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Abstract

Image segmentation (also known as object/edge detection) is the process of dividing an
image into its constituent parts using information about the boundaries between objects, edges
within objects, variations in intensity, et cetera. Often, the human eye can easily recognize
salient information from an image; however, background variations in intensity, noise and other
degradations, and other highly oscillatory features make the process of image segmentation
challenging. This work is unique because we propose using a cartoon-texture-noise separation
to remove highly oscillatory features from the image prior to segmentation. The cartoon and
texture components can be used to analyze important information from the original image;
specifically, by applying a segmentation algorithm on the cartoon component, we can extract
objects from the original image. A new numerical implementation is provided for one of the
two decompositions used as well as various experimental results. The method is applied to
the classic example of finding a needle in a haystack, as well as real images where the texture
component and noise causes problems for standard techniques.

1 Introduction

The goal of this paper is to use modern imaging techniques to solve the difficult problem of locating
a needle within a haystack. Issues in locating a needle in an image of hay exemplify the open
problems in image segmentation. Image perspective introduces scales (varying size levels) of the
hay, shape similarity makes it difficult to distinguish between needle and hay, and the large number
of objects in the image causes many false edges. From the perspective of imaging science, the
problem of locating a needle in a haystack can be formulated as locating an object hidden by
texture, noise, and occlusion.

Over the past couple of decades, there have been many segmentation models proposed in the
literature. A brief summary of a few major models is provided here. In [12], the authors proposed
an energy minimization method (known as the Snakes model) to detect the edges in an image. For
the rest of this work, we will take f to represent the given image. Then the problem of segmenting
an image can be formulated as finding the set of edges in f .

Let Γ be the edge set, then the general energy based segmentation models can be written as
E = P (Γ) +R(Γ), where P is a penalty term that typically involves geometric aspects of the edge
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set and R is the region fitting term.
Let Γ(s) be a parameterized curve (s ∈ [0, 1]) which defines the edge set, then the Snakes energy

is given by the following equation,

ES(Γ) :=

∫ 1

0

(
β|Γ′|2 + γ|Γ′′|2 − |∇f(Γ)|2

)
ds, (1)

where β and γ are strictly positive. To find the curve Γ, the energy is minimized over the set of
all possible curves. The first two terms in equation (1) keep the curve smooth, while the last term
attracts the curve to high gradients (one definition of an edge). The image f must be treated with
a Gaussian filter before applying the Snakes method, in order to remove noise and texture.

The Geodesic Active Contours model [5], is an energy minimization method which is similar to
Snakes,

EGAC(Γ) =

∫
Γ

g (|∇f(Γ)|) ds, (2)

where g is a continuous edge detector (0 near sharp gradients and 1 in low gradient regions). The
minimizing curve is attracted to regions where the gradient of the image is sharp, while also having
small length.

In contrast to the previous methods, the model developed in [6], which we refer to as the Chan-
Vese model, uses regional information rather than sharp gradients. The method detects the object
boundaries and then reconstructs a two-region piecewise constant image of the detected object(s).
The Chan-Vese energy is as follows,

ECV (Γ, C1, C2) =

∫
In(Γ)

(f − C1)2 dx dy +

∫
Out(Γ)

(f − C2)2 dx dy + λ

∫
Γ

ds,

where λ > 0. The method fits two constants (C1 and C2) to the given image, while using the minimal
amount of the partitioning curve Γ. The Chan-Vese model is a simple case of the Mumford-Shah
model [16] :

EMS(u,Γ) = µ

∫
Γc

|∇u|2 dx dy +

∫
(u− f)2 dx dy + λ

∫
Γ

ds. (3)

The Mumford-Shah model looks for a smooth u with jumps along Γ which best fits the given image.
In the work we will focus on the Chan-Vese algorithm since it is known to locate local edges.

