
Geodesic Active Contours with Shape Priors for
Segmentation, Disocclusion, and Illusory Contour

Capture

Jacob Householder
Fredrick Park

Mathematics Department, Whittier College,
Whittier, CA 90601

Email: jhouseho@poets.whittier.edu

December 10, 2019

Abstract

Image segmentation is the task of finding salient regions of importance in an image.
In this work, we take a curve evolution approach to this problem where we deform an
initial curve in the inward normal direction with the objective of finding the boundaries
of objects in an image. To achieve this, we propose a variational image segmentation
model that incorporates a clique based shape signature with a geodesic active contours
energy. The model scheme consists of evolving a parametric representation of an active
contour to minimize the penalty that the model induces. This penalty is minimized
when the curve is on the boundaries of objects in the image, areas with sudden change
in pixel intensity i.e. light to dark. We demonstrate successful capture of illusory con-
tours, segmentation of objects in a cluttered background, and segmentation of occluded
objects.

1 Introduction
Image segmentation is an essential task in computer vision where the goal is to partition
an image into pertinent regions of interest. These regions are called segments and usually
correspond to specific objects in a given image. The segments can be labeled where groups
of pixels represent these objects. Segmentation is an important first step in analyzing the
composition of an image. For example, in surveillance video, before a suspect can be identi-
fied in a scene, they must be separated from the background. If a license plate of a car needs
to be read, the region encompassing it must be determined first. There have been many
approaches to this task and one of the most popular is the use of variational methods in-
volving active contours; this technique will be the primary focus of this paper. Applications
for segmentation are numerous: medical imaging [29, 42, 19], computer vision [33], stereo
reconstruction [25, 26, 40], illusory contour [43, 21, 20], point-cloud surface reconstruction
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[27], scene reconstruction from range data [13], and data clustering [41]. In this work, we
consider the application of edge based segmentation with shape priors on difficult settings
that include illusory contours, clutter and, occlusions.

One of the earliest and most successful variational and partial differential equation (PDE)
models for image segmentation is the active contour/snake model proposed by Kass and
Witkin [23], in which an energy minimizing spline is evolved under external forces to gravitate
towards pronounced image features like edges or lines. A subsequent model independent of
curve parameterization, based on [23], is the geodesic active contour model (GAC) proposed
by Caselles et al. [6] and Kichenassamy et al. [24].

The GAC model has the following formulation:

min
C

{
J [C] =

ˆ L(C)

0

g(|∇f(C(s))|)ds

}
(1)

where C is a curve, L(C) its length, and ds is an element of arc length. The function g is
an edge detector function that approaches zero near object boundaries and one near more
homogeneous regions of a given image f . Thus, the energy in (1) can be interpreted as an
edge weighted length measurement that penalizes curves that are long or not on the edge of
image features. The energy given by (1) is minimized using the gradient descent algorithm,
where its functional gradient is used to determine curve evolution velocity. The key idea is
that the functional gradient gives the steepest descent direction for the energy, we can then
move the curve in this direction to minimize the energy. Given initial curve C0, one step
of gradient descent can be viewed as: C1 = C0 − δ∇J [C0], with δ a step size. This yields
an evolved curve C1. Since −∇J [C] points in the direction of steepest descent of J [C], we
have J [C1] ≤ J [C0] assuming appropriate regularity on J [C]. This is a way of incrementally
evolving a contour to minimize an energy.

This behavior can be seen by considering a few cases. If a curve C is near object bound-
aries, the penalty assigned by (1) is small and small variations of the curve will not result
in a smaller penalty, thus no evolution of the curve takes place under gradient descent min-
imization. In flat regions without image features, the edge detector will be near 1, and thus
variations of the curve with smaller arc length will better minimize the penalty. The mini-
mization scheme will thus move the curve inwards. The GAC model has been popular and
useful for many segmentation tasks. Nonetheless, one of the caveats of the model is that
under more difficult segmentation scenarios like those involving noise, clutter, or occlusion,
as with many standard segmentation models, the model has a tendency to lose accuracy.

