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Figure 1. The Hamiltonian path representing genome organization in proximity to the MS2 
capsid is shown in yellow inside a crystal structure of the capsid, together with a genomic frag-
ment containing packaging signals (PSs) identified in [3]. The core sequence motif, the two As 
shown in magenta, is very sparse, demonstrating why sequence analysis alone is not sufficient 
to identify these PSs. Image credit: Richard Bingham, adapted from a figure by Tom Keef.
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Algorithmically Defining 
Olfactory Responses in Animals
By Bard Ermentrout

For their survival, animals use olfac-
tion (their sense of smell) to locate food, 
find mates, and avoid predators. While 
animals excel at these tasks, the algorith-
mic and mechanistic processes governing 
this behavior are not well understood. Our 
lack of understanding is made vivid by the 
pre-industrial nature of current odor source 
localization technology; we use dogs to 
search for contraband, pigs to find truffles, 
and pouch rats to detect land mines.

While animals exhibit a wide range of 
morphological and physiological character-
istics, they use similar cues to locate odor 
sources: differences in odor concentration 
across space and over time, measurements 
of local concentration gradients, frequency 
of odor encounters, and environmental cues 
about flow direction, such as wind or water 
flow. Moreover, animals share many mor-
phological and kinematic similarities in 
their olfactory systems, including bilateral 
sensors, dynamic sampling behaviors (sniff-
ing, antenna movements), and common 
anatomical features (neural circuitry in the 
first stages of olfactory processing). These 
commonalities suggest that convergent evo-

lution has identified robust strategies for 
locating odors in complex environments.

Finding odor sources is hard because 
odor environments are complex. Odors in 
natural environments travel along turbulent 
flow paths governed by wind, topography, 
and molecular diffusion. What exactly does 
the odor landscape look like? Figure 1a (on 
page 2) shows an odor plume imaged by our 
collaborator, John Crimaldi (University of 
Colorado). It’s clear that the concentration is 
far from being uniform or smooth in space. 
Locations near the source at some instants of 
time show nothing, while even distant places 
show bursts of high concentrations. Figure 
1b (on page 2) displays the output from a 
photoionization detector (PID) at different 
distances from a line of odorant placed on 
a table in a room. Unlike the plume, the 
only airflow is the ambient turbulent flow 
arising from ventilation, movement, etc. in 
the room. Presumably, this is what a mouse 
perceives when trying to locate an odor trail. 
In the PID measurements, the baseline is 
higher near the source than away from it. But 
another common feature of these complex 
odor landscapes is that the rate of fluctuation 
increases with proximity to the source.

See Olfactory Responses on page 2

Biofluids of Reproduction: Oscillators, 
Viscoelastic Networks, and Sticky Situations
By Debbie Sniderman

Despite the introduction of millions of 
sperm into the female mammalian repro-
ductive tract, fewer than 100 actually arrive 
at and penetrate the egg, enabling fertiliza-
tion. A tenth of every ten million sperm 
reach the cervix, where they encounter 
a complex fluid environment containing 
embedded polymer structures. Only a tenth 
of those make it through the uterus. To 
reach the egg, the remaining sperm then 
must pass through the contracting oviduct. 
Oviducts are lined with mucosal folds and 
coordinated beating cilia that contribute to 
sperm transport. Some sperm may adhere 
to oviductal epithelia, requiring a change in 
their oscillation pattern to escape.

Mammalian fertilization involves many 
components, including sperm motility, 
female reproductive tract environment, bio-
chemical signaling, and complex visco-
elastic fluids. Successful reproduction in 
mammals relies on interactions of elastic 
structures with a fluid environment. Lisa 
Fauci (Tulane University) models these 
interactions using an immersed boundary 
(IB) framework to address fundamental 
questions about the biology of reproduction.

Why Biofluid Models Are Helpful
Sperm models help researchers under-

stand various aspects of fertilization (see 
Figure 1). Sperm physiologists want to 
answer basic questions about the possibility 
of increasing sperm motility via treatment 
of chemical environments, which is benefi-
cial to many industries. 

Recognizing how non-Newtonian visco-
elastic fluids help or hinder fertilization is 
also important. And a better understanding 
of how fertilized ova implant in the uterus 
can lead to improvements in in-vitro fertil-
ization and clinical practices. For instance, 
should the injection of a fertilized ovum be 
timed with uterine contractions?

The rise of technologies such as micro-
fluidic devices, labs-on-a-chip, and the abil-
ity to manipulate bacteria and flagellated 
organisms has triggered a surge in research 
activity surrounding the fluid dynamics of 
microorganism motility. For example, the 
creation of non-biological microrobots might 
facilitate drug delivery. Understanding how 
sperm deliver their payloads could help 
guide fabricated 
m i c r o s w i m m e r s 
towards tumors.

Fauci uses com-
putational meth-
ods that couple 
both mechanical 
and biochemical 
systems with fluid 
dynamics in order 
to model fertiliza-
tion and reproduc-
tion. As an alterna-
tive to continuum 
models, her group 
models a complex 
mucosal network 
as discrete nodes 
connected by vis-
coelastic elements. 
Using discrete networks is advantageous 
in that a network’s connectivity can evolve 
to accompany structures’ inhomogeneous 
material properties.

Motility: Beating Through 
Viscoelastic Fluids

Complex geometries, non-Newtonian flu-
ids, and moving elastic and actuated inter-
faces all complicate sperm motility models. 
“Choices have to be made when choosing 
the types of models and what to include,” 
Fauci says. Paraphrasing a famous quote by 
George E.P. Box, she adds, “All models are 
wrong, but some of them are informative.”

Preliminary models, which initially looked 
at only one interface and one sperm or 
cilium, were 2D with simple domain geom-

etries, like a periodic box rather than a more 
complicated pulsing tube. Researchers had to 
decide whether to use prescribed kinematic 
models of flagellar motion, or elastic rod 
models in which the flagellar shape emerges 
from the elastohydrodynamic coupling.

Elastic rod models assume that sperm fla-
gella have tensile and bending energy that is 
minimized when the flagellar shape meets 

a preferred curvature. Forces derived from 
these energies also depend on stiffness coef-
ficients. In models with biochemical prop-
erties, this preferred curvature is a function 
of the evolving calcium profile along the 
flagellum. Flagellar forces are coupled to 
a surrounding fluid. And at the microscale, 
inertia is negligible and Stokes equations 
are used. The coupled system is solved 
using the method of regularized Stokeslets.

Fauci’s group also studies whether sperm 
gain any advantage by swimming through a 
polymeric network rather than a Newtonian 
Stokesian fluid. The model of a fluid cou-
pled with an elastic network accounts for 
discrete links. It overlays a polymeric net-
work onto a Stokes 3D fluid, with nodes 

Figure 1. Sperm-egg penetration model. Image credit: Jacek Wróbel, 
Julie Simons, Ricardo Cortez, and Lisa Fauci. To view a simulation, visit 
the online version of the article at sinews.siam.org.

See Biofluids of Reproduction on page 4

In an article on page 3, Reidun Twarock describes the use of mathematics to study the 
formation, evolution, and infection rate of viruses. 
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4  Beating in Fluid: Hearts 
and Cilia by the Immersed 
Boundary Method

 Debbie Sniderman recaps an 
invited lecture by Charles 
Peskin at the SIAM Conference 
on the Life Sciences. In his talk, 
Peskin reinforced the versatil-
ity of the immersed boundary 
method, which is applicable 
to mathematical problems 
underlying two very differ-
ent systems: hearts and cilia. 

6  Careers Outside Academia: 
How Should Math and 
Applied Math Students 
Prepare?

 Lalitha Venkataramanan, Rachel 
Levy, and Bill Kolata highlight 
themes from a career panel that 
they organized at the SIAM 
Annual Meeting. Takeaways for 
students and early-career indi-
viduals included an emphasis 
on mathematical maturity and 
programming proficiency at 
companies, and ways to acquire 
desirable technical expertise.

8  Photos from the 2016 SIAM 
Annual Meeting

9  Computational Behavioral 
Ecology

 Debbie Sniderman outlines 
Tanya Berger-Wolf’s plenary 
lecture from the SIAM Annual 
Meeting. Berger-Wolf’s compu-
tational work uses data from a 
range of sources to provide sci-
entific insight into the collective 
behavior of animals, pioneering 
the analysis of high-resolution 
data for behavioral science.

12  Everyday Objects Make 
Applied Mathematics 
Tangible

 The 2016 I.E. Block Community 
Lecture emphasized the 
importance of touching, see-
ing, and feeling to central 
concepts in applied math-
ematics. Paul Davis gives us 
a vivid picture of Tadashi 
Tokieda’s very palpable talk at 
the SIAM Annual Meeting. 

11  Professional Opportunities
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Our group is using the behavior of ani-
mals in constrained environments to infer 
the algorithms they utilize to locate odor 
sources and follow odor trails. For example, 
in videos created by our collaborator Kathy 
Nagel (New York University), we observe 
fruit flies walking as controlled odors are 
turned on and off. The flies transiently 

make more frequent turns when an odor 
is switched from on to off. Nathan Urban 
(University of Pittsburgh), another collabo-
rator on this project, films mice as they 
follow odor trails associated with a food 
reward. His lab finds that the mice are 
less accurate at following trails when one 
nostril (naris) is occluded, suggesting that 
“stereo-olfaction” may be important in trail 
following. The subjects in both of these 
experimental setups exhibit frequent move-
ment called casting: the mouse moves its 
head around while sniffing or the fly moves 
orthogonal to the direction of the wind.

