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In the field of network analysis, incorporating higher-order features
into network models has become increasingly routine. In this paper
we introduce the HyperType network model: an extension of a simple
typing model with better clustering due to the focus on triangles instead
of single edges. In addition to more realistic clustering, we empirically
show HyperType retains many features from the original typing model.
We empirically fit HyperType to real data, and show an interesting
relationship to a recursive Kronecker product.

1 introduction

Network analysis is a rich and interdisciplinary field with applications in many
domains including Biology [Barabasi and Oltvai, 2004], Social Networks [Hobson
and DeDeo, 2015; Foucault Welles et al., 2010], and Business [Abebe et al., 2018].
Modeling networks is a vital research area since real data is expensive and limited.
Models can be used to test the performance of algorithms and predict how these
algorithms behave on real (large) data. Developing models that obey properties
which occur naturally can provide more realistic studies when using synthetic data
in place of real data. On the flip-side, studying the properties of the data generated
by models may lead to insights into the structure of the real data [Eikmeier and
Gleich, 2019a].
There exist already many popular graph models. The Erdős Rényi graph

model [Erdös and Alfréd, 1959] is a simple model, but does not display many real-
world properties. Albert-László Barabási and Réka Albert addressed the problems
in Erdős Rényi graph model and proposed Barabási–Albert model [Barabási and
Albert, 1999] that tries to explain the power-law degree distribution as shown in
some real networks. The Stochastic block [Holland et al., 1983] and the Kronecker
[Kolda et al., 2014] models are designed to capture community structure, while
the Chung-Lu graph model [Aiello et al., 2000] constructs a graph according to a
prescribed degree distribution.

Recently, attention has shifted towards higher-order analysis [Grilli et al., 2017;
Xu et al., 2016; Yin et al., 2018] - a way of incorporating and considering more
complex structure in networks [Benson et al., 2016]. In particular, there has been
recent work in incorporating higher-order structure directly into network models
[Eikmeier and Gleich, 2019b,a; Scholtes, 2017; Chodrow, 2020].

In a similar vein to many of these efforts, we propose the HyperType model, an
extension of the typing model [Akoglu and Faloutsos, 2009] (formally introduced in
section 3). Typing model has a broad applications, such as in the field of detecting
illicit behaviors [Savage, 2017] and outlier detection [Ranshous et al., 2016].
In section 4, we show that the HyperType model keeps most of the properties
that the original typing model obeys, such as a power-law degree distribution
and strong community structure. We further show that the HyperType model
exhibits non-trivial clustering coefficients absent from the original typing model.
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We will elaborate on how we fit our model to real networks and give two specific
examples in section 5.

Finally, we consider the relationship between an evolving typing model with a
Kronecker product [Leskovec et al., 2010] in section 6. This gives us the advantages
of having a certain number of vertices and edges while keeping the properties
of the HyperType model. While not necessarily useful for implementation or
features, it is a fun mathematical connection between these two ideas. We provide
all of our code for reproducibility at https://github.com/ccming1006/Typing-Model.

2 preliminaries: 2d typing model

The 2D typing model is proposed by Akoglu and Faloutsos [2009]. It mimics the
process of typing on a keyboard with k characters and a space bar. Every key has
its own probability, and the space bar is hit with probability q. The sum of the
probabilities of these (k + 1) keys adds up to 1. A word is formed by randomly
typing keys until the space bar is hit. This model is called RTG-IU: Random
Typing Generator with Independent Un-equiprobable keys. A sequence of words
is divided into pairs by marking words as ‘source’ and ‘destination’ alternatingly.
An edge is added between the source and destination. Each unique word is a
node in the graph. If two connected words are grouped again, the weight of the
edge between them will be increased by one.

We can also think of this process as choosing entries in a matrix. As shown in
Figure 1a, we have a (k + 1) by (k + 1) matrix, where k = 2 in this case. Each
time, we choose an entry, and then append the first key of the entry to the source,
the second key to the destination. When a space character is appended to a
word, the word will be terminated. This process continues until both words are
terminated. Notice that using the probability matrix, the probability of choosing
any character remains the same.

a∗ − b∗

b∗ − b∗

s∗ − b∗

a∗ − a∗

b∗ − a∗

s∗ − a∗

a∗ − s∗

b∗ − s∗

s∗ − s∗s

b

a

a b s

Destination
Source

PaPbβ

P (b∗, b∗)

qPbβ

P (a∗, a∗)

PbPaβ

qPaβ

Paqβ

Pbqβ

P (s∗, s∗)s

b

a

a b s

Destination
Source

Fig. 1. An example of 2-d keyboard, this figure is adapted from Akoglu and Faloutsos [2009].
1(a) is the matrix for keys ‘a’,‘b’, and ‘s’. If a entry colored red is hit, one word will be ter-
minated; if a entry colored purple is hit, both words are terminated. 1(b) is the matrix after
β is introduced. Probability of white entries decreases, and probability of green entries in-
creases. The amount that a green entry increased is the amount that the white entries on its
row decreased. For instance, P (a∗, a∗) = Pa−PaPbβ−Paqβ. Therefore, the overall probability
of keys are unchanged.