A key sub-problem associated with segmentation is that of utilizing shape priors. Here,
shape prior segmentation aims to segment objects under more complicated conditions that
can involve noise, clutter, or occlusion (partial or complete). By incorporating global in-
formation like shape, segmentations can be more successful in these arduous settings. In
building an effective shape prior segmentation model, there are some significant hurdles to
overcome. The first is the need for a signature to be invariant under rigid motion while also
allowing scalability. Second, the signature should also be able to uniquely identify certain
classes of shapes. Lastly, it should have the ability to easily integrate into a segmentation
model that still allows for an efficient implementation. We give references to some effective
shape signatures [3, 4, 15] and more can be found in the references therein.
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Following the work of Park [34], we propose to incorporate a two dimensional variant of
the clique based signature proposed by Kimmel et al. [3, 4, 15] into the GAC model. In
certain settings, the edge based segmentation approach can have advantages over a region
based one like that found in the Mumford-Shah Model (MS) [30], which in its 2-phase
piecewise constant formulation is known as the Chan and Vese model (CV) [8]. Namely,
when image contrast variability between background and object is not as differentiated, or
when dealing with objects containing only partial edge information like illusory contours. In
the latter, region/contrast based approaches tend to be less accurate since illusory contours
rely more on geometric information and psychological/vision based interpolation, see [22].
For example, in Fig. 1, the Staples Center is observed in (a) where it contains non-uniform
contrast that may have an average value close to that of the background. This, coupled with
extensive clutter, yields a difficult segmentation example by standard methods. In Fig. 1 (b),
an example of an illusory contour is given. Here, a white square is observed despite having
only partial boundary information, i.e. where the corners are present but edge information
is incomplete. Most approaches for capturing illusory contours rely on modeling the illusory
contour explicitly. In this work, we only utilize shape information coupled with an active
contour to capture them. Also, despite using a feature-based approach, we propose a method
that can still capture objects under significant clutter by incorporating an edge detector that
uses an evolving Gaussian. Successful numerical results will be presented to illustrate the
effectiveness of the proposed model in these various difficult segmentation settings.

The closest related work is that of Park [34] where the author utilizes a polygonal im-
plementation of the 2-phase MS functional and a cliques shape prior signature. The author
shows successful numerical results for segmenting occluded objects and objects with non-
uniform intensities in the presence of clutter. Despite using the same shape signature, the
proposed model differs significantly from that in [34] by using the GAC energy instead of the
MS energy. A key benefit in the proposed approach is the ability to segment objects that rely
more on features instead of object contrast. In particular, the proposed model is effective at
segmenting objects containing average intensity similar to that of the background or objects
containing only partial boundary information like illusory contours. Other related work are
as follows, a model unifying the GAC/snakes, Rudin-Osher-Fatemi denoising [37], and MS
model can be found in [1] while shape prior models involving the MS functional can be found
in the work by Cremers et al. [10] and Dŏgam et al. [14]. Other work that use deformable
models and shape priors using a level set [32] framework can be found in [2, 7, 36, 39, 28].
Models involving explicit descriptors and moments based descriptors can be found in [18]
and [16] respectively. Related work using polygonal and B-spline curve representations in
conjunction with region-based active contour models can be found in [9, 11, 17, 38]. Related
work in shape signatures using Fourier descriptors, generalized cone representations, and
Legendre moments can be found in [12], [35], and [16] respectively. Finally, a related work
on fully convexifying the MS/CV model can be found in [5].

The rest of the paper is organized as follows, in section 2 we introduce the proposed
model, while section 3 explains the minimization of it. Section 4 involves the numerical
implementation details of the model, while numerical results can be found in section 5.
Finally, conclusions and future work can be found in section 6.
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(a) Image with Clutter (b) Illusory Contour

Figure 1: Difficult Segmentation Examples. In (a) an image with an object containing non-
uniform intensities is present along with clutter. An example of a square illusory contour
is seen in (b), where incomplete edge information is present. The intensities of the illusory
square match the background.

2 Proposed Model
The proposed model builds upon the geodesic active contour model by incorporating shape
prior information via a clique. The use of cliques allows the operator of the model to
incorporate a scalable, rotation, and translation invariant numerical representation of the
desired shape to be segmented (via a library of shape priors). As we will see this allows the
model to accurately capture shapes that other models may struggle with such as illusory
contours, objects in cluttered backgrounds, and occluded objects.