We are currently using behavioral analy-
sis to create models and test them on vari-
ous odor landscapes. Testing the models in 
realistic settings is a challenge since we 
are just now beginning to understand what 
the landscape “looks” like to an animal. 
Approaches to modeling the odor concen-
tration range from simple heuristic models 
to full Navier-Stokes simulations in con-
trolled and closed environments. Any simu-
lation of the environment should capture the 
intermittency of the odor, as seen in Figure 
1. Furthermore, any navigation algorithm 
must be robust in the face of distortions of 
the plume, e.g., due to obstacles, changes 
in humidity and temperature, and sniffing 
or other movements of the animal itself. 
Once we have a good understanding of the 
algorithms, we want to then understand 
their neural and physiological basis. There 
is considerable knowledge of how odors are 
converted to electrical signals in the brain, 
but how these signals can be used for odor 
source localization remains a mystery. This 
article and a follow-up piece to appear in the 
October issue of SIAM News discuss a few 
of the simple algorithms that animals may 
use to find an odor source. Here I explore 

possible mechanisms for odor location that 
do not depend on the actual concentration.

Besides concentration, what other signals 
could be used to produce odor localiza-
tion? Figure 1 shows rather clearly that the 
concentration fields are quite complex and 
chaotic. Figure 1b demonstrates that the 
frequency of fluctuations is much greater 
closer to the source; the plume in Figure 
1a depicts similar behavior and a clear 
direction of the flow. These images sug-

gest a method for finding the odor based 
on the frequency of odor encounters, and 
when possible, direction of the wind. For 
example, a very simple algorithm would 
move in a direction that shortens the inter-
vals between odor encounters. An excellent 
algorithm, Infotaxis, is built with this prem-
ise in mind; the agent moves in a direction 
that increases the Shannon information [1]. 
At each time step, Infotaxis builds up an 
estimate of the probability that the source 
is at some location, .x  For instance, if the 

agent hasn’t yet found the source, it is 
certain that the source is not at the current 
position. With this estimated probability, 
the agent estimates the entropy in each of 
the four cardinal points and moves to the 
point where the entropy is minimized. 

While Infotaxis is an optimal strategy for 
finding an odor source when the encounters 
are rare, it is very computationally intensive. 
It is also not clear how a biological organ-

ism could implement Infotaxis. Instead, we 
have developed algorithms based on the 
rate of encounters between “spikes” of odor 
that work reasonably well in simple models 
for the odors. Since many odors arrive in a 
windborne plume, it is possible to use addi-
tional information about the wind direction 
to follow the odor upwind, and move cross-
wind or backwards when the odor is lost 
to increase the chance of finding it again. 
An example algorithm that does not use 
the wind works by keeping track of the last 
three odor encounters. If the time between 
those encounters is decreasing or the same, 
a possible strategy would be to continue to 
move in the current direction; otherwise, 
move in a random direction that is near the 
current direction.

For a very simple algorithm, this approach 
does reasonably well. Figure 2a shows 
the results of a Monte Carlo simulation of 
this algorithm applied to a single Gaussian 
source, which indicate that the agent spends 
much more time at the center of the source. 
Nagel has made careful observations of fly 
behavior in the presence of attractive odors. 
By temporally varying the on and off rates 
of an odor, she found a few rules that flies 
implement when walking in a small arena. 
Figure 2b shows an example simulation of 
her rules in the presence of a particle model 
for a plume. In this simple plume model, 
particles from the source are emitted ran-
domly and drift/diffuse. A slowly-varying 
wind direction has a mean in the y-direction. 
The figure only represents a snapshot of the 
“plume” – if the fly is close enough to a 
particle, it registers as a hit. The rules use 
the wind direction as well as the frequency 
of on and off hits with the particles, and 
flies have a number of cells that register 
responses both when the odor is present and 
when it disappears. As with the spatial com-

parison algorithms, both of these temporal 
algorithms include a stochastic component 
when the hits become infrequent enough.

We are just beginning this work, and 
many mathematical and biological ques-
tions remain. How can we quantify and 
statistically imitate real odor landscapes 
in order to test models? What are the best 
algorithms for locating an odor and how 
do their parameters change at different 
spatial and temporal scales? What are the 
best search strategies when the odor is lost? 
Where in the olfactory system can the algo-
rithms be implemented?

In a follow-up article to appear in the 
next issue, the author will describe math-
ematical aspects of tracking odors based on 
concentration difference, along with some 
aspects of foraging.

References
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Figure 1a. Snapshot of a chemical plume in water. Image credit: John Crimaldi. 1b. 
Photoionization detector (PID) time series at 2 centimeters and 8 centimeters from an odor 
source. Image credit: Nathan Urban.

Figure 2a. Fraction of time spent at different locations with a Gaussian odor source using 
the time between events. 2b. A more sophisticated algorithm for a fly locating an odor in a 
“particle”-based plume. This shows the fly’s track from the start (blue dot) and a snapshot of 
the “plume.” Image courtesy of Kathy Nagel.

Olfactory Responses
Continued from page 1
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Follow the Yellow Brick Road
Mathematics Reveals a Hidden Construction Manual in Viral Genomes
By Reidun Twarock

Viruses are a major public health burden. 
The continued emergence of viruses such as 
Zika and the large number of HIV infections 
worldwide are only two of many examples 
illustrating the urgent need for new, anti-
viral solutions. Tackling this issue requires 
a better understanding of the mechanisms 
by which viruses form and infect their hosts.

Group, graph, and tiling theory can pro-
vide new insights into the architecture and 
formation of virus particles. Such insights 
are made possible by the highly regular 
geometric structures of the viral protein 
containers that encapsulate and thus provide 
protection to the viral genomes. In many 
viruses, these capsids resemble surface lat-
tices with icosahedral symmetry, akin to 
Buckminster Fuller domes. We have devel-
oped group theoretical techniques to inves-
tigate the geometric constraints on such 
container architectures [7], and have shown 
that similar principles apply more widely 
in science, e.g. in fullerenes in carbon 
chemistry [1, 10]. We have also extended 
our tiling approach, Viral Tiling Theory, 
to assist experimentalists in understanding 
the geometries of self-assembling protein 
nanoparticles (SAPNs) [6]. The structural 
organisation of these particles, which are 
used to design Malaria vaccines, follow 
mathematical rules similar to those under-
pinning the assembly of virus particles.

These structural models have paved the 
way for a major discovery that has funda-
mentally changed our understanding of virus 
formation. For decades researchers thought 
that viral genomes act like passive passengers 
in the formation of the viral capsids. Their 
impact on the formation process, if any, was 
attributed to electrostatics alone, triggered by 
the condensation of positively-charged capsid 
proteins on negatively-charged RNAs. Using 
mathematical insights, we have demonstrated 
that this view is not sufficient to account 
for the formation of single-stranded RNA 
viruses, a major group of viruses containing 
important human pathogens such as Hepatitis 
C, HIV, and the common cold.

The key to this discovery is rooted in 
combinatorial and graph-theoretical argu-
ments exploiting viral geometry. The contact 
points between the encapsulated genomic 
RNA and the inner capsid surface act as the 
vertices of a polyhedron related in shape and 
symmetry to that of the capsid itself. The 
order in which the RNA-protein contacts are 
formed must correspond to a connected path 
visiting every vertex exactly once. Thus, 
the genome organisation in proximity to the 
capsid shell is topologically equivalent to a 
Hamiltonian path on this polyhedron (see 
Figures 1 (on page 1) and 2 (above)).

A classification of these Hamiltonian 
paths is a powerful tool in interrogating 
viral genomes for the existence of sequence-
specific contacts between genomes and their 
capsids [3]. Such contacts are difficult to 
identify with bioinformatics alone due to the 
lack of any repeated, contiguous sequence 

motif of sufficient length in the genome, per-
haps accounting for the long-held belief that 
any interactions between genome and capsid 
must rely entirely on electrostatics. Using our 
Hamiltonian paths classification, we showed 
that, by contrast, there is an ensemble of 
cryptic signals that vary around a minimal 
core sequence motif. These signals—which 
we termed packaging signals (PSs), in anal-
ogy to the single known specific contact 
previously identified by virologists—cor-
respond to short, in many cases even discon-
nected, sequence elements presented in the 
context of specific types of RNA secondary 
structures, i.e. RNA shapes arising as a con-
sequence of Watson-Crick base pairing (see 
Figure 1, on page 1). A striking outcome 
of this work is the conclusion that genome 
organisation is much more constrained inside 
viral particles than previously appreciated. 
Indeed, only a very small number of the 
possible Hamiltonian path organisations can 
actually be realized by a virus particle for 
geometric and combinatorial reasons. This 
initially-surprising result has subsequently 
fit excellently with cryo-electron microscopy 
data [5] (see Figure 3), corroborating this 
astonishing mathematical conclusion.

