constructed were both neural networks. One network used discrete 
survival time as a covariate to predict one conditional hazard per patient.  The 
prediction rate is nearly 95% for testing datasets. The other network built hazards for 
discrete time intervals without survival time as a covariate and predicted with lower 
accuracy, but captured variable effects from initial testing better. 
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Introduction 

Cancers are the source of nearly a quarter of all deaths in the United States and 
among them; leukemia is one of the leading causes of death for children. Our study 
aims to isolate features with a unique impact on survival, in addition to more accurately 
predicting the likelihood of death of leukemia patients from age 0 to 19, for whom 
leukemia is the most commonly occurring cancer type [1].  According to the Leukemia 
& Lymphoma Society (LLS) [2], the 5-year survival rates for leukemia patients have 
increased from 34% in the mid-1970s to approximately 63% from 2006 to 2012. The 
primary treatment options for leukemia patients are chemotherapy, radiation, or a 
combination of the two. However, since leukemia is a cancer of the blood cells, 
radiation is not typically recommended as often as chemotherapy since there is rarely 
a cancer cluster at which they can direct the beam radiation.  

Furthermore, due to the lack of distinct clusters, analysis into leukemia patients 
is made more difficult due to atypical staging. The vast majority of cancers are staged 
based on tumor size, and if they have spread from the place of origin, both of which 
are qualities that are absent from instances of leukemia. According to Cancer 
Treatment Centers of America [3], doctors often stage leukemia by various blood cell 
counts or the number of leukemia cells that get built up in a patient's organs, such as 
the liver. There is further complexity in staging based on the leukemia subtype, often 
calling for dramatically different techniques to be used in examining the condition and 
making the call for a stage. The National Cancer Institute Surveillance, Epidemiology, 
and End Results program (SEER) points out that across the board there is no standard 
staging method for leukemia [4], resulting in a large vacancy of a typical and commonly 
interpretable factor toward a patient’s risk.  

Data 

Making further use of the information available from SEER for 1973 to 2014, we 
extracted the data used in this study from the program’s database. This data is also the 
same data that the LLS used to find their 5-year survival rates. It is expected to see that 
the time of diagnosis will have a significant impact on the 5-year survival rates and the 
patient hazards to be discussed later on. We restricted the data to only the desired 
ages, 0-19 years, and removed patients diagnosed before 1975. The restriction on 
diagnosis year was made to simplify the task of discretizing time-periods into five-year 
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blocks in the discrete modeling section of the research. Second, all exact duplicate 
rows were removed leaving only 102 duplicated patient ID’s left in the data.  Of the 
duplicated patients there was some discrepancy in treatment. Some patients had 
multiple rows, each with a different combination of treatment variables. Those rows 
were simplified to include the complete treatment information  to represent treatments 
received for that particular cancer. We designated any further duplicated patient ID’s 
as a new instance of cancer, with different age, diagnosis year, sequence number and 
unique survival time. These rows were left in the final data to assess the impact of each 
independent cancer, as we are not examining patients but the instance of cancer. With 
this in mind, due to the possible dependencies that could be present due to a repeated 
host patient for multiple cancers, we performed sensitivity analysis on our final models 
with their omission, discussed in the results section. These filtrations left us with 18421 
unique observations of cancers.  

Furthermore, we simplified radiation treatment into only two levels including 
received or did not receive/unknown if received. While this is not a typical leveling 
strategy, the SEER leveling method for chemotherapy is in terms of treatment vs. 
none/unknown. We extended this strategy to radiation where there is no specification 
between no treatment and unknown, so the decision was made to follow the simplified 
coding method SEER employed for chemotherapy on radiation as well. Year of 
diagnosis was divided into five year periods, for us to create eight time-periods. We 
marked all patients that were still alive at the end of the study as censored, as well as 
those patients who lost contact and did not follow up during the time of the study. The 
final split put the original data into three different formats: The standard format with 
all 18421 rows for data exploration and continuous modeling, a long-format for the 
discrete extension of Cox Proportional Hazard modeling (Cox PH), and a wide-format 
for discrete neural network modeling.  