The model consists of minimizing a function with respect to two terms: a geodesic active
contour term and a clique based shape prior term. We will briefly introduce the geodesic
active contour model in its continuous form before we define a discrete formulation.

2.1 Preliminary Notation

The geodesic active contour model is polygonal based. Therefore finite differences will be
used to approximate the derivatives in the discretization and implementation.

Let Γ be the collection of polygonal points that represent a curve and pi to be the i-
th point on this curve as follows: Γ = {pi | pi = (xi, yi)}Ni=1. Now, we define the forward
discrete difference operator as: D+pi = pi+1 − pi, the central discrete difference operator as:
Dcpi = pi+1−pi−1

2
, and the backward discrete difference operator as: D−pi = pi − pi−1.

2.2 The Edge Detector Function

Let f be a given grayscale image, such that f : R2 → R1. That is, there is a corresponding
pixel intensity for each given pair of coordinates in the domain of the image.

We now define g(x, y|f) as an edge detector function that maps the change in pixel
intensity of an image to a scalar value, such that g : R2 → [0, 1]. This function must
approach zero as the coordinates (x, y) approach a non-homogenous region in the image, a
perceived edge. Any function that exhibits similar behavior can be used in this model. We
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adopt the following the edge detector in our numerical implementation:

g(x, y|f) =
1

1 + a|Dc((k ∗ f)(x, y))|p
, p ≥ 1, (2)

where a and p are tuning parameters, and k is Gaussian kernel that is convolved (2-D) with
the image f centered at (x, y). Now let I be the convolution of the filter and image at (x, y):

I = (k ∗ f)(x, y). (3)

The result is a computable formulation of the main term of the edge detector involving the
gradient as follows:

|DcI(x, y)| =
√

(Dc
xI(x, y))2 + (Dc

yI(x, y))2. (4)

2.3 Discrete Geodesic Active Contour

We start by defining a continuous parametric curve c(t) that is a counter clockwise repre-
sentation of the boundary of a simple shape (i.e. closed set, no holes):

C(t) = {(x, y)|x = x(t), y = y(t) , 0 ≤ t ≤ 1}. (5)

Then the continuous geodesic active contour energy is defined by the positively oriented line
integral as follows:

J [C] =

‰

c

g(x, y)ds =

ˆ b

a

g(C(t))|C ′(t)|dt. (6)

From here it is time to discretize the model. We define the continuous positively oriented
curve c to be equal to the set P of vertices of a polygon of N vertices,

P =
{
pi
∣∣pi = (x(ti), y(ti))

}N
i=1
. (7)

It is now easy to define the discrete line integral, as P is positively oriented by definition.
The discrete analogue is as follows:

J [P ] =
∑
P

g(x, y)∆s =
N∑
i=1

g(pi)|D+pi|∆i =
N∑
i=1

g(pi)|D+pi|, (8)

we set ∆i = 1 as the indexing system is integer based. The positively oriented line integral
becomes a sum over the N vertices of the polygonal representation of the curve.

2.4 Clique Based Shape Calculation

We now consider a polygonal representation of a general closed region. First we define ri to
be the i-th vertex of the polygon,

ri = (xri , y
r
i ). (9)

Then let S be the set of N vertices that represent the polygon,

S = {ri}Ni=1. (10)
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It is now possible to define the intervertex distance between the i-th and j-th vertices of the
general representation of a polygon:

di,j = |ri − rj|. (11)

Then [di,j] is a symmetric matrix, which holds all of the intervertex distances and is en-
tirely dependent on the polygon being represented. We utilize a variant of the shape prior
proposed by Elad and Kimmel [3, 4]. This signature was previously incorporated into a
piecewise-constant polygonal implementation of the Mumford Shah functional by Park. The
model is based on the approximation of geometric distances with Euclidean distances in
two dimensional space, we consider the intervertex distances of uniformly distributed points
on the boundary of a two dimensional shape. It is known that the signature formed by
the intervertex distances uniquely identify convex shapes, and has been applied to surface
classification [15] and facial recognition problems [3, 4].