Akoglu and Faloutsos [2009] also introduced an imbalance factor, β, for the
purpose of homophily and communities1. This imbalance factor β is a real number 1 In real networks, nodes that are

similar to each other are more likely
to be adjacent. We call this feature
the homophily and communities of
network.

between 0 and 1. The idea behind this community building approach is to increase
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the probability of a-to-a edges and to decrease the probability of a-to-b edges
while maintaining the probability in each row. That is to say, if the entry has
the same two keys, we increase its probability; otherwise, we decrease it. For the
example in Figure 1a, the adjusted probabilities are given in Figure 1b.

After boosting the probability of the diagonal keys and decreasing the probabil-
ities of the off-diagonal keys, nodes with similar labels will have a higher chance
to be connected. In the HyperType model, we will use a similar approach to
enhance model homophily.

3 hypertype model

In the original typing model by Akoglu and Faloutsos [2009] sequences of randomly
typed words are divided into groups of two, and two words in each group are
adjacent to each other. In our proposed HyperType model, we divide words
into triples instead of pairs, and all three words are adjacent to each other in
each group. Just as in the original typing model, every unique word is a node in
the graph. Therefore, three different words in each group form a triangle, and
intuitively, most nodes are involved in at least one triangle. When we add a new
edge into the graph, if it already exists, we simply increase the weight of the edge
incident to these two words by 1. If the group contains only two unique words,
this group becomes an edge with weight 2 in the network. When all three words
in one group are the same, we add a node but no edges to the graph. Therefore, if
W words are typed, the total weight of the output graph is less than but close to
W , since the groups with three unique words have total weight 3 and the groups
with two same words have total weight 2.

Table 1 is an example of the typing procedure where we have two keys, a
and b, and a space bar in a keyboard. Suppose the randomly typed words are
s, as, bbababs, abs, bs, abs, as, s, abs, . . . Table 1 shows how words are grouped by
three, and Figure 2 shows the output graph.

Fig. 2. This is the output graph of Ta-
ble 1. Notice the edges with weight 2:
bs − abs and s − as; these two edges
appear more than once in one or more
groups.

TABLE 1. HyperType Example. Each time we generate three words—Word 1, Word 2, and
Word 3—the graph has its total weight increased by 3 unless we have two or more same
words in each group, such as T2.

Time Word 1 Word 2 Word 3 Weight

T1 s as bbababs 1 + 1 + 1
T2 abs bs abs 1 + 1
T3 as s abs 1 + 1 + 1
T4 as aas bbs 1 + 1 + 1
T5 bas bs aabbs 1 + 1 + 1

3.1 EQUIPROBABLE KEYS
In this section we assume that we have k non-space keys and the probability of
all non-space keys is the same; call it p. Then the probability of the space-bar is
q = (1−kp). The following two lemmas are quick generalizations from Akoglu and
Faloutsos [2009]. In both cases, we empirically observe that the lemmas hold for
various parameters of the HyperType model. Proofs can be found in the appendix.

Lemma 1. Let N be the number of unique nodes that are generated in the
HyperType model. The expected value of N is

E[N ] ∝W− logp k,

where W is the number of words.
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Lemma 2. Let T be the number of placed triangles in the HyperType model,
where a placed triangle is a unique triple with consideration of order and without
consideration of repetition. Then, as W grows large, the expected value of T is

T =Wα

(
1 +

(
c− c2 logp q

)
n− n(n2 + 2n− 1)

2
c2
)
,

for α = − logp k, c = q− logp k, n = logpW.

3.2 EXTENSION: UN-EQUIPROBABLE KEYS AND COMMUNITY
With equiprobable keys, the HyperType model is easy to analyze since the only
two variables are the number of keys and the probability of the space bar. However,
networks generated in this way lack common features of real networks (see section
4.1 and section 5). Therefore, we increase the flexibility of our model by making
keys have unequal probabilities. Suppose we have k non-space keys, and we define

pi to be the probability of key i, for all non-space bars. Then q = 1−
k∑
i=1

pi is the

probability of the space bar.
Even with Un-Equiprobable keys, this model does not capture the features of

homophily and modular structure that exist in real networks. In other words,
randomly typing cannot form communities among nodes.

We propose to solve this problem by typing three words—w1, w2, and w3—in
each group together, as shown in Figure 3. Our previous description generates
three words independently, so we cannot improve the similarities of the three
words in each group. However, when we type three words together, we can improve
the probability of having two or three same letters in each position of all three
words while maintaining the probabilities of hitting each key the same. In other
words, for every letter of each word in a group (triple), the probability of having
two or three same letters is higher than the theoretical probability in the previous
description.