For the long-format, each row had multiple repetitions, one for each of the 
discrete time-periods that the cancer was present in the study. For example, if a patient 
died in the fourth period, their records would be repeated four times with an indicator 
noting that they died in that last period, as well as indicators for which time-period that 
row represents.  

The wide-format contains eight additional columns representing the patient's 
status in the first through last time-period. If a patient was alive in a given time-period, 
that entry was marked 0, and if they died or were deceased in a time-period, the entry 
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was marked 1. Patients who lost contact had their vital status marked with the hazard 
for each given time-period they were absent from the study. For example, if a patient 
were lost to follow-up in the fifth time-period, then the sixth through eighth periods 
would be marked each with their respective hazard. For neural network models, all 
factor variables took the form of n-1 dummy variables, where n is the number of factor 
levels. 

Initial Investigations 

Figures 1a and 1b show the geometry for survival time, split across censored 
and uncensored patients. This triangular pattern present in survival time is due to the 
structure of the study. Patients had their survival time recorded regardless of their 
event, and in a living patient’s case, represents the time in months from their diagnosis 
to the end of the study. Since the study cuts off all data collection in 2014, despite 
bringing new patients in up to then, the hypotenuses of these triangular areas 
represent the maximum survival time patients could have at a given diagnosis time. We 
also observed numerous censored cases where patients lost contact and were last 
classified as alive but have less than the maximum survival time for their diagnosis year. 
The trend for deceased patients is what we expect in most survival data, most dense 
in the realm of shorter survival times. 

In general, inference on cancer data is derived from a core list of different 
features. Some of the common factors are surgical procedures and tumor size, among 
others. In the case of leukemia,  these features are not particularly relevant or available. 

Figure 1a Figure 1b 

Figure 1: Survival time groupings by event 
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Additionally, some of the variables were rarely tracked, being marked as unknown or 
the entries were left blank. Many of these unknowns were coupled with the variables 
that had inconsistent tracking across all time-periods. Not all data was recorded for the 
entire length of the study. Some variables only had records in the earlier years, and 
others were introduced within the most recent years. The decision was made to remove 
these variables as the particular aim of the study required that our covariates be 
traceable from the beginning of the study to the end. In some cases, variables were re-
coded to be more accurate to different recording conventions. 

   Of the complete features that remained, we examined variables such as age, 
sex, treatment, sequence, among others (Full variable table found in the appendix.) 
First, looking into treatment, we notice that radiation shows a surprising level of 
survival, as well as longer survival times. Additionally, we noted that the patients were 
mainly in the earliest diagnosis periods and among the oldest patients. Figure 2a shows 
this interaction. We note that there is an evident cluster of the patients with only 
radiation administered, in the earlier time-periods at older ages, that seemed to survive 
longer. Since leukemia is blood based, it typically is not as affected by radiation alone, 
so this cluster was worth further inspection. Through examining the cluster, we noticed 
that the majority of these patients had a primary site identifying that they were 

Figure 2a 
Treatment Effect with Hodgkin’s patients

Figure 2b 
Treatment Effect Without Hodgkin’s patients 

Unknown Chemo Radiation Both 

Figure 2: Survival Time and Treatment Effects With and Without Hodgkin’s Disease Patients 
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diagnosed with Hodgkin’s disease. Since Hodgkin’s disease has a primary site of the 
lymph nodes, radiation has a more substantial impact on it, and therefore patients show 
significantly better survival rates than other patients. Re-examining the initial plot, 
omitting the Hodgkin’s patients, shows a more typical relationship in Figure 2b where 
the patients who survived had either chemotherapy or both chemotherapy and 
radiation. Because patients with Hodgkin's disease were a moderately sized group of 
patients present and there was a clear impact on treatment by these individuals, we 
repeated our hypothesis testing, discussed momentarily, with their exclusion to 
determine how sensitive the other covariates were to this diagnosis discrepancy. Upon 
repeating these tests, we encountered similar results, suggesting that the only 
difference between these patients could be found in the treatment clusters of figure 
2a. Under this reasoning, these patients remained in the study and their unique 
information was to influence the models as the effect of radiation on a patients survival. 
Thus, radiation-only treatment would act as our factor variable, in essence, 
representing an intercept term specific to this diagnosis type.  