We now consider the polygonal representation of the curve P (7) and compare its shape
signature with that of a reference shape, denoted as di,j. The clique based shape term is
now defined as:

inf
P,s

{ N∑
i,j=1

(|pi − pj| − sd2i,j)2
}
. (12)

Where |pi − pj| is the distance between the i-th and the j-th vertex of the polygon, and the
parameter s is for scale invariance and can be obtained by minimization.

2.5 Proposed Shape Prior Segmentation Model

The proposed model is obtained by minimizing over both the geodesic active contour and
the clique based shape prior energies simultaneously. The result is an optimization problem
given by:

min
P,s

{ N∑
i=1

g(pi)|D+pi|︸ ︷︷ ︸
J1[P ]

+α
N∑

i,j=1

(|pi − pj|2 − sd2i,j)
}

︸ ︷︷ ︸
J2[P ]

, (13)

where P is the evolving polygon, α is a shape parameter, di,j is the i-j-th intervertex distance
of the reference shape, and s is a scale parameter.

The main idea with the proposed model is to utilize shape information to boost the
accuracy of the boundary approximations during segmentation.

3 Energy Minimization
The gradient descent algorithm will be used to minimize the non-convex energy over the set
of vertices P. Therefore we must find the velocity contribution of the energies in the descent
direction.

3.1 Geodesic Active Contour Variation

In order to find the velocity contribution of the geodesic active contour term we compute
the Gâteaux derivative to obtain the functional gradient of J1[P ] [31] as follows,

d

dε
J1[P + εV ]

∣∣∣
ε=0

= 〈∇J1[P ], v〉. (14)
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Expanding expression (14) yields:

d

dε
J1[P + εV ]

∣∣∣
ε=0

=
d

dε

N∑
i=1

g(pi + εvi)|D+(pi + εvi)|
∣∣∣
ε=0
, (15)

where evaluation at ε = 0 will proceed after further transformation. Transforming the
righthand side of the following:

N∑
i=1

d

dε
g(pi + εvi)|D+(pi + εvi)|

=
N∑
i=1

(
d

dε
g(pi + εvi))|D+(pi + εvi)|+ g(pi + εvi)(

d

dε
|D+(pi + εvi)|).

(16)

Using the chain rule we obtain, d
dε
g(pi + εvi) = Dcg · v. Substituting into (16) gives:

N∑
i=1

(Dcg(pi + εvi) · vi)|D+(pi + εvi)|+ g(pi + εvi)
D+(pi + εvi)

|D+(pi + εvi)|
· d
dε

(D+(pi + εvi))

=
N∑
i=1

(Dcg(pi + εvi) · vi)|D+(pi + εvi)|+ g(pi + εvi)
D+(pi + εvi)

|D+(pi + εvi)|
·D+vi.

(17)

Now evaluating (17) at ε = 0 results in,

d

dε
J1[P ] =

N∑
i=1

(Dcg(pi) · vi)|D+pi|+ g(pi)
D+pi
|D+pi|

·D+vi. (18)

We now use summation by parts, the right hand side of equation (18) becomes:

g(pn)
D+pn
|D+pn|

· vn+1 − g(p1)
D+p1
|D+p1|

· v1 +
N∑
i=1

(Dcg(pi) · vi)|D+pi| −D−
(
g(pi)

D+pi
|D+pi|

)
· vi.

(19)

For some γ, ζ ∈ R2, we have that p1 = γ and pn = ζ. In addition, p1 = pn+1. The
varied function P̂ = P + εV must satisfy the same conditions as P on its boundary, that is
p̂1 = p1 + εv1 = γ and p̂n = pn + εvn = ζ, therefore v1 = 0 and vn = 0. Thus v1 = vn+1 = 0
and (19) becomes:

N∑
i=1

(Dcg(pi) · vi)|D+pi| −D−
(
g(pi)

D+pi
|D+pi|

)
· vi. (20)

Via the chain rule, D−g(pi) = ∂g
∂x
D−xi + ∂g

∂y
D−yi = Dcg(pi) ·D−pi , substituting gives:

N∑
i=1

Dcg(pi) · vi|D+pi| −
(
Dcg(pi) ·D−pi

D+pi
|D+pi|

+ g(pi)D
− D

+pi
|D+pi|

)
· vi. (21)
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The discrete unit tangent can be formulated as Ti = D+pi
|D+pi| , this yields:

N∑
i=1

(
Dcg(pi)|D+pi| −Dcg(pi) ·D−piTi − g(pi)D

−Ti

)
· vi. (22)

Now, assuming convergence of the discrete model to the continuous one, we can set Ti =
D−Ti
|D+pi| . We then use the following D−pi = D−pi

|D+pi| |D
+pi| = Ti|D+pi| and D−Ti = D−Ti

|D+pi| |D
+pi|

to rewrite (22) in more familiar geometric terms,

N∑
i=1

(
Dcg(pi)|D+pi| −Dcg(pi) · Ti|D+pi|Ti − g(pi)

D−Ti
|D+pi|

|D+pi|
)
· vi

=
N∑
i=1

[(
Dcg(pi)− (Dcg(pi) · Ti)Ti − g(pi)

D−Ti
|D+pi|

)
· vi
]
|D+pi|.

(23)

Simplification is obtained via vector orthogonality, i.e.
Dcg(pi) − (Dcg(pi) · Ti)Ti = (Dcg(pi) · Ni)Ni. Further yet, (Dcg(pi) · Ni)Ni = Dc

Ni
g(pi)Ni,

where Dc
Ni
g(pi) is the directional derivative. These simplifications yield:∑

P

[(
Dc
Ni
g(pi)Ni − g(pi)

D−Ti
|D+pi|

)
· vi
]
|D+pi|. (24)

We then change the bounds of discrete integration, as we know that ∆si = |D+pi|,∑
P

[(
Dc
Ni
g(pi)Ni − g(pi)

D−Ti
|D+pi|

)
· vi
]
∆si. (25)

Now use the following discrete analogues to well known definitions from differential geometry

to construct an intuitive formulation of the above equation: κi = |D−Ti|
|D+pi| , Ni =

D−Ti
|D+pi|∣∣∣ D−Ti|D+pi|

∣∣∣ and

D−Ti
|D+pi| = κiNi. Where k is the curvature and N is the unit normal vector. Substitution
yields: ∑

P

[(
Dc
Ni
g(pi)Ni − g(pi)κiNi

)
· vi
]
∆si = 0. (26)

The functional gradient is recovered from (26), for all variations of v represented by {vi}Ni=1

in the following form:

d

dε
J1[P ] = 〈(Dc

Ni
g(pi)− g(pi)κi)Ni︸ ︷︷ ︸
functional gradient

, vi〉. (27)

The velocity contribution of the geodesic active contour term in gradient descent is given by
the following:

vGACi = −(Dc
Ni
g(pi)− g(pi)κi)Ni. (28)

Note that this velocity is parallel to the gradient descent direction, and will therefore con-
tribute all of its magnitude (i.e. vGACi = projNiv

GAC
i ). Therefore:

ṗi
GAC = −(Dc

Ni
g(pi)− g(pi)κi)Ni. (29)
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3.2 Clique Shape Signature Variation

Now it is time to solve for the velocity contribution of the shape term:

J2[P ] = α
N∑

i,j=1

(|pi − pj|2 − sd2i,j)2. (30)

In order to formulate the Gâteaux derivative of the k-th vertex we fix i = k, this allows for
a simple calculation that yields the velocity contribution of the k-th vertex independently
i.e. J2[pk]. Consequently, this reduces the double sum to a single sum:

d

dε
J2[P + εV ]

∣∣∣
ε=0

= α
N∑
j=1

d

dε
(|(pk + εvk)− pj|2 − sd2k,j)2

∣∣∣
ε=0
. (31)

In turn, the right hand side of (31) evaluates to:

2α
N∑
j=1

(|(pk + εvk)− pj|2 − sd2k,j)
d

dε
(|(pk + εvk)− pj|2 − sd2k,j)

= 4α
N∑
j=1

(|(pk + εvk)− pj|2 − sd2k,j)|(pk + εvk)− pj|
d

dε
|(pk + εvk)− pj|

= 4α
N∑
j=1

(|(pk + εvk)− pj|2 − sd2k,j)|(pk + εvk)− pj|

(pk + εvk)− pj
|(pk + εvk)− pj|

· d
dε

((pk + εvk)− pj)

= 4α
N∑
j=1

(|(pk + εvk)− pj|2 − sd2k,j)((pk + εvk)− pj) · vk.