The variation around a minimal core 
sequence motif in the PS ensemble of a viral 
genome may explain why this hidden code 
has so long been overlooked. It also opens 
up the puzzle of how this code actually func-
tions. To address the mechanistic implica-

tions of this code and provide an explanation 
for this variation in the recognition motifs, we 
used Gillespie-type algorithms to study the 
assembly of a dodecahedral shell as a proxy 
for a viral capsid [2, 4]. We monitored the 
assembly of the pentagonal building blocks 
in the presence of hypothetical RNAs, each 
with 12 PSs capable of binding to these 
assembling units. From a biophysical point of 
view, the variation of the PS motifs across the 
genome manifests itself in differing PS affini-
ties for capsid protein. We therefore allowed 
the affinities of individual PSs in a viral RNA 
to vary between three settings, representing 
weak, intermediate, and strong interactions. 

Interestingly, we observed significant 
differences in capsid yield for assembly 
around RNAs with distinct affinity distri-
butions. The simulations alone could not 
explain why this was the case, but graph 
theory again was key in providing answers. 
We used Hamiltonian paths on the poly-
hedron representing all possible connec-
tions between neighboring binding sites—
in this case an icosahedron—to classify 
different assembly scenarios. We showed 
that RNAs with better performing affin-
ity distributions were organised inside the 
fully-assembled capsids via a very limited 
range of Hamiltonian paths. Translating 
these Hamiltonian path organisations into 
information regarding the geometries of the 
partially-formed capsids on the pathway 
to the complete particle showed that PSs 
act collectively to bias their geometries 
towards structures with larger numbers of 
protein-protein bonds. The hidden PS code 
thus acts as a construction manual for viral 

capsids, solving the viral 
equivalent to Levinthal’s 
Paradox in protein folding. 
Indeed, the PS code directs 
assembly towards a small 
number of efficient path-
ways within the vast com-
plexity of combinatorially 
possible ones, hence giv-
ing the virus an advantage 
in the arms race against the 
host’s immune defenses.

Our modeling offered 
another astonishing con-
clusion. The impact of this 
construction manual can 
only be observed if cap-
sid protein is ramped up 
slowly—as in the case of a 
real viral infection—rath-
er than added in a single 
step, as is often the case 
in in vitro experiments. 
Inspired by this mathemat-
ical result, our collabora-
tors at the University of Leeds performed 
assembly experiments under the condition 
of such a protein ramp, leading to the 
first direct experimental demonstration of 
PS-mediated assembly [8]. In collaboration 
with experimentalists at the University of 
Leeds—in particular my Wellcome Trust 
co-investigator Peter Stockley—and the 
University of Helsinki, we have since iden-
tified PSs in a number of human viruses 
and jointly hold a patent exploiting this 
discovery in anti-viral therapy. 

A recent review by Peter Prevelige, a 
world-leading authority on virus assembly, 
is entitled “Follow the Yellow Brick Road: 
A Paradigm Shift in Virus Assembly” [9], in 
reference to our graph theoretical approach; 
we usually depict Hamiltonian paths in yel-
low (as in Figures 1 (on page 1) and 2 (left)). 
Ultimately, this research demonstrates that 
mathematics can drive discovery in molecu-
lar biology, functioning as a key player in 
interdisciplinary efforts to understand how 
viruses form, evolve, and infect their hosts.

This article is based on an invited lecture 
by Reidun Twarock at the SIAM Conference 
on the Life Sciences, which was held in 
Boston this July.
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Figure 3. The MS2 capsid is shown from the outside (left half), 
and as a cross-sectional view revealing ordered RNA density (right 
half) based on results in [5]. Our Hamiltonian path corresponds to 
the outer ring of RNA density in proximity to capsid. Image credit: 
Richard Bingham, adapted from a figure in [5] by James Geraets.
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connected by springs or Maxwell elements 
that transmit forces.

The group first looked at the rheology of 
viscoelastic structures in fluid to character-
ize the structures’ properties when forces 
and shear are applied as single or periodic 
pulses. Then they introduced a flagellum 
with specified kinematics and particular 
waveform into the network (see Figure 2). 
The waveform makes it through the mesh 
without feedback from it, and deforms the 
compliant network. As flagella encounter 
denser networks they still pass through, 
but with lower velocities than in free space 
for most of the journey; however, a veloc-
ity boost is visible as the flagella exit the 
object. Even though the stored elastic ener-
gy in the network increases the velocity, 
the flagella require more power to maintain 
their waveforms in the denser environment, 
so their efficiency is seen to be less than in 
free Stokes flow.

Though there is still much analysis to 
be done, thus far the models reveal that a 
viscoelastic network can enhance swim-
ming. Future models will include two-way 
coupling and won’t prescribe the kinematics, 
preventing sperm from swimming with fixed 
amplitudes. As motors face more resistance, 
lower amplitude waveforms may result.

Encountering a “Wall”
Using an elastic model of a flagellum, 

Fauci’s group also studies the elastic con-
nections and binding proteins that attach 
sperm to an oviductal epithelial “wall.” 
Shapes evolve based on other forces, and 
simulations help the researchers determine 
if the hyperactivated form allows flagella to 
more easily escape when attached to a wall.

As sperm approach a wall, elastic con-
nections are created with forces able to 
attach it (see Figure 3). Simulations help 
visualize this interplay under different sce-
narios. With no elastic linkages, sperm get 
close to the wall but don’t attach. With no-
slip boundary conditions, they don’t escape. 
When sperm enter hyperactived mode, they 
attach, detach, and reattach, consistent with 
experimental observations.

These simulations demonstrate that bond 
behavior can enable sperm movement away 
from an epithelial cell, and suggest the 
necessity of more experiments for further 
bonding characterization. Fauci’s group 
also developed a system to simulate sperm’s 
encounter with a network surrounding a 
solid sphere, and plans to study actual pen-
etration mechanisms in more detail.

Going Hyperactive
Using mechanical forces, sperm can push 

themselves through viscoelastic networks 
to penetrate an egg. During symmetric fla-

gellar bending, they take 
on linear trajectories and 
are surrounded by a rest-
ing level of calcium ions. 
Sperm swim straight; 
the moderate-amplitude 
beating of their tails has 
the quintessential sinu-
soidal wave form, with 
increasing amplitude 
towards the tail. 

When activated by 
high levels of calcium, 
sperm enter a hyperac-
tive state with a differ-
ent motility pattern char-
acterized by repeated, 
high-amplitude asym-
metric beating. Sperm in 
this state move in circles 
and appear ‘confused.’ Hyperactivity is an 
important process that provides the high-
er mechanical forces necessary to unstick 
sperm from mucosal folds in the oviduct 
and prevent reattachment. These higher 
forces also allow sperm to penetrate the 
viscoelastic layer surrounding the ovum 
right before fertilization. Clear biochemical 
pathways initiate this state.

Studying the mechanics, forces, and cal-
cium dependence helps elucidate the func-
tional implications of the hyperactivated 
mode of motility, and begs the following 
questions:

• What biochemical pathways initiate 
hyperactivation?

• What happens to sperm when exposed 
to sufficient calcium?

• What force-generating mechanisms 
change the beat?

• Compared to the force of moderate 
amplitude beating, how much more force 
does asymmetric bending generate to pre-
vent the flagellum from sticking?

Biochemically-Activated 
Penetration

Sperm can also penetrate an egg by dis-
solving the network in front of it. When 
ready to fertilize the egg, a sperm cell’s 
body releases enzymes that dissolve some 
of the links in the viscoelastic mesh. 

Motivated by this occurrence, Fauci’s 
group is currently working on computa-

tional experiments—applying forces and 
dissolving links—with these viscoelastic 
webs. They are attempting to couple the 
biochemical part of the puzzle with differ-
ent reduced models of sperm motility. The 
group plans to study the penetration process 
in more detail to understand the significance 
of sperm-egg penetration mechanics in rela-
tion to its biochemistry and the interplay 
between the two.

This article is based on Lisa Fauci’s 
AWM-SIAM Sonia Kovalevsky Lecture at 
the SIAM Annual Meeting, which was held 
in Boston this July.

View a photo of Fauci accepting her 
Kovalevsky Lecture prize on page 8.
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Beating in Fluid: Hearts and Cilia 
by the Immersed Boundary Method
By Debbie Sniderman

Heart valves are thin flexible membranes 
immersed in fluid that profoundly affect 
blood flow. Each side of the heart uses 
valves to aid in the movement of blood  from 
the atrium to the ventricle, and from the ven-
tricle to the aorta or the pulmonary artery.  

Each ventricle has an inflow and an outflow  
valve, which allow the alternate contraction 
and relaxation of that ventricle to generate 
unidirectional flow. The valves open and 
close in coordination with the pumping of 
the heart in its two main states, the diastolic 
or relaxed phase and the systolic or con-
tracted phase (see Figure 1). Heart valves let 

flow through when open, but the valve leaf-
lets also shear the flow and create vortices 
that help the valves close efficiently. When 
closed, the valves prevent backflow.

Heart valve function presents a fluid-
structure interaction problem, and the 
immersed boundary (IB) method offers a 
solution. It unifies the fields of elasticity 
and fluid dynamics, enabling a wide variety 
of applications in biological and engineer-
ing mechanics. Charles Peskin (New York 
University) first introduced the IB method 
in his Ph.D. thesis at the Albert Einstein 
College of Medicine, and further devel-
oped it with his students and colleagues at 
New York University’s Courant Institute of 
Mathematical Sciences.