 While performing our tests we allowed each patient to be represented and their 
general information to vary as to capture the overall relationship between each of the 
variables discussed. Thus, the tests were carried out under the natural data structure, 
without variables held constant, to identify specific conditional interactions between 
multiple covariates. All tests were carried out using a standard 0.05 level of significance, 
determined beforehand. 

After performing the Fligner-Policello for the difference between two sample 
medians and z-test for comparison of two proportions, we observed that there was no 
difference between the survival times and survival rates of male and female patients. 
Due to this, we excluded sex from any further examination.   

Patients were assigned one of five groups based on age at diagnosis. One group 
contains only infants and the remaining four are structured in five-year intervals. Kaplan-
Meier plots [13] showed the infants as the group with the lowest survival, with the 15-
19 year-olds showing the highest survival. Again, through use of the Fligner-Policello 
test, we observed that, like the survival probabilities, infants had the shortest survival 
with 15-19 year-olds surviving the longest, with the remaining three groups showing 
insignificant differences from one another at the 0.05 level. 

One of the additional factors often used in the medical field to determine the 
severity of leukemia is the grade of cancer, typically denoted by the cell type [5]. The 
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primary cells for classification are B and T cells so we examined them with a particular 
interest. Typically, T cell leukemia is more aggressive and usually results in deadlier 
cancers. Hypothesis testing showed that B and T cell types are different among 
patients’ survival. Kruskal-Wallis tests for several independent samples showed that 
there was no significant difference between the cell types and median survival time. T 
cells did, however, show shorter but insignificant survival times, which fell in line with 
current understandings of leukemia. Further z-testing for comparison of proportion did 
provide more evidence for the inclusion of cell type in our work. We revealed that early 
death proportions for T cell leukemia were significantly higher than those patients with 
B cell type leukemia, until leveling off near five years after diagnosis.  

Time-period of diagnosis depicts expected trends for survival time. Even 
disregarding the improvements in treatment that have come with time, the nature of 
the study lent itself towards higher survival rates and shorter overall survival times for 
the more recent periods. Since SEER recorded final survival time and status of all 
patients in 2014, as diagnoses approached 2014, patients were given less time in the 
study to experience the event. Thus, maximum survival time decreases, and we observe 
a reduced number of events. Additionally, the change across each time-period was 
relatively consistent and fit the expectations built around the study’s structure. 

Initial testing on the number of prior diagnoses for each patient, referred to as 
sequence/sequence number, left us with consistent, yet surprising trends. Fligner-
Policello testing revealed that the number of prior cancers (counts 0-2) did show a 
significant difference in the survival time of the patients who experienced the event. In 
examining each pair, we found that each sequence level was different from both others. 
Sequence two showed the lowest median survival time (8 months), followed by no prior 
cancers (19 months) and one prior cancer (200 months). The survival time of patients 
with one prior cancer is unexpectedly higher than zero and two prior cancers.  

Further investigation was conducted to verify these results. Figure 3a and 3b 
show the proportion of patients that died within the first five years after receiving their 
diagnosis (conditional on when they were diagnosed) and Kaplan-Meier probabilities 
over time (in months) respectively. Both figures illustrate behavior similar to that shown 
in hypothesis testing. These plots are divided across time-periods to help see the 
changes over time. However, in general, a sequence of one still shows to be beneficial 
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in survival time across all periods and only showing five-year survival for zero prior 
cancers surpassing it in the most recent 15 years. Finally, Kaplan-Meier estimates 
express that having no previous cancers only benefits patients after they have already 
survived for 30+ years. The sequence did not show a relationship that simply explained 
itself, as was the case with treatment and Hodgkin's patients. We hypothesize that 
these patients, with the surprising survival times, despite the event taking place, could 
have potentially been caught in an earlier stage (made difficult by no standard staging 
method). Alternatively, these patients could all share a particular feature which is not 
present in our given data. These trends were also present when removing patients that 
had multiple instances of leukemia in the data, thus showing that the patterns were not 
confounding effects caused by potential dependencies between those particular 
cancers. 