(32)

Now, take the limit as ε goes to zero of (32) and drop the constant:

α
N∑
j=1

(|pk − pj|2 − sd2k,j)(pk − pj) · vk. (33)

Then we rewrite (33) as the following,

d

dε
J2[P ] = 〈α

N∑
j=1

(|pk − pj|2 − sd2k,j)(pk − pj)︸ ︷︷ ︸
functional gradient

, vk〉. (34)

The shape prior term yields the following velocity contribution to the gradient descent:

vSPk = −α
N∑
j=1

(|pk − pj|2 − sd2k,j)(pk − pj). (35)

30



We now project the velocity (35) in the inward normal direction, as this is well known to
be the direction that will minimize arc length, in essence we replace curvature with shape
information

ṗi
SP = −α

[( N∑
j=1

(|pi − pj|2 − sd2i,j)(pi − pj)
)
·Ni

]
Ni. (36)

Optimization with respect to the scale parameters leads to the following condition [34]:

s =

∑
i,j|pi − pj|2d2i,j∑

i,j d
4
i,j

(37)

3.3 The Functional Gradient

The combination of both terms, gives us the following ODE system on the vertices of the
polygon,

ṗi = −(Dc
Ni
g(pi)− g(pi)κi)Ni − α

[( N∑
j=1

(|pi − pj|2 − sd2i,j)(pi − pj)
)
·Ni

]
Ni. (38)

In the discrete time setting,

pn+1
i − pni

∆t
= −(Dc

Ni
g(pi)− g(pi)κi)Ni − α

[( N∑
j=1

(|pi − pj|2 − sd2i,j)(pi − pj)
)
·Ni

]
Ni. (39)

We arrive at the gradient descent algorithm in a time dependent form:

pn+1
i = pni + ∆t

[
− (Dc

Nn
i
g(pni )− g(pni )κni )

− α
[( N∑

j=1

(|pni − pnj |
2 − snd2i,j)(pni − pnj )

)
·Nn

i

]]
Nn
i .

(40)

4 Numerical Implementation
An overview of the proposed algorithm follows below.

Algorithm Curve evolution

Calculate the shape signature for the given reference shape (11).
Initialize the polygonal curve P .
while Stoping criterion not met do

Calculate gradient descent step (39).
Update polygonal curve (40).
Optional dynamic parameter adjustment.

end while
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We define the stopping criterion to be |pn+1 − pn| < ε, for an appropriately chosen ε. A
more accurate fit can be attained at the cost of additional vertices in the parameterization.

It is important to note that the initialization of the polygonal curve P has the potential to
alter the minimization. The best results are generally found when the initial parameterization
encloses the desired object as curve evolution is generally in the inward normal direction.

4.1 Edge Detector Implementation

The edge detector function g(x, y|f) is parameterized by three tuning parameters a, p, and
k (2). The parameters a and p are scalar-valued parameters that effect the strength of the
edge detector. Throughout our experiments we found that a = 8 and p = 2 work well and
kept them fixed at these values. The parameter k is a discrete Gaussian filter that behaves as
a point spread function when convolved with the given image. This operation removes small
details and noise, effectively smoothing the image. The amount of smoothing is determined
by its standard deviation σ. In our implementation, as standard, k is an odd n× n matrix
that represents a 2-D Gaussian distribution by holding sampled points of the continuous
version centered at the center point of k:

k(i, j) =
kg(i, j)∑
i

∑
j

kg
, where kg(i, j) = e

−(i2+j2)

2σ2 . (41)

4.2 Model Implementation

Direct computation of the geodesic active contour contribution to the gradient descent al-
gorithm follows from the definitions in both the preliminary notation and the derivations
(29).