We will first introduce the process of generating three words together without
improving the similarities of each triple of words. Suppose we have 2 non-space
keys, we can visualize this process by picking one of the 27 entries in the Fig.3
tensor.
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M ′(_,_, 1)

a∗-b∗-a∗

b∗-b∗-a∗

s∗-b∗-a∗

a∗-a∗-a∗
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M ′(_,_, 2)
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s∗-b∗-b∗

a∗-a∗-b∗

b∗-a∗-b∗

s∗-a∗-b∗

a∗-s∗-b∗

b∗-s∗-b∗

s∗-s∗-b∗s

b

a

a b s

a∗-b∗-s∗

b∗-b∗-s∗

s∗-b∗-s∗

a∗-a∗-s∗

b∗-a∗-s∗

s∗-a∗-s∗

a∗-s∗-s∗

b∗-s∗-s∗

s∗-s∗-s∗s

b

a

a b s

M ′(_,_, 3)

a− a− a a− b− a a− s− a

b− a− a b− b− a b− s− a

s− a− a s− b− a s− s− a
a− a− b a− b− b a− s− b

b− a− b b− b− b b− s− b

s− a− b s− b− b s− s− b

a− a− s a− b− s a− s− s

b− a− s b− b− s b− s− s

s− a− s s− b− s s− s− s

Fig. 3. Tensor for generating three words at the same time. M(_,_, i) represents the matrix
at the ith slice of the tensor. Notice that slice 3 is the back layer of the tensor and slice 1 is
the front layer of the tensor. The recursions for white entries are tensors, orange entries are
matrices, red entries are 1-dimensional list, and purple entries are terminated.
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The probability of each entry is the product of its corresponding row, column,
and slice. For example, the probability of getting a, a, s for the first letter of w1,
w2, and w3, respectively, is pa ∗pa ∗ q. We then append each of the three letters in
the selected entry to the end of w1, w2, and w3, respectively. We recursively repeat
this process until each word has hit a space. If a space character is appended to a
word, the word is terminated, which means letters will no longer be appended to
it. Therefore, when none of the three words is terminated, we choose the letters
from a tensor, which returns three letters each time; when one word is terminated,
we choose from a matrix, which returns two letters each time; when two words
are terminated, we choose letters from an array, which returns one letter each
time. In this way, we are only choosing letters for non-terminated words. Fig. 4
is the recursion tensor for entry2 (1,1,3) in Fig. 3, an example for which none of 2 Notice that we need three indices to

represent an entry in a tensor. In this
paper, the first index represents the
slice, the second represents the x-axis,
and the third represents the y-axis.

the three words has terminated. Also, Fig. 1 b) is the recursion matrix of any
orange entry in Fig. 3, with only one word terminated.

M ′(_,_, 1)

aa∗-ab∗-aa∗

ab∗-ab∗-aa∗

as∗-ab∗-aa∗

aa∗-aa∗-aa∗

ab∗-aa∗-aa∗

as∗-aa∗-aa∗

aa∗-as∗-aa∗

ab∗-as∗-aa∗

as∗-as∗-aa∗s

b

a

a b s

M ′(_,_, 2)
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ab∗-aa∗-ab∗
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ab∗-aa∗-as∗

as∗-aa∗-as∗
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b

a

a b s

M ′(_,_, 3)
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aa− aa− aa aa− ab− aa aa− as− aa

ab− aa− aa ab− ab− aa ab− as− aa

as− aa− aa as− ab− aa as− as− aa
aa− aa− ab aa− ab− ab aa− as− ab

ab− aa− ab ab− ab− ab ab− as− ab

as− aa− ab as− ab− ab as− as− ab

aa− aa− as aa− ab− as aa− as− as

ab− aa− as ab− ab− as ab− as− as

as− aa− as as− ab− as as− as− as

Fig. 4. Recursion Tensor for entry (1,1,3) in Fig. 3, so the first letter of each key in each entry
is a. M ′(_,_, i) represents the matrix at the ith slice of the recursion tensor. Same as Fig.
3, the recursions for white entries are tensors, orange entries are matrix, red entries are 1-
dimensional list, and purple entries are terminated.

Similar to the imbalance factor, β, used by Akoglu and Faloutsos [2009], we
introduce two imbalance factors β and α in our community algorithm, where β
and α are two real numbers between 0 and 1. We classify entries into three types.
Type 1 entries are entries with three same keys, i.e. only one letter appears in such
entries; for example, (a, a, a). Type 2 entries are entries with two same keys, i.e.
two letters appear in such entries; for example, (a, b, a). Type 3 entries are entries
with three different keys, i.e. three letters appear in such entries; for example,
(b, s, a). In real networks, nodes are more likely to be adjacent to each other
if they share some similar properties. In our model, we also want to have this
feature. Thus, the goal is to increase the probability of type 1 entries and decrease
the probability of type 2 and 3 entries. All type 2 and 3 entries are multiplied
by β, and all type 3 entries are multiplied again by α to reduce their probability.
In this way, connected nodes will be more similar to each other. Algorithm1 is
the pseudo code for the community algorithm. This algorithm is modified based
on Algorithm1 in RTG: A Recursive Realistic Graph Generator using
Random Typing by Akoglu and Faloutsos [2009].

Figure 6 shows how the community algorithm applies to one slice of the tensor.
Figure 6(a) is the original slice of entries. We color the type 1 entry green, type 2
entries blue, and remain type 3 entries white. Figure 6(b) shows their probabilities
before the community algorithm. Figure 6(c) shows the result after the community
algorithm is implemented. Notice that the probability of the type 1 entry is q
minus probability of the rest eight entries in that slice. Figure 5 is an example of
the HyperType graph after we apply the community algorithm.

Fig. 5. An example graph generated
by the HyperType model (non-space
keys= 3, key list = [a,b,c,s], key prob-
abilities = [0.2,0.3,0.2,0.3], and triples
= 80). Notice that some edges are not
members of any triangles.