IB Method
The IB method [8] treats immersed 

elastic bodies or boundaries as a part of 
the fluid in which they are immersed. 
Structures are represented as elastic, and 
material points of the structure are tracked 
so that their spatial configurations can be 
used to compute elastic forces applied to 
the fluid. Fluid velocity and pressure are 
computed on fixed Cartesian grids. 

The moving structure grid and the fixed 
fluid grid do not conform to each other, 
so the IB method’s key problems are the 
following: determining how to apply the 
forces generated by the structure to the 
fluid and deciding how to evaluate the fluid 

velocity at the structure points. Use of a 
smoothed approximation to the Dirac delta 
function, constructed so that important 
physical quantities such as momentum and 
angular momentum are preserved during 
fluid-structure interaction, solves both of 
these problems. A recently-developed delta 
function with a constant second moment 
and three continuous derivatives enables 
a new version of the IB method, in which 
the interpolated velocity field is exactly 
divergence-free.

The principal advantage of the IB method 
over other methods for fluid-structure inter-
action is that there is no need to adapt the 
fluid mesh to that of the structure, or vice 
versa. There is also no need to deal sepa-
rately with the many ways that the structure 
mesh may intersect with the fluid mesh.

The IB method is modular; it separates 
the task of modeling the fluid from that 
of modeling the immersed structure. Any 
structural model that can generate elastic 
forces from the spatial configuration of 
the structure mesh’s nodes can be used. 
Peskin used networks of points connected 
by springs for structural models in his early 
work. More recently, finite element struc-
tural models are being immersed in fluid by 
the IB method. Since there is fluid every-
where in an IB computation, even inside 
an immersed structure, the structural model 

See Hearts and Cilia on page 5

Figure 1. Diagram showing the physiology of the left side of the heart. The right heart is 
qualitatively the same but quantitatively different. Upper left. Heart in its two main states, dias-
tole (relaxed) and systole (contracted). LA=left atrium, LV=left ventricle, Ao=aorta. Bottom left. 
Pressure/volume diagram of the cardiac cycle. Each corner of the rectangular path denotes the 
opening or closing of a valve. Inflow and outflow pressures are idealized as constant. ∆V denotes 
the stroke volume. Upper right. Pressures in the Ao, LV, and LA. The ventricle switches between 
atrial pressure when relaxed and aortic pressure when contracted. Bottom right. Flows through 
the Ao and mitral (Mi) valves, with the heart sounds indicated. Image credit: Charles Peskin.
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Hearts and Cilia
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does not need to enforce incompressibility, 
a task that is handled by the fluid solver [1].

Immersed boundary software known as 
IBAMR, which was created by Boyce Griffith 
(University of North Carolina at Chapel Hill) 
and is publically available, incorporates both 
distributed parallelization and adaptive mesh 
refinement of Cartesian grids [2].

Beating Hearts
Peskin’s work on the heart began with 

the goal of improving the design of artificial 
valves; for recent work of this kind, see [3]. 
The next step, carried out jointly with David 
McQueen (New York University), was to 
build a model heart around the valves [5, 6].

Heart muscle is made of fibers that take 
geodesic paths on nested toroidal surfaces 
within the heart walls. Peskin introduced 
equations for this fiber architecture [7] and 
found asymptotic solutions in the special 
case of axial symmetry (applicable to the 
left ventricle). But solving these equations 

in the non-axial symmetric case of the 
whole heart remains an open problem. 

Numerical solutions by McQueen and 
Peskin [9] of similar equations for the col-
lagen fiber architecture of the aortic valve 
reveal a fractal structure with dimension 
2.2 [10]. Alexander Kaiser (New York 
University) recently created a fiber-based 
model of the mitral valve with intricate 
chordae tendineae. In the IB model heart, all 
mathematical fibers are immersed or embed-
ded in a viscous and incompressible fluid, 
creating a fiber-reinforced fluid that has 
mass, volume, and incompressibility. The 
stress/strain relationship of the muscle fibers 
is both nonlinear and time-dependent, with 
much higher stiffness during systole, or con-
traction of the heart, than diastole, the relax-
ation phase. This time dependence of material 
properties drives the model heart through the 
cardiac cycle (see Figures 2 and 3).

Beyond Mechanics and Fluids: 
Electrical Integration

The IB method’s flexibility also allows 
for the integration of the electrical com-
ponent of the heart [4] into the mechanical 
component/fluid modeling. The heart has an 

autonomous system that generates electrical 
waves to control beating. Mechanical-to-
electrical feedback operates through stretch-
activated channels and passive changes 
in electrical resistance as cardiac tissue 
deforms during contraction and relaxation.

In joint work with Griffith, Peskin uses 
the formalism of the IB method to simulate 
the electrical and mechanical activity of the 
heart within the same framework and in the 
same software. Their work is based on the 
bidomain model, which tracks both intracel-
lular and extracellular voltage and current. 
In the IB formulation of the bidomain equa-
tions, the extracellular domain is analogous 
to the fluid and the intracellular domain is 
analogous to the structure.

In the electrical equations of the extracel-
lular and intracellular spaces, the currents 
leaving the cells appear as a source/sink 
term. This can be written mathematically as 
a distributed delta function, which spreads 
the current onto the extracellular domain 
identically to how forces are applied to 
fluid in the IB method. The transmembrane 
current depends on both intracellular and 

extracellular voltage, and the evaluation of 
the extracellular voltage at a given intracel-
lular point is analogous to the evaluation of 
fluid velocity at a structure point in the IB 
method. Thus, the entire electrical problem 
looks like an IB problem.

In the IB formulation, the extracellular 
space extends beyond the myocardium 
and into the blood and surrounding tissues, 
both of which are electrically conducting 
media. The model heart thus acquires an 
electrocardiogram.

Beating Cilia
Another example of beating in fluid on 

a microscopic scale occurs in motile cilia, 
which are the active hair-like appendages of 
biological cells. The beat of a single cilium 
is driven by hundreds of dynein molecular 
motors that coordinate their activity to pro-
duce wavelike bending of the cilium. 

In a model proposed recently by Peskin 
and Jihun Han (New York University), the 
coordination emerges spontaneously as a 
result of a simple dynamical law governing 
the tension of each dynein motor, together 
with a geometrical constraint based on the 
microstructure of the cilium. The IB method 

immerses the model 
cilia in fluid, facilitat-
ing the study of their 
fluid-mediated inter-
action (see Figure 4). 
These studies reveal 
a striking tendency 
towards synchroniza-
tion of nearby cilia 
regardless of initial 
conditions. 

The mathematical 
problems surrounding 
hearts and cilia are so 
different in scale, yet 
both involve sponta-
neous oscillation and 
fluid-structure inter-
action. The immersed 
boundary method is 
applicable to both.

This article is 
based on an invited 
lecture by Charles 
Peskin at the SIAM 

Conference on the Life 
Sciences, which was 
held in Boston this July.
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Figure 4. Snapshot of two rows of modeled cilia in a periodic box 
of fluid. Red particles are fluid markers leaving trails to show recent 
trajectories. Despite in-phase initial conditions, the two rows tem-
porarily go into anti-phase and later recover synchrony before com-
putations end. Long-term behavior is unknown. The more vertical 
cilia are moving left (power stroke) and the others are moving right 
(recovery stroke). Image credit: Jihun Han. To view a simulation, 
visit the online version of the article at sinews.siam.org.  

Figure 3. Snapshot of a visualization of regions of high velocity flow 
on the front view of an IB heart model stimulated by electrical activ-
ity. The red color indicates regions in which the magnitude of the 
velocity is above an arbitrarily chosen threshold. A is in diastole with 
blood entering the ventricles through the mitral and tricuspid valves. 
B is in systole, with blood being ejected from the ventricles through 
the aortic and pulmonic valves. In both frames the thin-walled right 
ventricle is on the left side of the figure. Image credit: Boyce Griffith, 
David McQueen, and Charles Peskin. To view a simulation, visit the 
online version of the article at sinews.siam.org.
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Careers Outside Academia: How Should Math 
and Applied Math Students Prepare?
By Lalitha Venkataramanan, 
Rachel Levy, and Bill Kolata

 Graduate students often look to their 
thesis advisors as their main mentors. 
Hence, many students want to continue 
in academia.  Recent data analysis by Bill 
Kolata1 indicates that the number of gradu-
ating students is much larger than can be 
absorbed by the academic community. The 
total number of mathematics Ph.D.s award-
ed in 2013-2014 was approximately 1,187. 
On the other hand, the number of tenure 
track positions in math departments filled 
by students with a Ph.D. was 187 (38 in 
doctoral-granting institutions). 556 doctoral 
graduates (44.6%) accepted postdoctoral 
positions. The 2012 SIAM Mathematics in 
Industry Report2 suggests that “University 
faculty must actively encourage students 
to consider careers in industry and prepare 

those students for the very different world 
they will encounter upon graduation.” The 
2015 NSF-IPAM Mathematical Sciences 
Internship Workshop Report3 echoes this 
proposition and discusses recommendations 
for infrastructure and programs that could 
increase the number of internships targeting 
mathematical sciences students. With this in 
mind, SIAM hosted a panel discussion on 
careers in industry at the 2016 SIAM Annual 
Meeting, held in Boston this July. The panel 
was organized by the authors of this article.