 In summary, we selected age group, grade, sequence, chemotherapy, radiation 
treatment, and time-period diagnosed as the covariates for modeling. This decision 
was made based on the variables’ trends through initial testing, their completeness, 
and usage as standard metrics. Key hypothesis testing results are summarized in 
tabular form in the appendix. 

Figure 3a Figure 3b 

SEQ 0 SEQ 1 SEQ 2 

Figure 3: Sequence Effects on Patient Survival
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Methodology 

Let T be a random variable representing survival time of interest, the time until 
a given event takes place. We note that this random variable can be discrete or 
continuous based on how the sample space is defined.  

Often, it is not practical to discuss the probabilities of survival, but the functional 
form of survival which is easily derived and can help represent a patient’s risk. The 
probability of having not experienced the event at time t can be defined as 

𝑆 𝑡 = 𝑃 𝑇 > 𝑡 .

The survival of an individual in any given time interval t can be found by taking the 
product of the conditional probabilities for each previous interval where the risk set 
changed. This can then be written as 

𝑆 𝑡 =
𝑛) − 𝑑)
𝑛), )

,

where t(i) represents the set of all time intervals that individuals left the risk set, 𝑛) 
representing the size of the risk set at interval 𝑡) and 𝑑) representing the number of 
events in interval 𝑡).  

The risk, or hazard, for an individual experiencing the event at any instant, can 
be defined as 

ℎ 𝑡 = lim
∆,	→5

𝑃[𝑡 ≤ 𝑇 ≤ 𝑡 + ∆𝑡|𝑇 ≥ 𝑡}
∆𝑡 .

From (3), it can be derived that h(t) can be more succinctly written as 

ℎ 𝑡 =
𝑓(𝑡)
𝑆(𝑡) = −

𝑑
𝑑𝑡

ln 𝑆 𝑡 ,

where 𝑓 𝑡  is the PDF, 𝑃 𝑇 = 𝑡 . 

One of the most common proportional hazard models, the Cox proportional 
hazard model [9], is written as  

ℎ 𝑡, 𝑥, 𝛽 = ℎ5 𝑡 ∗ 𝑟 𝑥, 𝛽 , 

where 𝑟 𝑥, 𝛽 	is the exponential parameterization of the hazard function 

𝑟 𝑥, 𝛽 = 𝑒(EFG EHIH)J
HKL , 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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and ℎ5 𝑡  is referred to as “baseline hazard,” the rate at which hazard changes over 
time. Parameters of this type of regression procedure are estimated by maximizing the 
log-likelihood function. However, Cox used the “partial likelihood” (6) method, 
whereby we maximize 

ℓN 𝛽 =
𝑒IHE

𝑒IOEOP∈R(SH)

T

)UV

WH

,

where 𝑅(,H) is the total number of individuals in the risk set at time 𝑡) and 𝑐)	is the 
censorship term, one for the event and zero for non-events. The Cox model calls for 
three major assumptions to hold for the method to be valid. 1) The hazard ratio for any 
two individuals must be constant with respect to time, 2) there must be a limited 
number of non-event cases, and 3) each time of event is unique. In other words no more 
than one event happened at a given instant, though there are multiple common 
methods of compensating if this assumption fails. While the method is widely used and 
offers great interpretability, the rigidity of the model assumptions makes it difficult to 
use on instances of imperfect data.  

By re-examining the structure of our random variable for survival time and the 
interpretation of our event, we can extend out to alternate methods. By breaking our 
survival time into a discrete random variable across the range of survival times in a 
given data set, we can use logistic regression to estimate an individual’s hazard using 
discrete survival time as a conditional covariate [10]. We also briefly utilized support 
vector machines (SVM) [11] to classify event status. The SVM method aims to maximize 
the distance separating events from censored cases. To reduce classification errors, 
two SVM’s were chained together. The goal of the first SVM in the chain is to use all 
covariates and predict a penalty term, how likely it is for a patient’s event status to be 
incorrect. The second vector takes all covariates and the new penalty term and uses 
these terms to predict the final patient vital status.  