Normally, finding local (as opposed to global) edges is an undesired property in a segmentation
algorithm; however, since we are interested in locating a specific object, we would like a method that
does not over-segment the image. Rather than filtering out noise like the Snakes or Geodesic Active
Contours methods, we separate the image into cartoon and texture components. The contribution
of this work is to perform segmentation on only the cartoon component of the image. In section 2,
more details on the Chan-Vese algorithm are provided with a description of the Cartoon-Texture
decomposition used to precondition the image for the segmentation step. For a needle in a haystack,
the hay is removed (as the texture), which makes the needle much more prominent, resulting in
better segmentation results. In section 3, the algorithms for the Cartoon-Texture decomposition,
the Chan-Vese segmentation and the sequential implementation of these methods are given. In
section 4, results are given on the needle in a haystack image as well as other images. We conclude
the work in section 5.
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2 Description of the Method

We propose a two step method for feature and structure extraction by first removing texture using
an image decomposition method, segmenting the cartoon, and then recombining the cartoon and
texture (without the noise) in the segmented region. In this section, we first discuss Cartoon-
Texture decomposition methods in general and our choice of model and algorithm. We also detail
the Chan-Vese segmentation method and the motivation behind its proposed use.

2.1 Cartoon-Texture Decomposition

The Gaussian filter can be thought of as the first cartoon algorithm, since it filters out all high
frequency information in the image and leaves only large scale features. Given an image f which
can contain degradation, the Gaussian filtered image u is given by

u = Gσ ∗ f, (4)

where ∗ denotes convolution and Gσ is a Gaussian kernel with zero mean and a standard deviation
of σ (see [11]). Equation 4 is the solution of the heat equation

∂u

∂t
= ∆u, (5)

at time t =
√

2σ with initial data u(0) = f . Therefore, removing high frequency data can be
done by a finite time diffusion process. However, this type of process does not retain much of the
important information from the original data. On the other hand, adding a forcing term to the
right hand side of equation 5 can partially reintroduce information to the diffusion process. This
can take on the following form:

∂u

∂t
= ∆u+ λ(f − u) (6)

for λ > 0. As the equation moves forward in time, the solution diffuses by the Laplacian term,
while the difference terms add back some of the lost information. It is well known that equation 6
provides the gradient flow for the following energy:

E(u) =

∫ (
|∇u|2 + λ(u− f)2

)
dx dy

= ||u||2H1 + λ||u− f ||2L2

where || · ||2L2 =
∫
| · |2dx dy and || · ||H1 = ||∇ · ||L2 are norms for the function spaces L2 and H1

respectively. Thus minimizers of the energy above provide smooth approximations of f .
However, the diffusion term over-smooths the image, removing noise, texture and edges. The

reason for this is due to the isotropic nature of the Laplacian, it smoothes all information regardless
of its local characteristics. In order to preserve edge information and provide a more reasonable
cartoon, Rudin, Osher and Fatemi ([18]) proposed the following energy:

EROF (u) = ||u||TV +
λ

2
||u− f ||2L2
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where ||u||TV :=
∫
|∇u|dx dy is the total variation of u. Minimizers of this energy are known to

be nearly piece-wise constant, where the jumps correspond to edges in the image. This avoids the
issue of over-smoothing edges; however, there is still a loss of texture in the reconstructed image.

In [15], special norms were introduced to specifically capture and extract the behavior of tex-
ture. With these norms, the problem becomes finding the cartoon u and the texture v which best
approximates the given image f by minimizing the new energy:

ECT (u, v) = ||u||TV + µ||v||Texture +
λ

2
||u+ v − f ||2L2 (7)

where µ, λ > 0. The parameter µ plays the role of a texture scale parameter and λ acts as the
fidelity parameter between the approximation u+ v and the original f .

These norms (which we will denote by || · ||Texture) can be difficult to characterize since at best
they are generalized functions (weak functions). For example, in [17] the texture norm is defined
as ||v||2H−1 = ||∇∆−1v||2L2 . To examine this norm more closely, let us look at a one dimensional
“texture” v(x) = sin(αx) and where α > 0 x ∈ [0, 2π], then

|| sin(αx)||2H−1 :=

∫ 2π

0

(
d

dx

(
d2

dx2

)−1

sin(αx)

)2

dx

Since d2

dx2 sin(αx) = −α2 sin(αx), we can formally invert the differential operator (assuming periodic

boundary conditions), thus ( d2

dx2 )−1 sin(αx) = − 1
α2 sin(αx).1 Therefore,

|| sin(αx)||2H−1 =

∫ 2π

0

(
1

α2

d

dx
sin(αx)

)2

dx

=

∫ 2π

0

(
1

α
cos(αx)

)2

dx

=
1

α2

∫ 2π

0

cos2(αx)dx

≤ 2π

α2

Thus the norm decreases for large α, which translates to lower energy for high frequency. In terms of
images, minimizers of equation 7 with similar texture norms extract highly oscillatory information
into the texture component. For more on this type of texture norm see [1, 13,14,21].