Panelists Tamara Kolda (Sandia National 
Laboratories), Dean Bottino (Takeda 
Pharmaceuticals), Gary Green (The 
Aerospace Corporation), Penny Anderson 
(MathWorks), and Amy Sliva (Charles 
River Analytics) discussed their journeys 
from graduate school to their current jobs 
and fielded questions from the audience. 
The panel touched on a few themes, which 
are highlighted below.

How should students prepare     
for a career in industry?

The panelists urged undergraduate, 
graduate, and postdoctoral students to take 
computer science courses. In particular, 
achieving programming proficiency in 
C, Python, or MATLAB is very valu-
able in demonstrating and testing the 
feasibility of a research method. Since 
mathematicians are often involved in 
data science, the panelists also recom-
mended that students take sufficient 
statistics courses to enable data model-
ing. In addition, industrial internships 
during the summer months of the first 
few years of graduate school offer stu-

1 http://www.ams.org/profession/
data/annual-survey/2014Survey-Recruit-
mentHiring-Supp-TableR1.pdf

2 http:/ /www.siam.org/reports/
mii/2012/report.php

3 h t t p : / / w w w . i p a m . u c l a . e d u /
reports/2015-nsf-ipam-mathematical-sci-
ences-internship-workshop-report/

dents a glimpse into what is required for an 
industrial career. 

What do companies look for dur-
ing the interview process?

Interviewers at companies look, first and 
foremost, for relevant technical experience. 
Equally important is demonstration of math-
ematical maturity: the ability to look beyond 
the underlying problem, perceive the big 
picture, and question the problem formula-
tion if necessary. Moving from one problem 
to another is often a challenge for students 
who have spent many years working on 
the same problem in graduate school. This 
flexibility in transitioning between differ-
ent problems is an important component 
of working in industry. In addition, most 
industrial mathematicians work on a team 
with other scientists and engineers. Thus, 
it is important to learn to communicate 

well within a team and be a team player. 
Finally, mathematicians are often asked to 
explain their work to upper management 
who may not have the same mathematical 
background. A short “elevator pitch” tar-
geted towards a specific stakeholder should 
be relevant and capable of explaining the 
work in sufficient detail to capture its value. 

What would you recommend to a 
student who is getting their bache-
lor’s degree in math or applied math 
and is interested in an industry job?

To make yourself easily marketable, try 
to pick up a second degree with a major in 
a complementary subject, such as computer 
science or a relevant science. Some compa-
nies offer programs to mentor young mathe-
maticians that allow them to keep their jobs 
while pursuing a master’s degree or a Ph.D. 
If applicable, discussing this option during 
the interview process is useful.

How difficult is it to give             
up teaching?

Moving from academia to industry means 
giving up teaching, and this can be quite 
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challenging. However, the 
ability to make a difference 
in the workplace can often 
replace the joy of teach-
ing. Technical guidance of 
company interns can have 
a similar feel to academic 
teaching. In addition, men-
toring junior scientists at 
the workplace can be quite 
rewarding. Mentoring can 
be done formally (through 
a program at a company 
or through association 
with a society, such as the 
Association for Women 
in Science) or informally 
(meeting periodically with a 
junior colleague). 

How is work evaluat-
ed at your company?

In academia, a faculty 
member’s work is evaluated 
based on his or her teach-
ing and research abilities. In 
industrial research, techni-
cal work is also evaluated 
on the quality of applied 
research. Some aspects of 
this research may be written 
in peer-reviewed publica-
tions or presented at confer-
ences. However, the techni-
cal work is more often cap-
tured in invention disclo-
sures, which is the first step 
towards a patent. Technical 
work also frequently results 
in some features of software 
code that can be used inter-
nally within a company or 
commercialized and shared 
outside. Experience with 
business strategy, mentoring 
and community leadership, 
and professional visibility at 
conferences and universities 
are other benchmarks used 
to evaluate a scientist/engi-
neer’s performance.
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High-Performance Computing for the Detection of Strokes
By Victorita Dolean

Cerebrovascular accidents (CVAs) or 
strokes are caused by a perturbation in the 
blood supply of the brain, leading to a quick 
loss of cerebral  functions that is very often 
lethal. There are two categories of CVAs: 
ischemic strokes (80% of cases), resulting 
from the occlusion of a cerebral artery, and 

hemorrhagic strokes (20% of cases), pro-
voked by a bleeding vessel. From a medical 
point of view, the detection and characteriza-
tion of CVAs are crucial for patient survival.

 Continuous monitoring of the brain 
requires an image taken every fif-
teen minutes. Nowadays physicians 
use two imaging systems of the brain: 
magnetic resonance imaging (MRI) 
and cerebral tomogram (CT) scans. 
Even when these techniques are very 
precise, their use is not well adapted to 
efficient medical care. Moreover, they 
can be harmful, as in the case of con-
tinuous monitoring with CT scans that 
measure X-ray absorption by tissues.

Our research team, which won the 
Bull-Joseph Fourier Prize in 2015,1 
carried out its work in collaboration 
with EMTensor,2 an Austrian inno-
vative SME dedicated to biomedi-
cal imaging. For the first time ever, 
we have demonstrated on synthetic 
data the feasibility of a new imaging 
technique based on microwaves (see 
Figure 1). This technique allows for 
the characterization of CVAs, begin-
ning with the very first instance of 
patient care in an ambulance and 
extending to continuous patient moni-
toring during hospitalization.

How does it work? Electric proper-
ties of biological tissues are a great 
indicator of the tissues’ functional and 
pathological condition. Microwaves 
can image them, on the basis of dif-
ferences in their dielectric properties. 
In such a system, a patient’s head is 
equipped with a helmet consisting of 
electromagnetic antennas that transmit 
data to a high-performance computing 
(HPC) center, which sends images 
of the brain to doctors at the hospital 
where the patient will be treated. This 
type of imaging requires a reduced 
data acquisition phase with a satisfy-
ing spatial resolution; it is less harmful 
than using a mobile phone. These char-
acteristics make microwave imaging 
very appealing. From a computational 
point of view, microwave imaging 
solves an inverse problem and sub-
sequently a fast solution of Maxwell 
equations. To prove the feasibility of 
such a technique, we have developed 
a HPC approach that generates brain 
images in less than 15 minutes.

In order to develop a robust and 
precise methodology for microwave 
imaging, one must master a few dis-
tinct research fields: optimization, 
inverse problems, approximation, and 
solution methods for the simulation 
of the direct problem modeled by 

1 ht tp : / /a tos .net /en-us/home/
we-are/news/press-re lease/2016/
pr-2016_04_12_02.html

2 http://emtensor.com/

Maxwell equations. The precise simula-
tion of a direct problem for a complex and 
highly heterogeneous medium is a challenge 
in itself. We used a few tools previously 
developed by the team’s researchers: the 
HPDDM3 library for domain decomposition 
and its interface with the FreeFem++4 soft-
ware (finite elements).

EMTensor’s experimental system to be 
simulated consists 
of an electromag-
netic reverberat-
ing chamber sur-
rounded by five 
layers of 32 anten-
nas each, able to 
work alternately as 
emitters or recep-
tors (see Figure 
2). The object to 
be reconstructed 
is introduced 
in the chamber. 
Alternately, each 
of the 160 anten-

nas emits a signal at a fixed frequency, typi-
cally 1 GHz. The electromagnetic field prop-

3 https://github.com/hpddm/hpddm
4 http://www.freefem.org/

agates into the chamber, which allows 
the correct reconstruction (what we 
call imaging) of its dielectric proper-
ties. The other 159 antennas record 
the total field in the form of com-
plex transmission, and the inversion 
algorithm reconstructs a brain image 
on the basis of this data. Our first 
step involved successfully compar-
ing the measure of data acquisition 
made with EMTensor’s system with 
those numerically performed by the 
resolution of Maxwell equations on 
a 3D mesh.

In the next step, we created syn-
thetic data on a brain model coming 
from scan sections (362x434x362 
voxels) and then simulated a hemor-
rhagic CVA. Lastly, we designed 
and tested an inversion algorithm 
for monitoring the evolution of the 
CVA, reconstructed by successive 
slices. Here, a slice corresponds to 
one layer of 32 antennas equipping 
the experimental system. The use of 
parallelism allows the reconstruction 
of each layer to be generated inde-
pendently, and the inversion algo-
rithm uses 4,096 computing cores to 

Figure 1. Principle of microwave imaging. Image courtesy of EMTensor.

Figure 2. Measurement chamber (above) and cor-
responding mesh (below) for numerical simulation 
(diameter: 28.5 cm). Image courtesy of EMTensor.See Strokes on page 8
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Strokes
Continued from page 7

reconstruct an image in less than two minutes 
(94 seconds). Figure 3 depicts this recon-
struction. The restitution time, which can be 
further refined, already fits the physicians’ 
objective to receive an image every fifteen 
minutes to efficiently monitor the patient.

The medical and industrial challenge of 
this work cannot be emphasized enough. It 
is the first time that such a realistic study 
has demonstrated the feasibility of micro-
wave imaging. Although the technique is 
less precise than MRI or CT scans, its low 
price, reduced size, and lack of adverse 
effects even with continuous use could 
make microwave imaging of the brain the 
equivalent of echography (ultrasound imag-
ing) on other parts of the human body.