Importantly, using these imbalance factors in the way we described does not
change the probability of each key.
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a b s

a
b
s

s∗ − a∗ − s∗

b∗ − a∗ − s∗

a∗ − a∗ − s∗

s∗ − b∗ − s∗

b∗ − b∗ − s∗

a∗ − b∗ − s∗

s∗ − s∗ − s∗

b∗ − s∗ − s∗

a∗ − s∗ − s∗

(a)

s

b

a

a b s

a
b
s

qPaq

PbPaq

PaPaq

qPbq

PbPbq

PaPbq

qqq
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(b)

s

b

a

a b s
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s

qPaqβ

PbPaqβ

PaPaqβ

qPbqβα

PbPbqβ

PaPbqβ

P (s∗s∗s∗)

Pbqqβα

Paqqβ

(c)

Fig. 6. An example of the community algorithm. Figure (a) shows three types of entries: type
1 in green, type 2 in blue, and type three in white. Figure (b) shows how we calculate the
probability of an entry: the product of the probability of all the keys in corresponding to the
3 indices. Figure (c) shows the probability of entries after the community algorithm. The
green entry (s, s, s) has probability P (s∗s∗s∗) = q − P (a∗a∗s∗) − P (a∗b∗s∗) − P (a∗s∗s∗) −
P (b∗a∗s∗)− P (b∗b∗s∗)− P (b∗s∗s∗)− P (s∗a∗s∗)− P (s∗b∗s∗) which is the sum of its original
probability and the amount of probability that other entries on this layer reduced.
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Algorithm 1 HyperType Constructor Algorithm
1: Initialize (k + 1) by (k + 1) by (k + 1) tensor T , a three dimensional array, with

cross-product probabilities; (k + 1) by (k + 1) matrix M , a two dimensional array,
with cross-product probabilities; edge list L.

2: Input: keyList, keyProbList, k, NumberOfWords,α, β
3: Output: edge-list L for output graph G
4: for entry e in T do
5: if e is type 2 entry then
6: P (e) = P (e) · β
7: if e is type 3 entry then
8: P (e) = P (e) · β · α
9: for i = 1 to k do . Increase probability of type 1 entry

10: P (i, i, i) = P (i, i, i) + (keyProbList[i]− SumOfLayer[i])
11: for 1 to NumberOfWords do
12: L1, L2, L3 ← SelectNodeLabels T
13: Append L1, L2, L3 to L
14:
15: function SelectNodeLabels(T )( L1, L2, L3)
16: Initialize L1, L2, L3 to empty string
17: while no word is terminated do
18: randomly choose an entry T (i, j, l) based on the probability of entries
19: if i 6 k then
20: Append character ‘i’ into L1
21: else terminate L1
22: if j 6 k then
23: Append character ‘j’ into L2
24: else terminate L2
25: if l 6 k then
26: Append character ‘l’ into L3
27: else terminate L3
28: while one word is terminated do
29: randomly choose an entry M(i, j)
30: if i 6 k then
31: Append character ‘i’ into first non-terminated word
32: else terminate L1
33: if j 6 k then
34: Append character ‘j’ into second non-terminated word
35: else terminate L2
36: while two words are terminated do
37: randomly choose an element keyProbList(i)
38: if i 6 k then
39: Append character ‘i’ into non-terminated word
40: else terminate L1
41: return L1,L2,L3
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(a) Degree Distribution (b) Densification Power Law

(c) Weight Power Law (d) Snapshot Power Law

(e) Components size plot

Fig. 7. Empirical Results of the property tests. (a) shows the logarithmic graph of degree
distribution. The red line shows the linear regression of red dots. (b) is the logarithmic graph
of number of nodes and the number of edges. (c) shows the log graph of total weight vs
number of edges. (d) shows the log graph of number of edges attached to nodes (y-axis) and
the total weight of edges attached to nodes (x-axis). (e) shows the plot of the size of the
primary, secondary and tertiary components of the graph as it grows.
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(a) Open (b) Closed

Fig. 8. Two types of wedges (triplets)

Fig. 9. Plots illustrating how ACC
changes with different parameters

4 properties of hypertype model

4.1 LAWS FULFILLED IN 3D RTG-IU WITH COMMUNITIES
In Akoglu and Faloutsos [2009], a list of laws is given that real graphs obey, and
we chose some of them to test the reliability of our model. The laws we chose to
test are those widely used and frequently tested to ensure the usability of models.
One of the most prominent properties they list is that various distributions should
follow a power-law. A power law distribution has the form

y = kxα,

where x and y are variables of interest, α is the exponent of the power-law, and
k is a constant Glen [2017]. We note that there has been disagreement about
whether or not power-laws truly exist in real data [Broido and Clauset, 2019; Sala
et al., 2010]. Nevertheless, it remains standard practice to create graph models
that have power-law distributions. To test whether the various features have
significant power-laws, we use the code by Tamás [2017], which uses the method
of Clauset et al. [2009]. This method generates a significance parameter, p. We
say that the data has a significant power-law if p > 0.1. (See [Clauset et al., 2009]
for more details of how this works.)
We first consider whether there is power-law relationship in the degree distri-

bution, and between total weight of the edges attached to each node and the
number of such edges. To test these first two properties, we generated 20 samples
with different parameters. We find there are 15 and 13 samples which passed the
power-law test, and the average α for power-law distribution is around 2.0 for
both properties. This suggests that the HyperType model is likely to produce
a graph with a significant power-law distribution in the degree distribution and
the edge weights. See Figure 7 (a) and (d) for a visual. Next, as the model
generates more nodes, we should see a power-law relationship between the number
of nodes and the number of edges, and between the total weight of nodes and
the number of edges. Finally, while the largest component keeps growing in this
process, the second and the third largest components tend to remain constant in
size with small oscillations. For these laws, we generate graphs shown in Figure 7
(b), (c), and (e). While not robust guarantees, the log-log plots display a linear
appearance, which suggests that the properties fit to a power-law distribution or
similar.