Our final method involved the use of artificial neural networks to provide a 
nonlinear alternative to Cox PH “not constrained to strong assumptions on the effect 
of the covariates” [12]. We benefit from the use of neural networks as they learn off 
patients’ actual vital status and thus learn how to predict for both events and censored 
cases. Neural networks treat each variable as an input node and each response as an 
output node. In the case of a categorical response, each category level is represented 

(7) 
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as a distinct output node. Between these two layers can be an arbitrary number of 
“hidden layers” with an arbitrary number of nodes in each layer. Each node in each 
layer connects to each node in the subsequent layer, and those connections all hold a 
weight, or importance, to the model structure. The model is trained and goes through 
the learning process by multiplying each input by each connection weight (which is 
repeated layer to layer) and feeding forward through the network. At the hidden layer, 
the hyperbolic tangent (tanh) function  

𝑡𝑎𝑛ℎ 𝑎 =
𝑒[ − 𝑒\[

𝑒[ + 𝑒\[,

is applied for simplicity as it reduces inner network values onto the range of [-1,1]. Upon 
reaching the output layer, the weighted values have the sigmoid function  

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 =
1

1 + 𝑒\d	,

which restricts the range onto [0,1] and has an interpretation akin to a hazard 
probability. The network then applies the cross-entropy error function (similar to the 
use of MSE in regression) 

𝐶𝐸 𝑦 = −𝑦 ∗ ln 𝑦 + 1 − 𝑦 ∗ ln 1 − 𝑦 ,

where 𝑦 is the predicted value and y is actual patient vital status. The network then 
uses the gradient of (10) with respect to the connection weights to minimize the error 
and replace the weight which will reduce the total network bias the most. The network 
then repeats the process with the updated weights until the errors converge. The 
outputs from this final iteration of the model can then be properly compared to the 
actual vital status to determine model predictive effectiveness.  

Results 

After exploring different parametric and classification models, we were left with 
two neural network models using discrete survival time. These models are arguably the 
most robust of those explored, with the most reliable predictions.  

The initial starting point was Cox PH as it is the standard method for working 
with time-to-event data. Several assumptions (most of which our data severely failed) 
and poor prediction accuracy on our data led us to find possible alternatives to the Cox 
model. We shifted focus to discrete methods with logistic regression to predict the 

(8) 

(9) 

(10) 
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probability that an individual would experience the event in a five-year period. Though 
offering stronger results than the Cox model, the estimates of the logistic regression 
model were still weaker than desired. We then explored machine learning methods, 
even though we lose some interpretability. Labeled SVM strings offered stronger 
predictions than logistic regression but lacked a level of customizability offered by 
other machine learning methods, such as neural networks.  

All the models confirmed that the covariates employed were influential and 
demonstrated an impact on survival, falling in line with initial work and making it clear 
that it was appropriate to update these models and search for better prediction 
accuracy. Neural networks allowed for an amalgamation of the benefits of these models 
without many of the shortcomings. We used two discrete methods to be sure that we 
captured the temporal relationship observed in the data, as well as the impact 
development in the medical field had on patient’s survival over time. The overall 
structure of the hidden layer for each of the two models was determined by training 
with cross-validation and the comparison of total model errors. Each model used the 
ten-fold cross-validation method. The data was split into 70% training set and 30% 
validation set. The training data was then divided into ten equal folds, then the models 
were trained on each nine fold combination and tested on the remaining fold. Optimal 
models were then trained on the entire training set and validated with the unseen data 
to check for overfitting. 

The critical difference between the two discrete models is how they include time 
and their output layer structure. The first model, referred to as Model 1, took the 
patients’ recorded survival time and discretized it based on five-year intervals, up to 40 
years. The range of 40 years was decided based on the maximum length of the study, 
and five-year intervals offered a clear cut-off point which could also serve as outputs in 
the second model. Since a patient can only survive into time interval t if they did not 
already experience their event in a time-period less than t, the results from the model 
are strictly conditional on the patients having survived to that point. Since each 
individual only has one hazard based on their covariates and conditional survival time, 
only one output node is necessary for this model.  