The calculations associated with clique shape signature introduce a small amount of com-
plexity to which we provide an elegant solution. The shape term (12) is the infimum of the
energy calculation over every possible parameterization of the polygon P . This means that
the shape velocity contribution (36) is given by the parameterization with the lowest energy,
thus the model requires a built in auto-parameterization shift. To remain practical about
computational complexity in our implementation we restrict the number of shifts in the pa-
rameterization that were tested. In our experiments we tested every 3rd reparameterization.

Our implementation follows a general shifting pattern over a predetermined set of inte-
gers: we make the i-th vertex the i+n-th vertex and compute the energy. The parameteriza-
tion that results in the lowest energy is kept and gradient descent contribution is calculated
with respect to the new parameterization. During this computation we check the energy the
same number of shifts backwards as forwards. The algorithm described above is shown as
follows. This algorithm is computed during each step of gradient descent, and the actual
parameterization of the curve is shifted by the n that gives the lowest energy. We note that
di,j, the reference shape, is only calculated once prior to entering gradient descent.

4.3 Time Dependent Parameters

Throughout our numerical experiments we found that it is possible to achieve better per-
formance if we treat some of the parameters namely α and σ as functions of discrete time.
This allows the model to vary the influence of the shape parameter, the quantity of noise,
and relative size of image features as a function of time.
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Algorithm Auto-Parameterization Shift

for n in a predefined set of integers do
Shift initial parameterization such that the i-th vertex is the i+ n-th.
Compute the energy (12).
if The energy is the smallest that we have computed in this round. then

Save n.
end if

end for
Shift the parameterization such that the i-th vertex is the i+ n-th vertex.

The influence of the shape energy on curve evolution is proportional to α. Thus, an
increasing α will let the model evolve based on image features before strictly enforcing the
shape information.

Evolution of σ alters the quantity of noise and image features in the model. We propose
starting with a relatively large σ and model its evolution as a decreasing function of time.
This refinement technique allows the curve to localize better, as the edge detector itself
becomes more localized over time. This techniques is particularly useful for illusory contours
where partial edges contribute to data fidelity, and for noisy or cluttered images where pixel
intensity variation can adversely effect curve evolution. These techniques mitigate some of
the troubles that arise when the minimization forces the curve into a local minima.

5 Experiments

5.1 Parameter Tuning

The following numerical experiments utilized a scheme with a fixed time step, and variable
shape velocity contribution (α), and variable standard deviation (σ).

We experimentally determined that ∆t ∈ (0, 0.5) result in convergence of the model,
and thus chose our time step as large as possible to speed up convergence, thus we set
∆t = 0.4 throughout all experiments. This parameter could also possibly benefit from
dynamic scheduling, as small ∆t could potentially allow for more refinement. The shape
velocity contribution and standard deviation of the Gaussian filter were varied according to
their own schedules with synchronous update. Throughout all of our expierments we found
that σ(t) ∈ [0.001, 60] and α(t) ∈ [0, 10−9] generally work well with the model. We evolved α
on an exponential growth schedule and σ on a linear decay schedule. The schedulers involved
consisted of setting α(t) to increasing powers of 10, where the powers are linearly spaced,
with in its specified interval, and setting σ to linearly spaced decreasing points within its
specified interval. The above schedulers can be seen as a sequence of points sampled from
g(x) = 10x and h(x) = x. The explicit parameters used in each experiment are further
detailed below.

5.2 Illusory Contour Example

An illusory contour is an optical illusion that elicits the perception of an edge without a
color or illuminance change across said perceived edge. The absence of a homogenous region
makes using region based segmentation methods and edge based segmentation methods
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difficult. The standard geodesic active contour model has difficulty moving out of local
minima as demonstrated in Fig. 2. Throughout the following expierments in this section we
let α ∈ [10−12, 10−9] and σ ∈ [1, 20].

(a) Initialization without shape. (b) Evolving

(c) Evolving (d) Result

Figure 2: Standard geodesic active contour. Without shape information the model gets stuck
in a local minima and the illusory contour is not captured.

Successful capture of illusory contours is demonstrated in Fig. 3, Fig. 4, and Fig. 5.
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(a) Initialization (b) Evolving

(c) Evolving (d) Result

Figure 3: Illusory contour captured with aide of shape prior. Shape prior information allows
the model to move out of undesired local minima and capture the illusory contour.