4.2 CLUSTERING COEFFICIENT
Next, we show empirically that the HyperType model has significant clustering,
which does not exist in the original typing model. We will first introduce the aver-
age clustering coefficient (ACC) and the global clustering coefficient (GCC). ACC
is the average of each node’s local clustering coefficient defined as |K3(u)|/|W (u)|,
where u is a node, K3(u) is the number of triangles with u as a node, and |(W (u)|
is the number of wedges (triplets) with u as a node. GCC is defined as 3|K3|/|W |,
where |K3| is the number of triangles and |W | is the number of wedges (triplets).
A wedge is three nodes with two (Figure 8 a) or three edges (Figure 8 b) incident
to these three nodes.

In the original typing model, both GCC and ACC are relatively low. Specifically,
GCC remains at a very low value (below 0.05) regardless of the parameters, and
ACC can only reach 0.4 by using parameters which result in unrealistic graphs.
Therefore, compared to other graph models and the original typing model, one
important property of our model is its high Average Clustering Coefficient (ACC).
However, similar to the original typing model, the GCC of the HyperType model
remains at a very low value (below 0.05) for any combination of parameters.
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Figure 9 illustrates how ACC changes when we have different parameters in our
model.

5 fitting the hypertype model to real data

In this section we demonstrate that the HyperType model is useful to be fit to
real-world data.

Two real-world networks are chosen: CondMat (23k Nodes) is a list of co-authors
from the ArXiv website who wrote a "Condensed Matter" paper [Leskovec et al.,
2007], and AutonomousSystem(AS) (11k Nodes) is a graph that represents AS
peering information inferred from Oregon route-views, Looking glass data, and
Routing registry, all combined [Leskovec et al., 2005].
Since the graphs generated by our model always give a relatively high ACC,

we combine the original typing model and the HyperType model to fit the real
dataset. We hand-tune the parameters—including probability lists for each origi-
nal and HyperType model, the number of triples for the HyperType model, and
the number of pairs for the original Typing model—to find the best fit for each
real dataset. We also use Random Typing Generator (RTG) to fit the real dataset
for comparison. We find out that compared to RTG, HyperType requires less
generated triples (or pairs) and has more flexibility for the datasets having high
ACC or high ratio of edges to nodes. We expect to see similar problems of ACC
for other models that are not high-dimensional. Table 2 show the results.

TABLE 2. Parameters for fitting HyperType and Random Typing Generator (RTG) to real
data. We measure the number of nodes (Nodes), the number of edges (Edges), the Average
Clustering Coefficient (ACC), the Global Clustering Coefficient (GCC), and the size of the
largest connected component (lcc) for all dataset, HyperType fit, and RTG fit. The param-
eters used in the each HyperType and RTG fit are listed in the format of [the number of
generated triples (or pairs), probability of key 1, probability of key 2, probability of key 3,
probability of the space bar]. In both examples, α = 0.9 and β = 0.95.

Dataset Nodes Edges ACC GCC lcc
AS 10900 31180 0.5009 0.03855 10900

HyperType
10365 34511 0.515 0.018 10305triples: [110K, 0.1, 0.1, 0.4, 0.4]

pairs: [130K, 0.25, 0.25, 0.1, 0.4]

RTG
10276 31386 0.329 0.018 10244pairs: [1.1M, 0.15, 0.15, 0.2, 0.5]

CondMat 23133 93497 0.633 0.264 21363

HyperType
23337 94041 0.625 0.013 23213triples=600K [0.1, 0.1, 0.4, 0.4]

pairs=250K [0.25, 0.25, 0.1, 0.4]

RTG
23029 75974 0.328 0.013 23007pairs: [4M, 0.15, 0.15, 0.2, 0.5]

6 typing model and kronecker product

6.1 KRONECKER PRODUCT
In this section, we consider building and evolving typing model with the Kronecker
product. This perspective is inspired from Eikmeier et al. [2018]. The Kronecker
product, often denoted by ⊗, is an operation on two matrices resulting in a block
matrix. Given two matrices A and B, the Kronecker product of those two matrices
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is calculated by multiplying every single entry of A by the entire matrix B. For

example, if we have matrices A =

[
a1 a2
a3 a4

]
and B =

[
b1 b2
b3 b4

]
, then 3 3 The dot sign in a1 ·B is to represent

scalar multiplication where a1 is the
scalar and B is the matrix.