However, this can be unsatisfactory in practice, since noise is also highly oscillatory. Models
which use this type of texture norm are unable to properly denoise images, therefore we choose
to use two texture norms which are not inversely proportional to the frequency. The first is the
L1 norm which is defined as || · ||L1 :=

∫
| · |dxdy, which was used for texture modeling in [22].

The second, more recent model is the patch-rank norm of [19], which is defined || · ||T := ||P · ||∗,
where P maps a matrix into another matrix whose columns are all the non-overlapping patches
(blocks) in the original matrix and || · ||∗ is the sum of the singular values of the matrix. The

1In general, we can invert this second order differential operator for sufficiently smooth functions with the appro-
priate boundary conditions.
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number of non-zero singular values gives the rank of a matrix, which corresponds to a measure of
the repetitive, or patterned, texture in the image.

Comparing the L1 texture to the low patch-rank texture model, there are two main differences.
The first is that the L1 texture model works on scale while the low patch-rank model works on
pattern. The second is that, for noisy images, the low patch-rank model is better suited for texture-
noise separation. This is useful in images where the texture and noise are on the same scale. On
the other hand, when there is little noise, the L1 model converges to a decomposed solution faster.

In either case, let us define || · ||t to be the texture norm (either L1 or low patch-rank), then it
can be shown that for a given f the following holds:

||f ||t ≤ c||f ||L2 ≤ C||f ||TV
which gives a natural ordering between the norms (where c, C > 0). The texture norm is bounded
by the noise norm which is bounded by the cartoon norm. This is important since following through
the theory of texture norms in [9], one can show that for certain parameters µ and λ, thin objects
can be considered part of either the cartoon or texture component. Of particular interest is that the
width scale can be used as a characteristic of the decomposed components, see [9]. This motivates
the use of Cartoon-Texture Decomposition for the separation of a needle from a haystack. For more
on applications of texture extraction see: [2–4,8, 9].

2.2 Chan-Vese Segmentation Method

From an input image f , the Chan-Vese method will detect boundaries of objects in the image and use
the boundaries to reconstruct a two-phase piecewise constant image. Ideally, for our application,
the method would detect the needle (or main object) as one region and the complement as the
second region. Recall that the method minimizes the energy:

ECV (Γ, C1, C2) =

∫
R1

(f − C1)2 dx dy +

∫
R2

(f − C2)2 dx dy + λ

∫
Γ

ds

For the remainder of the paper, we set the region inside of Γ as R1 and the region outside of Γ as
R2. By minimizing the length term, the resulting curve Γ will remain smooth. The first two terms
are error terms between the constants (C1 and C2) and the given image. Minimizing the error
terms ensures that the intensities of the pixels in each region are similar to the constant assigned
to that region. We will also denote the first term as E1 and the second term as E2.

To see why the minimizers give an appropriate segmentation we provide a simple example.
Figure 1 shows that the only Γ that minimizes both of the error terms is that which lies on the
boundary of object. The average intensity value inside the curve in Figure 1(a) is much greater
than the intensities at each of the light gray pixels in R1, yielding a large error term in R1. Similar
principles apply to Figures 1(b) and 1(c). In Figure 1(d), the average intensity in each region is
equal to the intensity values at each pixel in the respective regions.

One problem in segmentation is that the variables are of different types: curves versus functions.
This is avoided by using the level set method. Let φ be a Lipshitz function where φ(x, y) > 0 if
(x, y) is inside Γ (in R1), φ(x, y) < 0 if (x, y) is outside Γ (in R2), and φ(x, y) = 0 on the curve Γ.
Let H(z) be the Heaviside function, which returns 1 if z ≥ 0, and returns 0 if z < 0. With this
definition, we have the regional indicator functions H(φ) and 1 −H(φ). Also from [7], the length
of the curve is given by
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(a) E1 > 0 (b) E1 > 0 and
E2 > 0

(c) E2 > 0 (d) E1 + E2 = 0

Figure 1: The curve Γ shown in red. In each image except 1(d), E1 > 0 or E2 > 0 or both. In 1(d),
E1 = E2 = 0 because C1 = f at each point in region 1 and C2 = f at each point in region 2.