The second model, Model 2, predicts a hazard for each of the time-periods 
rather than a single value per cancer instance. Limiting to eight intervals of five year 
spans made this method reasonable by using a standard length to capture the 
significant medical development over time without being exceptionally difficult 
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computationally. To predict eight separate hazards, we took each patient's survival 
time and converted it into actual vital status for each time-period. If a patient’s survival 
time depicts a presence of an event within 10-15 years, then their outputs would be 
recorded 0 for periods [0, 5) and for [5, 10) with each subsequent time-period being 
marked 1 as having experienced the event in these periods. These values then formed 
the responses for our eight outputs on which we trained the model. Figure 4a and 4b 
present the final network diagrams of Model 1 and Model 2, showing the structure of 
each component layer. 

To restate, while the initial models yielded a relatively low accuracy on our data, 
the variables from these models were used as the basis for the neural networks that 
comprise our final models. Model 1 was built using age group, sequence, treatment, 
grade, and survival time to predict the probability that a patient will experience the 
event. The sequence variable was scaled between 0 and 1 to help reduce the 
computational power needed to train the network. The final form of Model 1 had a 
single hidden layer with six nodes and a decay value of 0.075. These values were found 
by training with all possible combinations of 1-10 nodes and decay terms 0.025, 0.05, 
0.075, and 0.1. We trained each model on these combinations and then validated with 
ten-fold cross-validation. The final decision on parameters to use is made based on the 
set of parameters that has the lowest cross-entropy. This process can be visualized in 

Figure 4a Figure 4b 

Figure 4: Model 1 and Model 2 Network Diagrams 
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Appendix Figure 2. The cross-entropy given by Model 1 is 472.88. Due to the fact the 
model outputs a single probability for each patient, a cutoff point is set to determine 
whether or not the patient is predicted to have experienced the event. Tuning the 
cutoff point from .6-.8 to increase the model’s accuracy was unnecessary because each 
output value is extremely close to either 0 or 1. Figure 5 depicts a contingency table 
using validation data where Model 1 achieves a correct classification rate of 0.847. Note 
that time-period diagnosed is removed from Model 1 because of high collinearity 
between time-period diagnosed and survival time. 

Model 2 consisted of the majority of variables from Model 1 with slight 
alterations. Age group, sequence, treatment, and grade are used by with the addition 
of discrete diagnosis time-period. After cross-validation, the final form of Model 2 used 
a single hidden layer with six nodes and a decay value of 0.05. We determined these 
values by finding the network with the minimum value for the cross-entropy error. While 
performing ten-fold cross-validation, we observed six nodes in the hidden layer and a 
decay value of 0.05 showed the minimum average error from models built from all 
combinations of 4-15 nodes and decay terms 0, 0.05, 0.075, and 0.1. When applying 
our validation set, the model produced a total cross-entropy of 23442.66 with a mean 
and standard deviation of 0.53 and 0.23 respectively. After considering the eight 
outputs, we observed cross-entropy of approximately 2930.00 per output. Model 2’s 
classifications used a cutoff hazard of 0.6, with any value equal or greater than 0.6 
representing an event. Unlike Model 1, Model 2 varied in accuracy across different 
cutoffs, and thus 0.6 was used as it shad the highest accuracy.  In summary, Model 2 
demonstrated a classification rate of 0.753. Assuming each of the eight outputs 
contributes proportionately to the errors, each output accounts for approximately 3% 
of the total 24% error.  