A⊗B =

[
a1 ·B a2 ·B
a3 ·B a4 ·B

]
=


a1b1 a1b2 a2b1 a2b2
a1b3 a1b4 a2b3 a2b4
a3b1 a3b2 a4b1 a4b2
a3b3 a3b4 a4b3 a4b4

 .
We observe that the recursive structure of the typing model could be represented

by a Kronecker product.
For instance, if there are three keys a, b, s, we can define an initiator matrix

P =

aa ab as
ba bb bs
sa sb ss

. Each entry of P represents the probability of the edge

between two nodes. For example, on (1, 2), we have ‘ab’, which means on this
entry, we can find the probability of an edge between the node ‘a’ and the node
‘b’. For each key, we assign a probability to it, and the probability of an entry is
the product of the probability of all the keys the entry has. In our example, the
probability on (1, 2) is Pa × Pb.

Currently, P is a 3 by 3 matrix, and there is only one letter for each node. We
can conduct the Kronecker product of P by itself to add more letters to each
node.

P⊗P =

aa⊗ P ab⊗ P as⊗ P
ba⊗ P bb⊗ P bs⊗ P
sa⊗ P sb⊗ P ss⊗ P

 =



aaaa aaab aaas abaa abab abas asaa asab asas
aaba aabb aabs abba abbb abbs asba asbb asbs
aasa aasb aass absa absb abss assa assb asss
baaa baab baas bbaa bbab bbas bsaa bsab bsas
baba babb babs bbba bbbb bbbs bsba bsbb bsbs
basa basb bass bbsa bbsb bbss bssa bssb bsss
saaa saab saas sbaa sbab sbas ssaa ssab ssas
saba sabb sabs sbba sbbb sbbs ssba ssbb ssbs
sasa sasb sass sbsa sbsb sbss sssa sssb ssss


After the Kronecker product, we get P ⊗ P , a 9 by 9 matrix, which means

there are at most 9 nodes in the graph, and each node contains two letters. For
example, ‘aasa’ is the first entry on the second row, and this entry represents
the edge between the node ‘aa’ and the node ‘sa’. However, since every word
in the typing model needs to end with a space character, we have to append
an ‘s’ to ‘aa’. Plus, if a word contains ‘s’ in the middle, the typing model will
ignore all the letters after the first ‘s’. Thus, the pair of words become ‘aas’ and
‘s’. We can keep calculating the Kronecker product of the current matrix by the
initiator to get more nodes as well as more letters on each node. This method
is only based on the Kronecker product, but not the Kronecker model. This is
because of the feature that letters after the space character will be ignored in
the typing model, which means there will be multiple entries correspond to the
same pair of nodes. For instance, both ‘aasa’ and ‘aasb’ correspond to the pair of
nodes ‘aas’ and ‘s’. As the model evolves, those entries may represent different
pairs again. In the previous example, after appending ‘aa’ to the end, ‘aasaaa’
and ‘aasbaa’ represent to two different pairs. This instability of correspondence
makes it impossible to fully implement the typing model with the Kronecker
model. Given the probability matrix, we use a ball dropping approach Ramani
et al. [2017] to decide which edge to include in the graph. Imagine a rectangle
divided into parts where each part corresponds to one entry in P , and the area
of each part is proportional to the probability of the entry. Then we randomly
drop a ball into the rectangle. According to which part the ball hits, we put the
corresponding edge into the graph.
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6.2 PRODUCING HYPERTYPE MODEL WITH KRONECKER PRODUCT
We can also construct and evolve the probability tensor for HyperType model
with a Kronecker product. To start, instead of building an initiator matrix, we
build an initiator tensor, T . For a model with k non-space keys and a space
character, T will be a (k + 1)× (k + 1)× (k + 1) tensor with three keys on each
entry. Entry (i, j, k) will contain the ith, the jth, and the kth letter from the key
list. Every time we conduct Kronecker product to the current tensor by initiator,
and the size of the current tensor will grow by (k + 1)3 times, and the number of
keys on each entry will grow by three. Hence, the number of keys on each entry
will always be divisible by three. We thus regard the first one-third of letters as
word one, the second one-third of letters as word two, and the last one-third of
letters as word three. For example, if an entry is ‘asbbab’, then the three words
represented by this entry are ‘as’, ‘bbs’, and ‘abs’. When an entry is chosen, we
put the three words represented by that entry into the graph as a clique of three
nodes.

6.3 ADVANTAGES AND LIMITATIONS OF KRONECKER PERSPECTIVE
In a Kronecker typing model, all the edges and nodes come from the probability
matrix. That is to say, we have a range of nodes and edges. Therefore, if one wants
to build a network with only a certain number of vertices, the Kronecker typing
model is a good choice. Furthermore, since the length of words in a Kronecker
typing model is bounded above, the resulting network is more interconnected
compared with a regular typing model. Notice that if a word contains more letters,
then its probability of being connected is significantly lower. Thus, in a regular
typing model, we usually see some small node clusters at some corner and never
be connected again. However, because of the bounded length, the probability of
edges is bounded below as well. As a result, the graph is more interconnected.
Nonetheless, having a certain range of nodes can also bring some limitations.
For instance, it is not possible to use the Kronecker typing model to simulate
a network in which the order increases over time. Also, since the probability of
edges is bounded below, the graph will have a higher chance to be connected as
more edges are placed. Therefore, the Kronecker typing model is not suitable
for simulating networks with many sparse clusters. Because we can only use the
Kronecker product, but not the Kronecker model to implement, we can not use
properties of the Kronecker model. Compared with the regular Kronecker model
raised by Jure et al. [2010], and its 3-dimensional extension HyperKron model
designed by Eikmeier et al. [2018], our typing model developed with Kronecker
product has more limitations.