More details can be found in the pre-
print “Microwave 
Tomographic Imaging of 
Cerebrovascular Accidents 
by Using High-Performance 
Computing,” http://arxiv.
org/abs/1607.02573.
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Figure 3. Reconstruction time of an image regarding the 
number of computing cores. Mesh of the computational 
domain was generated by FreeFem++, software developed by 
Dolean’s research group.
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(University of Utah); Michael Hintermüller (Weierstrass Institute for Applied Analysis and 
Stochastics and Humboldt-Universität zu Berlin); Bo Kågström (Umeå University); Alan J. Laub 
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Computational Behavioral Ecology 
New Insights into Animal Social Behavior
By Debbie Sniderman

Behavioral ecologists study ecological 
and evolutionary aspects of animal behavior 
and their adaptation to surrounding environ-
ments. Traditionally, they had to visit the 
field, take notes, and make observations 
when gathering behavioral data. This was 
a sparse form of observation wrought with 
limitations. Today, an abundance of data 
about wild populations is available in scales 
that are orders of magnitude richer than 
before, thanks to photos, videos, sensors, 
and new collection technologies such as 
GPS, high-definition cameras, unmanned 
aerial vehicles (UAVs), genotyping, and 
crowdsourcing. Computational investiga-
tion of this data is fundamentally changing 
the way biologists study nature through 
analysis, hypothesis formation, and visual-
ization of complex data sets.

The computational work of Tanya 
Berger-Wolf (University of Illinois at 
Chicago) has facilitated the scientific pro-
cess of understanding animal sociality at 
individual, group, and interaction levels in 
the context of animals’ own environments.

“Even the questions being asked 
are changing because of the data,” 
Berger-Wolf says. “Visualizations 
need to change to provide answers 
that aren’t only in terms of text, but 
also appeal to the visual ways through 
which humans process information in 
an immersive dynamic environment 
where an analysis can be overlaid into 
a virtual world, such as a construc-
tion of an African Savannah with 
individual animals moving around it.”

Answering New Questions
Berger-Wolf is pioneering the analy-

sis of high-resolution data for behavior-
al scientists, who have struggled with its 
use over the last decade. Computational 
techniques are exploratory and offer 
predictive models and tools to explain 
why animals are social and how they 
move. Such techniques also offer 
insights about how to find and identi-
fy key individuals in a group, how the 
group makes decisions, and whom it 
decides to follow. Computational pat-
tern recognition techniques identify 
specific animals with unique mark-
ings, helping answer questions about 
population dynamics and ranges.

Berger-Wolf uses data from a wide 
variety of sources to provide scien-
tific insight into collective behavior 
of animals such as zebras, baboons, 
and humans. Analyzing animal trajec-
tories and movement patterns allows 
her group to identify long-term affili-
ates, group leaders, and individuals 
that initiate changes, i.e. from brows-
ing to moving in coordinated groups.

Behavioral ecologists use video 
cameras to track Quick Response 
(QR) or color-coded insects and small 
animals such as ants and frogs with 
fluorescent numbers. Larger animals 
wear GPS collars with solar batteries, 
which identify location and inferred 
proximity within a network. Computer 
vision provides even more detailed 
information about the direction in 
which animals are looking. In the 
future, tiny radio antennas may help 
observe bird and insect migration.1

Remotely-sensed data can count 
populations, enable conservation, 
locate or assist highly endangered 
species, and identify survival rates 
of a group or species. But locating 
animals is not enough when studying 
behavior; researchers need to know 
which specific animals have been 

1 http://icarusinitiative.org/

located. For instance, location data from a 
GPS can show an animal leading a group, 
but it doesn’t provide information about its 
age, gender, or rank in the population. That 
type of tracking requires image data.

Animal signatures such as stripes, spots, 
notches, or wrinkles are unique and easily 
identifiable from any angle through image 
data. Berger-Wolf and her colleagues have 
developed an algorithm (HotSpotter) for 
automatically recognizing individual ani-
mals from images using these visual signa-
tures, and built an Image-Based Ecological 
Information System (IBEIS) that allows 
tracking of individuals and populations 
using this data. The identification algorithm 
uses algebraic scale-invariant feature trans-
form (SIFT) features to find key pixels in 
images that are invariant to photo angles 
and scales. It then matches those pixels in 
different images to determine whether it is 
the same individual.

Inferring Behavior                    
from Remote Sensing

Margaret Crofoot (University of 
California, Davis), a collaborator of Berger-

Wolf, tracked 
entire baboon 
troops for 30 
days using GPS 
collars at one-
second intervals. 
I n t e r n a t i o n a l 
Space Station 
(ISS) receiver 
t r a n s m i t t e r s 
then collected 
location data, 
animal position, 
animals in close 
proximity, and 
orientations, cre-
ating new GPS 
data that didn’t 
previously exist 
for baboons or 
other animal 
populations. 

Using data 
from the 30-day 
o b s e r v a t i o n s , 

Figure 1. Trajectories of locations of individuals in social animal networks 
can help researchers understand decision processes and test whether the 
network can predict behavior. Berger-Wolf found that both nearest neigh-
bors and long-term affiliates predict individual locations during collective 
movement in wild baboons. Image credit: [1].

See Behavioral Ecology on page 11
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Mathematical Molecular Bioscience and Biophysics 
A Recurring Theme at the SIAM Conference on the Life Sciences
By Guo-Wei Wei

How effectively does a potential drug 
bind to its target biomolecule? Mathematics 
has the answer! The SIAM Conference on 
the Life Sciences (LS16), held in Boston 
this past July, has, for the first time in its 
history, highlighted mathematical molecu-
lar bioscience and biophysics (MMBB) as 
a theme. MMBB concerns the development 
of mathematical theories, models, meth-
ods, schemes, and algorithms for elucidat-
ing molecular mechanisms and for solving 
open problems at the forefront of molecular 
biosciences and biophysics, such as those 
associated with drug design and discov-
ery. All areas of mathematics—including 
differential equations, functional analysis, 
harmonic analysis, Lie group, Lie algebra, 
geometry, graph theory, and topology—are 
essential to MMBB and play a key role 
in addressing fundamental challenges in 
molecular biosciences and biophysics. One 
of these challenges is the emergent com-
plexity in self-organizing biomolecular sys-
tems, such as HIV or Zika virus, molecular 
motors, Alzheimer’s disease, and cancer 
cells. Mathematical approaches, such as 
multiscale modeling, invariant manifold, 
compressed sensing, and machine learn-
ing techniques, are becoming increasingly 
popular in molecular biosciences due to 
their ability to efficiently reduce the number 
of degrees of freedom while still maintain-
ing an essential and adequate description of 
the biomolecules of interest [1, 2].

An important trend in contemporary life 
sciences is the fundamental transition of 
traditional disciplines, such as physiology, 
population biology, evolutionary biology, 
neuroscience, etc., from macroscopic and 

phenomenological subjects to molecular-
based biosciences. Parallel to this develop-
ment, the life sciences in the 21st century are 
transforming from qualitative and descrip-
tive disciplines to quantitative and predic-
tive ones, which are based on molecular 
mechanisms (the ultimate truth of biological 
sciences). This transformation has led to the 
burgeoning of MMBB, an emergent field in 
mathematics that generates mathematically-
driven advances in molecular biosciences.

LS16 featured nine MMBB minisym-
posia organized by leading researchers in 
MMBB, covering various exciting advances 
including charge transport, ion channels, 
membrane modeling and computation, mul-
tiscale modeling of solvation, electrostat-
ics computing and applications, topological 
and geometric methods for biomolecules, 
and macromolecular structures and interac-
tions. The achievements in mathematical 
approaches for drug design and discovery 
are particularly worth noting.

Designing efficient drugs for curing dis-
eases is especially important for life sciences 
in this century. Indeed, one of the ultimate 
goals of molecular bioscience and biophys-
ics is to understand the molecular mecha-
nism of human diseases and to develop 
efficient drugs—free of side effects—for 
disease treatment. The principal task of drug 
design and discovery is to predict whether a 
given molecule will bind to a biomolecule, 
such as a protein or DNA, and activate or 
inhibit its function, which in turn results in 
a therapeutic benefit to the patient. Typical 
drugs are comprised of small organic mol-
ecules, but biopolymer and protein-based 
drugs are becoming increasingly common. 
An ideal drug should be acceptable to the 
human metabolic system and bind firmly to 

Figure 1. Illustration of mathematical approaches to drug design and discovery. 1a. Geometric 
representation of protein-ligand binding. The protein is green and the ligand is in red. Image 
credit: Kelin Xia. 1b. The binding site (blue) predicted by the product of minimal curvature and 
electrostatic potential obtained from the differential geometry-based Poisson-Boltzmann equa-
tion. Image credit: Kelin Xia. 1c. Comparison of Pearson correlations of various predictions 
and experimental binding affinity data for the PDBBind 2007 core set of 195 complexes. The 
winner, feature functional theory-binding predictor (FFT-BP), is based on machine learning and 
involves geometry, topology, graph theory, partial differential equations, and advanced numeri-
cal algorithms. Image credit: Bao Wang and Duc Nguyen.

the target, without affecting any other impor-
tant “off-target” molecules or antitargets 
similar to the target molecule. Nevertheless, 

drug design and discov-
ery involve an extremely 
complicated procedure 
that includes the follow-
ing: disease identifica-
tion, target hypothesis 
(the activation or inhi-
bition of drug targets), 
screening of potential 
drugs that can effec-
tively bind to the target, 
optimization of the struc-
tures of identified drugs, 
preclinical in vitro and in 
vivo tests, clinical trials 
to determine bioavail-
ability and therapeutic 
potential, and optimiza-
tion of a drug’s efficacy, 
toxicity, and pharmaco-
kinetic properties. 