Figure 5 
Model 1 Model 2 

Pr
ed

ict
ed

 

Actual Actual 
Alive Dead Alive Dead 

Alive 8613 1423 Alive 30438 9777 
Dead 571 2288 Dead 1161 2832 

Figure 5: Neural Network Contingency Tables 
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 To better understand the particular variable effects of sequence and treatment 
we created sets of evaluation data, two for each model, where we evaluated across 
each level of the two respective variables and held all other variables fixed. To avoid 
particular conditions impacting the evaluation, treatment was held constant for 
sequence as no treatment, and sequence was held constant for treatment at a level of 
no prior cancers. Additionally, the grade variable was held constant at B-cells as they 
are typically less aggressive. Age groups were held constant at the median level, and 
time-period diagnosed, in Model 2, was held constant at the fifth time-period (early 
2000’s) of diagnosis as this is often a popular reference point in the study of cancer. 
The evaluation data was fed through each model to simulate the relative variable 
effects, and in the case of Model 1, the data was sent through conditional on surviving 
into each of the time-periods to obtain eight hazards, comparable to Model 2’s outputs. 

Figures 6-9 provide a visualization of our evaluated data for variable effects. 
Figures 6 and 7 both show treatment having an overall and consistently low hazard. 
Figure 6 shows a substantial decrease in the hazard of the patients who survived five 
years or longer as compared to the very slight positive trend of figure 7. Figure 8 and 
9 show sequence elicits a much higher variance between the variable levels than 
treatment. Figure 8 shows another negative correlation with hazard from Model 1  and 
Figure 9 shows a slight positive correlation in sequence for Model 2. Additionally, 
Figure 7 and 9 show the unique relationships from initial testing: a sequence of one 
demonstrating the best survival among sequence levels, as well as radiation showing 
the best survival among treatments. Both of these trends are absent from Figures 6 
and 8.  

To account for the potential dependencies due to repeated patients, individuals 
present with multiple instances of leukemia, sensitivity analysis was conducted on 
Model 1 and two. The optimal models were once again trained and tested on the data 
with the omission of the patient IDs for those with multiple cases. Recalculation of the 
overall cross-entropy error and classification rate on Model 1 revealed only a 2.8% 
decrease in model error and a 1% decrease in correct classifications. Recalculation of 
error and classification for Model 2 showed a 3% decrease in the overall model error 
coupled with a 1% increase in the classification rate. We concluded that these changes 
in error and classification did not represent a substantial model sensitivity to patients 
with repeated instances of leukemia. We also note that the removal of these patients 
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is not the only factor contributing to the changes. Despite using the same random 
assignment method of patients into train and test groups, the change of sample size 
does result in individuals being assigned to a set they may not have been present in for 
the first iteration. Therefore, due to minimal error and classification change, as well as 
making up only a small portion of the data, we do not find sufficient reason for the 
omission of multiple occurrence patients from the modeling.  

Discussion and Conclusions 
Looking into the outcome of both models regarding the overall model error and 

classification percentage, Model 1 shows itself to be preferable with almost a 10% 
higher classification rate and nearly 2% of the overall error. Our results are different 
from those in [6], regarding which network resulted in less error. In “Two Artificial 
Neural Network Approaches For Modeling Discrete Survival Time of Censored Data” 
[6], they uncovered that the second network structure resulted in a lower error than 

Figure 6 Figure 7 Treatment 
Legend 

Figure 8 Figure 9 Sequence 
Legend 

Figure 6-9: Model Comparison Plots for Treatment and Sequence for Each Time Period 
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that of the first. Model 2 offers better capture of variable trends, as well as identifying 
factors that were expected to influence hazard. A case in point, this model captures 
the effect of radiation due to the Hodgkins patients within the data. Even though it 
does not perfectly capture the intricacies between individual levels, Model 2 captures 
the features identified as particularly critical. These outcomes create a different 
comparison of the two models: one is more accurate and holds less error while the 
other can identify trends and variable levels that were determined to be highly relevant. 