7 discussion

7.1 FUTURE WORK
Our current approach to test if our model is suitable for simulating a real data set
is to calculate the global clustering coefficient (GCC) and the average clustering
coefficient (ACC). There are indeed more aspects that we can examine to check
similarity, such as average degree and degree distribution. Furthermore, similar
to the KRONFIT algorithm designed by Jure et al. [2010], an algorithm could
be designed to check those aspects and return a quantifiable value indicating
similarity. In this paper, we proved two lemmas about expected number of nodes
and placed triangles generated by our model. In the future, we would like to give
more theoretical results for the properties that we empirically observe. In this
paper we only explored directed, weighted networks, however HyperType can
easily be extended to undirected and unweighted versions. More exploration of
these versions is needed.
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7.2 ADVANTAGES
Our HyperType model has the advantages of a) complying with important laws
that real networks have, such as power-law relationship in the degree distribution;
b) having significant average clustering coefficient (ACC), which the regular typing
model Akoglu and Faloutsos [2009] cannot have but some real data would; c)
being flexible to adjust the ratio of nodes to edges to fit different real data. For
example, for the two real data we test in section 5, AS has the ratio of nodes to
edges of 2.86 but CondMat has 4.04. Our model can simulate both the number
of nodes and edges in the real data by tuning parameters, while the Random
Typing Generator (RTG) model could not match the high ratio of nodes to edges
of CondMat dataset even with 0.5 used as its space bar probability.

7.3 LIMITATIONS
Admittedly, there are some limitations of our model. After a series of real word
data simulation testing, we found that the ACC and GCC of graphs generated by
our model is relatively fixed. Hence, the model is best suited for data with very
large ACC and relatively small GCC (see discussion in Section 4.2). Of course
there are other models with significant clustering such as those mentioned in the
introduction.

Even though we can relate the typing model to a Kronecker product, the typing
is more limited than the true Kronecker graph model, due to the role of the space
bar (see explanation in Section 6.3).

8 appendix

8.1 LEMMA 1
Let k be the number of keys (not including the space bar) in the HyperType
model. Let W be the number of words which are typed (an integer). Let p be
the probability of typing one of the keys. That implies the probability of typing
the space bar is q = 1− kp.

Lemma 1. Let N be the number of unique nodes that are generated in the
HyperType model. The expected value of E[N ] is

E[N ] ∝W− logp k,

where W is the number of words.

Proof. Let w be a single word generated by the typing model process. That is, w
is a sequence of m keys ending with a space bar.
Let Nci be the number of unique words generated that begin with ci. Then,

the expected number of all uniquely generated words is

E[N ] = E[Nc1 ] + E[Nc2 ] + · · ·+ E[Nck ] + E[NS ].

Since the probability of all of the keys except the space bar is the same, we can
simplify the expression to

E[N ] = kE[Nc1 ] + E[NS ]

Now, words that start with S contribute either 1 unique word or 0 unique words
(since the space bar ends the word). The probability that a word starting with a
space does not appear is (1 − q)W , which is very small. Therefore it is safe to
assume that this part of the equation contributes 1 new word with high probability.

E[N ] = kE[Nc1 ] + 1.

Now, we will recurse into E[Nc1 ] in a similar manner, as we can write E[Nc1 ] =
kE[Nc1c1 ] + E[Nc1S ]. Here, our notation Nc1c1 means a word that starts with c1
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as the first two characters, and Nc1S is a word that starts with a c1 as the first
character and a Space as the second character. So,

E[N ] = kE[Nc1 ] + 1

= k(kE[Nc1c1 ] + 1) + 1

=
...

= knE[Nc1...c1 ] + kn−1 + kn−2 + . . .+ k

where in the first term, c1 appears n times, representing the length of the longest
generated word. Note that this implies that there is a word of length n, hence
E[Nc1...c1 ] =Wpn = 1. We will show momentarily that n = logp (1/W ) suffices.
Now we claim that E(N) ∝ knE[Nc1...c1 ]. In order for that to be true, we must
have that

E[N ]

knE[Nc1...c1 ]
= c

for some constant c.

E[N ]

knE[Nc1...c1 ]
=
kn + kn−1 + . . .+ k

kn

= 1 + 1/k + 1/k2 + . . .+ 1/kn−1

= c,

where the last equality holds since k is fixed, and n is fixed. In particular, to
solve for n,

Wpn = 1

pn = 1/W

n = logp(1/W ).

Finally, E[N ] ∝ kn = klogp(1/W ) =W logp(1/k) =W− logp(k).

8.2 LEMMA 2
Lemma 2. Let T be the number of placed triangles in the HyperType model,
where a placed triangle is a unique triple with consideration of order and without
consideration of repetition. Then as W grows large, the expected value of T is

T =Wα

(
1 +

(
c− c2 logp q

)
n− n(n2 + 2n− 1)

2
c2
)
,

for α = − logp k, c = q− logp k, n = logpW.