Computer-aided drug 
design and the design 
of protein containers 
for drug delivery have 
a proven record of suc-
cess, not only because 
of improved under-
standing of the basic 
science—the molecular 
mechanism of drug and 
protein interactions—
but also because of 
advances in mathemati-
cal modeling, geometric 
representations, topo-
logical characterization, 
graph theory analytics, 
computational methods, 
optimization proce-
dures, machine learn-
ing algorithms, and the 
availability of massive 
parallel and graphics 
processing unit (GPU) 
computers. Indeed, 
mathematics plays an 
essential role in ratio-

nal drug design, from the identification of 
drug-binding hot spots, consensus scoring, 
geometric analysis, cluster analysis, and 
global optimization to drug efficacy, toxic-
ity, and pharmacokinetic analysis. 

Moreover, mathematical approaches—
such as geometric analysis for high through-
put drug screening, persistent homology 
for protein-drug binding detection, reduced 
manifold representation for discriminating 
false protein-protein and protein-drug inter-
faces, and machine and manifold learning 
techniques for protein-drug binding site 
analysis—greatly impact drug design and 
discovery. Specifically, these approaches 
lead to better homology modeling, geomet-
ric models, molecular docking algorithms, 
molecular dynamics, quantum calculation, 
de novo design, and statistical models for 
efficient drugs and functional proteins. 
Figure 1 illustrates the Pearson correlations 
between experimental protein-ligand bind-
ing affinities and various theoretical pre-
dictions. A mathematical approach called 
feature functional theory-binding predictor 
(FFT-BP) outperforms all the other eminent 
methods in molecular biophysics.

The cutting edge of FFT-BP for drug 
design and discovery is a manifestation of 
the ever-increasing impact of mathemat-
ics on molecular biology and biophysics. 
There is enormous potential in this area 
for integrative interdisciplinary research in 
which mathematicians and experimentalists 
develop solutions to challenging problems 
in tandem. Driven by the advances in quan-
titative and predictive life sciences, MMBB 
will provide unprecedented opportunities 
to mathematicians for generations to come.
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Professional  Opportunities and Announcements

Institute for Advanced Study
School of Mathematics

The School of Mathematics at the Institute 
for Advanced Study has a limited number of 
memberships with financial support for research 
during the 2017-18 academic year.

The School frequently sponsors special pro-
grams. However, these programs comprise no 
more than one-third of the memberships so 
that each year a wide range of mathematics is 
supported.

Candidates must give evidence of ability in 
research comparable at least with that expected 
for the Ph.D. degree, but otherwise can be at any 
career stage. Successful candidates will be free to 
devote themselves full time to research.

About half of our members will be postdoc-
toral researchers within 5 years of their Ph.D. 
We expect to offer some two-year postdoctoral 
positions.

Up to 8 von Neumann Fellowships will be 
available for each academic year. To be eligible 
for the von Neumann Fellowships, applicants 
should be at least 5, but no more than 15, years 
following the receipt of their Ph.D.

The Veblen Research Instructorship is 
a three-year position in partnership with the 
Department of Mathematics at Princeton 
University. Three-year instructorships will be 
offered each year to candidates in pure and 
applied mathematics who have received their 
Ph.D. within the last three years. Usually the first 
and third year of the instructorship will be spent 
at Princeton University and will carry regular 
teaching responsibilities. The second year is 
spent at the Institute and dedicated to independent 
research of the instructor’s choice. Candidates 
interested in a Veblen instructorship position 
may apply directly at the IAS website (https://
application.ias.edu) or they may apply through 
MathJobs. If they apply at MathJobs, they must 
also complete the application form at https://
applications.ias.edu, but do not need to submit 
a second set of reference letters. Questions about 
the application procedure should be addressed to 
applications@math.ias.edu.

Also, the School of Mathematics is looking 
for highly qualified applicants in the field of 

computer assisted formalization of mathematics, 
univalent foundations and homotopy type theory 
and is expecting to offer two or more member-
ships in this area.

In addition, there are also two-year postdoc-
toral positions in computer science and discrete 
mathematics offered jointly with the follow-
ing institutions: The Department of Computer 
Science at Princeton University (http://www.
cs.princeton.edu), DIMACS at Rutgers, 
The State University of New Jersey (http://
www.dimacs.rutgers.edu), and the Simons 
Foundation Collaboration on Algorithms and 
Geometry (https://www.simonsfoundation.org/
mathematics-and-physical-science/algorithms-
and-geometry-collaboration/).

School term dates for 2017-18 academic year 
are: term I, Monday, September 25 to Friday 
December 22, 2017; term II, Monday, January 
15, 2018, to Friday, April 13, 2018.

During the 2017-18 year, the School will have 
a special program on Locally Symmetric Spaces: 
Analytical and Topological Aspects. Akshay 
Venkatesh of Stanford University will be the 
Distinguished Visiting Professor.

The topology of locally symmetric spaces 
interacts richly with number theory via the the-
ory of automorphic forms (Langlands program). 
Many new phenomena seem to appear in the 
non-Hermitian case (e.g., torsion cohomology 
classes, relations with mixed motives and alge-
braic K-theory, derived nature of deformation 
rings). One focus of the program will be to try 
to better understand some of these phenomena.

Much of our understanding of this topol-
ogy comes through analysis (“Hodge” theory). 
Indeed, harmonic analysis on locally symmetric 
spaces plays a foundational role in the theory of 
automorphic forms and is of increasing impor-
tance in analytic number theory. A great success 
of such harmonic analysis is the Arthur-Selberg 
trace formula; on the other hand, the analytic 
aspects of the trace formula are not fully devel-
oped, and variants such as the relative trace 
formula are not as well understood. Thus, analy-
sis on such spaces, interpreted broadly, will be 
another focus of the program.

Berger-Wolf and her colleagues are creat-
ing a dictionary translating GPS and accel-
erometer data to labeled behaviors such as 
hanging out, coordinated pauses, coordi-
nated progression, startlement, transition, 
and unknown. Using new active learning 
techniques involves exploring the space, 
optimizing, model-fitting, and eventually 
inferring and predicting behaviors.

These approaches reinforce the impor-
tance of social networks in predicting behav-
ior. Using only a baboon’s past history 
to predict future locations doesn’t provide 
accurate results and implies that social inter-
actions don’t matter. The best predictors are 
simple nearest-neighbor spatial affiliates at 
short time scales, or animals most frequently 
near an individual at long timescales (see 
Figure 1, on page 9). The number of neigh-
bors needed to make a prediction is between 
four and six for both timescales, possi-
bly defining Dunbar’s number for baboons, 
which is the suggested cognitive limit to the 
number of individuals with whom one can 
maintain stable relationships. Coordinated 
movement of a community is also sig-
nificant. In higher-order animals, evidence 
shows that shared decision-making takes 
place while animals shift from uncoordi-
nated to coordinated movements.

Finding Communities in     
Dynamic Networks with Graph 
Cost-Based Methods

Berger-Wolf quantifies social networks 
of social species, and is the first to examine 
them from a dynamic network perspec-
tive. She begins by translating biologists’ 
questions into abstract problems, and has 
created a framework for extracting com-
munities and their dynamics in social net-
works, which identifies the most cohesive 
persistent grouping with a fluid structure, 
allowing for membership changes over 
time (see Figure 2).

Berger-Wolf’s method offers much insight 
into animal community dynamics, indicating 
which members change affiliations, where 
they go, when they go, and for how long. As 

groups split and merge, the model accounts 
for these real biological events in the form of 
costs to the community.

Time stamps for networks that change 
over time must be chosen carefully. When 
sampling senses data too frequently, such 
as every second, the data becomes noisy and 
reveals networks that are too sparse or don’t 
change enough. Aggregating over periods 
of time that are too long loses important 
information about the order and causation 
of interactions. ‘Just right’ time slices corre-
spond to the temporal scale of the network. 
Sampling time is a critical part of creating 
and inferring networks from animal data.

Communities are clusters or subgroups 
of individuals with relatively strong, direct, 
frequent ties. The definition of dynamic 
communities, identities or cohesive group-
ings that persist over time but with changing 
members in their clusters, is a little harder 
to pin down. While individuals are mostly 
seen with their own community, members 
of dynamic communities interact more fre-
quently among themselves than with indi-
viduals outside the community. 

Changing membership in a dynamic 
community comes with costs: α, α β1,  and 
β2.  The costαα,  for switching communi-
ties, occurs because individuals are reluc-
tant to shift affiliations. Switching increas-
es stress hormones, decreases access to 
resources and the ability to socially share 
those resources, and drops status. β1 α and 
β2  represent loyalty and loss of social 
opportunity respectively, β1  for visiting 
other communities where more harassment 
can occur and β2  for being absent from 
one’s own community.