Length{φ = 0} =

∫
|∇H(φ)|dxdy

=

∫
δ(φ)|∇φ|dxdy, (8)

where ∇φ is the gradient of φ(x, y) and δ = H ′. Using equation 8 and the indicator functions, the
Chan-Vese energy becomes:

ECV (φ,C1, C2) =

∫ (
λδ(φ)|∇φ|+H(φ)(f − C1)2 + (1−H(φ))(f − C2)2

)
dx dy (9)

Mininimizing equation 9 with respect to the constants C1 and C2 is easily done and has the following
form:

C1 =

∫
H(φ)f dx dy∫
H(φ) dx dy

(10)

C2 =

∫
(1−H(φ))f dx dy∫
(1−H(φ)) dx dy

(11)

Equations 10 and 11 are the regional averages. The smooth approximation used for H(φ) is given
by Hε(φ) = 1

2 + 1
πarctan(φε ) and the smooth version of the delta function is taken to be δε = H ′ε,

which are strictly positive and bounded above by 1. This avoids dividing by zero in the equations
10 and 11. Lastly, the minimizing equation in terms of φ is given by the steady state of:

∂φ

∂t
= δ(φ)

(
div

(
∇φ
|∇φ|

)
+ λ

(
−(f − C1)2 + (f − C2)2

))
.

3 Algorithm

3.1 Cartoon-Texture Decomposition

The L1 texture energy is written as

ECT,L1(u, v) = ||u||TV + µ||v||L1 +
λ

2
||u+ v − f ||2L2 (12)
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Since the Cartoon-Texture energy is convex in u, convex in v, and L1 like norms, we can use the
Split Bregman method [10]. The method splits the equation from a non-linear problem to a linear
problem and a shrink function. First we can write the two subproblems as:

un+1 = arg min
u
||u||TV +

λ

2
||u+ vn − f ||2L2 (13)

vn+1 = arg min
v
µ||v||L1 +

λ

2
||un+1 + v − f ||2L2 (14)

To solve the equation for un+1 for fixed vn, we use the standard Split Bregman for TV problems
(see [10]). To solve for vn+1, the shrink function is applied:

vn+1 = S(f − un+1,
µ

λ
)

where S(x, c) is x− c if x > c and x+ c if x < −c. The algorithm is summarized below.

Cartoon-Texture Decomposition with L1 texture model

Initialize u0 = f , v0 = 0
while Not Converged do

Solve for un+1 from equation 16
Solve for vn+1 via shrinkage

end while

The substep for the un+1 term adds back the edges, while the shrinkage term for the texture
component thresholds via scale. For details on the Cartoon-Texture algorithm using the low patch-
rank texture norm see [19].

3.2 Chan-Vese Algorithm

Let φni,j denote the value of the level set function at position (i, j) at iteration n. We follow a similar

discretization as in [6, 20] to iterate forward to φn+1. Recall that the equation of motion for the
level set function φ is as follows:

∂φ

∂t
= δ(φ)

(
div

(
∇φ
|∇φ|

)
+ λ

(
−(f − C1)2 + (f − C2)2

))
By discretizing forward in time using a first order difference and first and second order differences
in space yields the following scheme:

φn+1
i,j =

φni,j + g(φn) + λ · δ(φn) · [K1φ
n
i+1,j +K2φ

n
i−1,j +K3φ

n
i,j+1 +K4φ

n
i,j−1]

1 + ∆tδ(φn)λ(K1 +K2 +K3 +K4)
. (15)

where the function g and scalars K, K1, K2, K3, K4 are defined as:
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g = δ(φn)∆t[−(f − C1)2 + (f − C2)2]

K = K1 +K2 +K3 +K4

K1 =
1√

ε2 + (φni+1,j − φni,j)2 + 1
4 · (φ

n
i,j+1 − φni,j−1)2

K2 =
1√

ε2 + (φni,j − φni−1,j)
2 + 1

4 (φni−1,j+1 − φni−1,j−1)2

K3 =
1√

ε2 + 1
4 (φni+1,j − φni−1,j)