Proof. The number of placed triangles T is the same as the unique number of
triples of words. A placed triangle is a unique triple with consideration of order
and without consideration of repetitions. For example, [as, aas, as] is a placed
triangle, and [as, bs, cs] and [bs, as, cs] are two unique placed triangles. Therefore,
we can think of a triple of words as a single word, the generation of which is
stopped after the third hit to the space bar. So it always contains two space
characters.

Similar to the lemma 2 proof of the typing model [Akoglu and Faloutsos, 2009],
we first pull out the first letter of the word (with 2 space bars in this case). In other
words, t : w1− s−w2− s−w3, where w1, w2, w3 are three words without s at the
end and s is a space bar. We pull out the first letter, then t : ciw′1−s−w2−s−w3,
where w′1 is the word w1 without its first letter.

We consider the following two cases:

· If the first letter is not a space bar, we recursively repeat the process here.
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· If the first letter is a space bar, the remaining part of the word only contains
one space bar. Therefore, we can apply the conclusion from the typing
model Lemma 24. 4 Although the algorithm for gener-

ating edges is different in the typing
model and the HyperType model,
which means the relationship be-
tween E and W in the Lemma 2 of
the typing model cannot be applied
to the HyperType one, the original
proof of Lemma 2 can be applied to
all the cases where two words form
a pair with a space between them.
It’s worth noticing that we can only
borrow Lemma 2 when calculating
the number of triangles in the Hyper-
Type model. The number of edges of
the HyperType model requires a new
proof and is very likely to generate a
different result.

For large values of W , T (W ) = k ∗ T (Wp) + E(Wq), where E(Wq) is the
number of edges of Wq words with a space. From the typing model Lemma 2, we
know

E(Wq) = (Wq)− logp k ∗ (1 + c′ logWq),

where c′ = q− logp k

− log p (a fixed number).
Now set

α = − logp k, c = q− logp k, c′ =
q− logp k

− log p
, s = c′c log q,

where
E(W ) =Wα + c′Wα logW.

We can extend this above equation to

E(Wq) = cWα + c′cWα logW + c′c log qWα

= cWα + c′cWα logW + sWα,

E(Wqp) = cWpα + c′cWpα logWp+ sWpα,

and
E(Wqp2) = c(Wp2)α + c′c(Wp2)α logWp2 + s(Wp2)α.

For some of the following steps, we extract the first letter of all the words, and
each word here has two space characters as we described above. For example,
in the first step, after we extract the first letter of all the words, the number of
placed triangles is the sum of the following two cases:

1) We have k ∗T (Wp) placed triangles when the first character is not the space
bar.
2) We have E(Wq) placed triangles when the first character is the space bar.
Now we have:

T (W ) = k ∗ T (Wp) + E(Wq)

= k ∗ T (Wp) + cWα + c′cWα logW + sWα (expand E(Wq))

= k ∗
(
k ∗ T (Wp2) + E(Wqp)

)
+ cWα + c′cWα logW + sWα (extract the first character from Wp words)

= k ∗
(
k ∗
(
k ∗ T (Wp3) + E(Wqp2)

)
+ E(Wqp)

)
+ E(Wq) (extract the first character from Wp2 words)

= kn ∗ T (1) + (c+ s)Wα
(
(kpα)n−1 + (kpα)n−2 + (kpα)n−3 + . . .+ 1

)
+ c′cWα

(
(kpα)n−1 logWpn−1 + (kpα)n−2 logWpn−3 + . . .+ logW

)
(recursively extract the first character from words)

= kn ∗ T (1) + (c+ s)Wα
(
(kpα)n−1 + (kpα)n−2 + (kpα)n−3 + . . .+ 1

)
+ c′cWα logWp

(
(n− 1)(kpα)n−1 + (n− 2)(kpα)n−2 + . . .+ (kpα)1

)
+ c′cWα logW.

Since T (1) = 1, n = logp(
1
W ) = logpW and kpα = kp− logp k = 1,

T (W ) = kn + (c+ s)Wαn+ c′cWα logWp
n(n− 1)

2
+ c′cWα logW

=Wα(1 + (c+ s)n+ c′c logWp
n(n− 1)

2
+ c′c logW )

=Wα

(
1 + (c+ s)n+ c′c logW

n(n+ 1)

2
+ c′c log p

n(n− 1)

2

)
.
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From what we have shown above:

α = − logp k, c = q− logp k, c′ =
q− logp k

− log p
, s = c′c log q, n = logpW.

Now we need to simplify the above equation:

T (W ) =Wα

(
1 +

(
c+ c

c

− log p
log q

)
n+

n(n+ 1)

2
c

c

− log p
logW +

n(n− 1)

2
c

c

− log p
log p

)
=Wα

(
1 +

(
c− c2 logp q

)
n− n(n+ 1)

2
c2 logpW −

n(n− 1)

2
c2
)

=Wα

(
1 +

(
c− c2 logp q

)
n− n2(n+ 1)

2
c2 − n(n− 1)

2
c2
)

=Wα

(
1 +

(
c− c2 logp q

)
n− n(n2 + 2n− 1)

2
c2
)
,

for
α = − logp k, c = q− logp k, n = logpW.
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