While capturing the effects of contributing variables is the most robust feature 
of Model 2, Model 1 identifies the overall importance of a patient's risk based on how 
long they have survived up until time t, in addition to prediction accuracy. The influence 
on conditional survival time is seen in Figure 6 involving treatment. For all levels, once 
a patient enters their second time-period (years 5-10) of survival post diagnosis they 
are what some may consider “cured” [7], having their risk of death drop off 
considerably. This shift is far less visible in Figure 8. The overall negative trend in hazard 
does show that eventually a patient's risk of experiencing the event will stabilize and 
fall mostly to a constant level. However, Model 2 shows that the hazard increases as 
time increases, which was expected based on the model structure. To continue to 
predict a patient's vital status (aiming to avoid going from a dead prediction in one 
time-period to an alive prediction in the next period) for each subsequent time-period, 
the model predicts slightly higher hazards as time progresses for the evaluation data.  

There is no obvious strategy regarding conventional methods of choosing 
preferred models based on two different areas of success. Since the models’ success 
are not solely based on quantifiable measures, selecting a model without a well-defined 
method is less than optimal. Each model provides an essential part of the story of 
modeling, and thus, with the current scope of our research, we lack sufficient reason 
to select only one and instead claim that each is necessary to gather the most reliable 
insights about childhood leukemia. Model 1 creates the opportunity to evaluate a 
patient through follow up appointments, stressing the importance of surviving their 
first few years, while Model 2 can give instantaneous expectations of a patient's hazard 
into the future.  

Future work aims to identify additional features which could potentially increase 
variability among covariates in our model. Lack of variability and reliance on categorical 
data does put a limit on how different each patient is from another, and thus how robust 
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the model can be. Furthermore, we aim to examine interactions between the covariates 
and identify key variable level groupings that are particularly notable. 
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Appendix 

	

	

	

	

	

	

	

	

	

	

	

	 Hypothesis	testing	results	 	 	

Variable	 Test	 Parameter	 P-Value	
Sex(male/female)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 0.40	
Chemo(Yes/No,	unknown)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 0.003	
Age	group	(5	levels)	 Kruskal-Wallis	for	of	multi.	med.	 Median	srv.	time	 2.9e-8	
Age	Groups	(1,2)	 Wilcox	Rank	Sum	for	two	med.	 Median	srv.	time	 0.76	
Age	Groups	(2,3)	 Wilcox	Rank	Sum	for	two	med.	 Median	srv.	time	 0.92	
Age	Groups	(0,1)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 4.8e-10	
Age	Groups	(0,2)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 3.4e-8	
Age	Groups	(0,3)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 8e-9	
Age	Groups	(0,4)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 1.6	
Age	Groups	(1,3)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 0.56	
Age	Groups	(1,4)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 0.08	
Age	Groups	(2,4)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 0.05	
Age	Groups	(3,4)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 0.02	
Chemo	Rad	interactions	 Kruskal-Wallis	for	of	multi.	med.	 Median	srv.	time	 2e-16	
Grade	(T,	B,	Null,	Ndet)	 Kruskal-Wallis	for	of	multi.	med.	 Median	srv.	time	 0.657	
Sequence	(0,1,2)	 Kruskal-Wallis	for	of	multi.	med.	 Median	srv.	time	 2e-16	
Sequence	(0,1)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 0.00	
Sequence	(0,2)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 6e-8	
Sequence	(1,2)	 Fligner-Policello	for	of	two	med.	 Median	srv.	time	 3e-184	
Grade	prop	(T,	B)	 Two	prop	test	for	early	deaths	 Early	death	prop	 0.03	
Sequence	prop	(0,1)	 Two	prop	test	for	early	deaths	 Early	death	prop	 2e-16	
Sequence	prop	(1,2)	 Two	prop	test	for	early	deaths	 Early	death	prop	 2e-16	

Figure 3b by Time Bin (Appendix Figure 1) 
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Table	of	Variables	Examined 

Variable	name	 Model	Inclusion	

Age	Group	 Yes	

Chemotherapy	Treatment	 Yes	

Derived	Stage	 No	

Ethnicity	 No	

Gender	 No	

Geographic	Location	(state	and	county)	 No	

Grade	 Yes	

Primary	Site	 No	

Radiation	Treatment	 Yes	

Sequence	 Yes	

Survival	Time	 Yes	

Time	Period	Diagnosed	 Yes	

Year	Diagnosed	 No	

Ten-Fold Cross-Validation Errors (Appendix Figure 2) 
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