2 + (φni,j+1 − φni,j)2

K4 =
1√

ε2 + 1
4 (φni+1,j−1 − φni−1,j−1)2 + (φni,j − φni,j−1)2

Simplifying the denominator of equation 15 we get

φn+1
i,j =

φni,j + g(φn) + λ · δ(φn) · [K1φ
n
i+1,j +K2φ

n
i−1,j +K3φ

n
i,j+1 +K4φ

n
i,j−1]

1 + ∆tδ(φn)λK
. (16)

Now φn+1 can be used to find the next iteration of the curve, given φn. The parameter λ
influences the smoothness of the curve, while ∆t controls the stability. The parameter ε is used to
avoid dividing by zero. In this work we set ε = 10−5 for all experiments. Altogether, the algorithm
is as follows.

Chan-Vese Algorithm

Initialize φ0

while φn not converged do
Compute C1 and C2 from the φn

Find φn+1 by equation 16
Reset boundary conditions of φn (Neumann BC)

end while

Computing the regional constants C1 and C2 follows easily from equations (10) and (11) using
Hε in place of the sharp Heaviside function. Convergence is achieved when φn minimizes the Chan-
Vese energy for the given parameters. An additional reinitialization process may be needed to
return the function φn to a distance function to the zero level curve; however, for our applications
this is not necessary.

When the preceding algorithms are run in sequence, they yield a process that can detect an
object’s boundaries even when applied to a textured image. The complete algorithm is below.

4 Experimental Results

The following images display the results of the proposed object detection and segmentation method.
For a simple noisy image the Chan-Vese algorithm can be used directly without the component
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Complete Algorithm

Input noisy and highly textured data f
Run Cartoon-Texture Decomposition from algorithm on page 7: f → u+ v + noise
Input u into the Chan-Vese Segmentation algorithm from page 8: u→ (C1, C2, φ)

Output characteristic function for the located region: H(φ)

Figure 2: Above: Original image Ω and the contour Γ in red after 15, 25 and 100 iterations. Below:
Piecewise constant reconstruction.

decomposition (see Figure 2). Also in the noise and texture free case the segmentation is similar
to edge detecting. In Figure 3, the Chan-Vese algorithm is applied to an image of a needle (on
a slightly varying background). The red curve (the segmenting curve) moves to the edges of the
needle. The object is properly located at the steady state.

In Figure 4, the texture pattern of the straw causes the curve to falsely locate the straw as well
as the needle. However, the cartoon is easily segmented and the reconstructed image clearly defines
the needle. The parameters are more sensitive in this case than with our non-textured images; we
choose λ = .04 ∗ 2552 and ∆t = .03. Although separating the cartoon component adds time to
the procedure, the whole process takes only a few minutes for all of our test images. One of the
advantages of using a non-convex method like Chan-Vese is that the steady state curve is only a
local minimizer. This is preferred for object detection, since we only want one specific feature or
structure. This also makes us rethink the saying, since it does not seem that hard to find a needle
in a haystack.

Of course, many images contain texture and noise that make segmentation difficult. In Figure 5,
the grass introduces intensity variations which causes the segmentation algorithm to falsely locate a

62



Figure 3: Locating a needle with the Chan-Vese algorithm.

region near the tank. After separation, the tank is detected and the texture can be reintroduced to
display the final results (Figure 5(f)). In this case we use parameters λ = .0035∗2552 and ∆t = .04.

5 Conclusions

We proposed using a cartoon-texture-noise decomposition to separate features for a segmentation
algorithm. We use two models for the texture component (the L1 norm and the low patch-rank)
and the total variation norm for the cartoon. In both cases, the cartoon provides an image which
is easier to segment. The experimental results support this claim as well as the ability to locate a
needle in a haystack.
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(a) Original (b) Initial Segmentation

(c) Cartoon (d) Texture

(e) Final Segmentation (f) Reconstruction

Figure 4: Segmenting a needle in a haystack before and after Cartoon-Texture decomposition.
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(a) Original (b) Initial Segmentation

(c) Cartoon (d) Texture

(e) Final Segmentation (f) Reconstruction

Figure 5: Segmenting Tank image before and after Cartoon-Texture decomposition.
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