Animal observation data of physical posi-
tions, switches, and visits can yield graphs, 
the levels of which are assigned to the vari-
ous costs based on the number of individuals 
switching, visiting, or absent. A graph color-
ing problem is an approximable way to model 
communities, where the colors of individual 
vertices denote affiliation and the colors of 
group vertices indicate community structure. 
The algorithm finds the most parsimonious 
dynamic communities, minimizing the over-
all cost across all individuals. The resulting 
problem is the following: for a given cost set-

ting (α,  β1,  β2 ), find vertex coloring that 
minimizes total cost. This becomes a graph 
coloring problem, which can be approxi-
mated close to the optimal solution.

Berger-Wolf uses traditional graph theory 
algorithms to solve these social network 
problems. “We put standard algorithmic 
techniques together in a way that’s not 
standard, since the graphs to analyze are non-
standard,” she says. Fast flow-based constant 
factor approximations and cost optimal col-
oring are also proven maximum likelihood 
solutions for a dynamic community model.

The graph coloring problem, produced 
with nine months of aggregated data from 
observing an entire population of zebras 
once or twice a day, created a network 
with definite communities minimizing the 
overall cost. Principal component analysis 
(PCA) of the dynamic zebra communities 
shows four clusters marked by L, N, M, and 
B, indicating that lactating females, non-
lactating females, stallion males, and bach-
elors with diverse resource needs and ways 
of trading resources all hold different parts 
in the community structure. This conclusion 
is biologically meaningful.

Intelligent data collection from GPS col-
lars, drones, accidental photography, cell 
phone tourist photos, data sensors, and 

behavior comparison (with genetics and 
genomics) is creating large data sets that 
humans can no longer process or find pat-
terns in. Computational techniques, such 
as Berger-Wolf’s work, are already helping 
analyze and visualize this data to help biolo-
gists answer complex questions.

This article is based on an invited lecture 
by Tanya Berger-Wolf at the SIAM Annual 
Meeting, which was held in Boston this July.
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Figure 2. Framework for identifying communities and their dynamics in social networks. Each 
color is a community containing individual members. Left. Example of an interaction sequence 
between five individuals at five time steps. Each row represents a time step, and time flows from 
top to bottom. Individuals change associations and groups split and merge. At T1 the red group 
consists of individuals 1, 2, and 3. At T2, individual 3 visits the green group with individuals 2 and 
4. Right. Corresponding interaction cost graph. The colors show the cost of switching, visiting, 
and absence. Squares are group vertices and circles are individual vertices. Image Credit: [2].

Behavioral Ecology
Continued from page 9



12 • September 2016 SIAM NEWS 

Everyday Objects Make Applied Mathematics Tangible
I.E. Block Lecture Delves into the Science of Toy Models
By Paul Davis 

Balls in bowls, dropped coins, tapped 
tea cups, jars of rice rolling (or not) down 
an incline…demonstrations, questions, a 
magician’s hands up close on the projec-
tion screens, the verbal timing of an improv 
comic…These are just some of the things 
that happened at the 2016 SIAM Annual 
Meeting’s I.E. Block Community Lecture. 

Tadashi Tokieda (University of Cambridge 
and Stanford University) used everyday 
objects to immerse his audience in such 
central concepts of applied mathematics as 
inverse problems, singular limits, symmetry, 
and finite-time divergence. His overarch-
ing success was capturing the excitement 
of exploring, the challenge of discovery, 
and ultimately the sentiment that “nothing 
replaces touching,” a tenet at the spiritual 
ground-state of applied mathematics.

Practicing applied mathematicians in the 
audience who might have spent too long 
digging at the bottom of their own spe-
cialized trench were surely energized as 
Tokieda rekindled the light that led them 
into this business in the first place. Non-
mathematicians who wondered why their 
mothers, fathers, friends, or partners worked 
in this quirky discipline obtained answers 
that they could see and feel. And all of this 
came from (mostly) simple, everyday objects 
that showed the audience that they had “as 
much access to nature” as the speaker.

Finish your tea, then position the cup 
with its handle at 12 o’clock. Use your 
spoon to strike the cup first at 12, then at 3, 
6, and 9 o’clock. The sound is the same at 
all four positions. Why? Then strike the cup 
at 1:30. How does the tone change? Why 
does it change?

Can you close your eyes and reconstruct 
the position of the handle from the sounds 
produced by tapping? Can sound alone 
distinguish the original cup from a cup with 
two half-sized handles at 12 and 6 o’clock? 

Tokieda identified these two questions as 
inverse problems, then noted with a smile 
that you could find “lots of science about 
inverse problems and lots of SIAM members 
making their livings” by working on them.

Put three jaw-breaker-sized cedar balls 
into a cereal bowl, then move the bowl 
on a table to swirl its contents. The balls 
circulate more or less independently in the 
same direction. But shift to eight or more 
balls in the bowl and they seem to coalesce 
into a solid that moves opposite the swirl. 
Presto – a phase change with only a few 
degrees of freedom.

Two apparently identical heptagon-
shaped wheels behave completely differ-
ently. When set on their edges and given 

a gentle push, one 
advances across the 
table, though hardly 
rolling smoothly. 
The other staggers 
and falls. What 
nearly invisible dif-
ference produces 
such radically dis-
parate behaviors? 
The 7-gon that rolls 
is imperceptibly 
flawed: its edges 
are bowed out ever 
so slightly and its 
corners are barely 
rounded, imperfec-
tions just sufficient to permit continuous 
motion. The falling 7-gon has perfectly 
straight edges and sharp corners – zero 
defects, a singular limit at which its stagger-
ing collapse bears no relation to the unwav-
ering roll seen in the 7-gon that is close to, 
but short of, this limit.

Tokieda’s table camera focuses on an 
inclined plane and several cylindrical pill bot-
tles filled with varying amounts of rice. How, 
he asks, will the rate of descent vary with 
mass as the bottles roll down the incline? He 
polls the audience, preparing all for the con-
frontation between their predictions and the 
behavior they are about to observe.

The bottle that is two-thirds full moves 
slowly down the ramp, the rice inside slip-
ping in an avalanche across its free surface 
while sticking to the wall of the bottle like 
a viscous fluid. 

 Preparing to launch the next bottle, 
Tokieda ceremoniously shoots his cuffs in 
front of the camera before his magician’s 
hands place a half-full bottle on the ramp.
It stalls. A voice in the audience calls out, 
“Can I change my vote?” A moment later, 
a nearly empty bottle rolls right down, the 
few grains in it sliding easily against the 
bottle’s wall like an inviscid fluid.

Unlike a professional magician, Tokieda 
goes on to explain his trick, beginning with 
a property of granular materials: the sides of 
a pile of rice slope at a characteristic angle 
of repose, which depends on the shape, not 
the size, of the grains. Shallower slopes are 
stable; steeper ones “landslide” until they 
attain the gentler angle of repose. Fluids, 
whether viscous or inviscid, have zero angle 
of repose: they simply spread into a puddle.

The rolling behavior of a partially-full 
bottle depends upon the quantity of rice 
and the relation of the rice’s angle of repose 
to the angle of the incline: if the center of 
mass of the rice plus the bottle can position 
itself—if the rice can landslide—so that the 
force of gravity acts downhill of the bottle’s 

point of contact with the incline, then the 
resulting torque rotates the bottle down 
the incline. A lot of rice rolls. Intermediate 
amounts of rice don’t. Very little rice rolls.

Look across the range of bottles from 
one that is 100% full of rice to one that 
is totally empty, 0% full; the percentage 
values that are points of transition between 
stop and roll, between stationary and mov-
ing, are singular limits. Each is yet another 
instance of the sharp distinctions—like 
those between viscous and inviscid flu-
ids—that are the meat and potatoes of much 
of applied mathematics. Here Tokieda dis-
played them vividly to a large, rapt, laugh-
ing audience without demanding the inner 
vision of a Ludwig Prandtl.

Drop a coin on the floor. It rotates with a 
clatter that quickly rises in pitch as the coin 
comes to a stop in finite time. A smattering 
of physics and some back-of-the-envelope 
calculus show that the bounce frequency is 
proportional to an inverse power of tsingular 
– t; the divergence in finite time is apparent.

Chattering magnets, crushed paper bal-
loons that are slapped back to shape, and 
other everyday items offer more evidence of 
Tokieda’s central theme: toys provide a rich 
ecology of phenomena and ideas, near at 
hand, awaiting our attention and our touch.

His closing exhortation to “explore and 
discover” provoked sustained applause, 
then a torrent of questions. To conclude 
the questions, he reminded the audience of 
children who set aside a gift to play instead 
with its wrapping paper. “We are trained to 
be interested only in the approved topics,” 
he said. “Make a conscious effort to notice.”

No frivolous toys among Tokieda’s toy 
models!

View a photo of Tokeida with his Block 
Lecture prize on page 8.

Paul Davis is professor emeritus of 
mathematical sciences at Worcester 
Polytechnic Institute.

Tadashi Tokieda charms the audience with visual displays of everyday “toys” during the I.E. 
Block Community Lecture at the 2016 Annual Meeting. His table-top demonstrations were 
projected throughout the lecture hall. SIAM photo.

Tadashi Tokieda rolls bottles filled with various amounts of rice down an incline during the I.E. Block Community Lecture 
at the 2016 Annual Meeting. He explained their movement (or lack thererof) using a property of granular materials: the 
angle of repose. SIAM photo.