The combined contributions of J1[P ] and J2[P ] allow the model to perceive edges that do
not exist and more easily assume the correct shape.

(a) Initialization (b) Evolving

(c) Evolving (d) Result

Figure 4: A less trivial example. An example of an illusory contour with sparse representa-
tion. Three of the corners are represented with simple line segments.
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(a) Initialization (b) Evolving

(c) Evolving (d) Result

Figure 5: Successful segmentation. Another example of an illusory contour with sparse
representation. The evolving curve is able to recover the curvature of the illusory contour.

5.3 Cluttered Image Example

A caveat of the standard geodesic active contour model, is that it must be localized prior to
segmentation as it has a tendency to stick to clutter, as demonstrated in Fig.6.
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(a) Initialization without shape. (b) Evolving

(c) Evolving (d) Result

Figure 6: Segmentation of object in clutter without shape. Pixel intensity variation makes it
difficult for the standard geodesic active to move out of local minima.

Our improvements on the model give it an increased ability to capture shapes in cluttered
backgrounds. The evolving Gaussian filter allows the model to ignore variations in pixel
intensity during the early stages of evolution. This allows the curve to localize itself in a
way that optimally minimizes both J1[P ] and J2[P ] while σ is large. As σ decreases the
curve is then able to shrink-wrap the boundary of the object. While this is happening the
shape information guides the curve to resemble the reference shape. The combination of
these motions allow for a much closer fit as seen in Fig.7 where the curve overcomes large
variation in pixel intensity. We let α ∈ [10−30, 10−9] and σ ∈ [1, 60].
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(a) Initialization (b) Evolving

(c) Evolving (d) Result

Figure 7: Segmentation of object in clutter with shape. Shape prior information combined
with shrinking Gaussian support allows the model to move away from suboptimal solutions.

5.4 Occluded Object Example

The improved model is very suitable for occluded image segmentation where the location and
size of the occluder are known prior to segmentation. This allows for explicit incorporation
of global information into the model. A simple way of doing this is through the use of a
mask that disables the velocity contribution of J1[P ] for vertices that are on the occluder.
We let α ∈ [0, 10−9] and fixed σ = 0.1, the parameter evolution served a decreased role
in segmentation. Evolving α in this situation is still desirable as it allows the edge based
information to guide the model before shape contributes to curve evolution.

We define a set of points M that covers the occluder.

M = {(x, y)|(x, y) occludes the image} (42)

We can then define a function that will incorporate the mask into the model:

fmask(x, y) =

{
0 (x, y) ∈M
1 (x, y) 6∈M

}
. (43)

Then the gradient descent update becomes:

pn+1
i = pni + ∆t

[
fmask(pni )ṗi

GAC + ṗi
SP
]
. (44)
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An artificial example is given in Fig. 8, were an occluder is modeled by a gray square
and the mask is the exact shape of the occluder.

(a) Initialization (b) Evolving

(c) Evolving (d) Result

Figure 8: Image disocclusion. Despite significant missing information, the boundary of a
stunning teacup is preserved.

Full recovery of an occluded region on a natural image is demonstrated in Fig. 9. In this
experiment we let α ∈ [0, 10−9] and σ ∈ [1.3, 30].
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(a) Initialization (b) Evolving

(c) Evolving (d) Result

Figure 9: Disocclusion real example. Shape information allows us to capture a feature that
is occluded.

6 Conclusions and Future Work
We have explicitly derived a discrete implementation of the geodesic active contour model
and incorporated a clique based shape prior energy. The evolving Gaussian refinement
technique was proposed, and the parameterization shifting algorithm was explicitly laid
out. Both techniques are automated in the model. The numerical results demonstrated the
models ability to accurately segment illusory contours, objects in cluttered backgrounds, and
occluded objects.

Future work involves applying machine learning techniques to boost the performance of
the model.
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[14] G. Doğan, P. Morin, and R. H. Nochetto, A variational shape optimization ap-
proach for image segmentation with a mumford-shah functional, SIAM J. Sci. Comput.,
30 (2008), pp. 3028–3049.

[15] A. Elad and R. Kimmel, On bending invariant signatures for surfaces, IEEE Trans.
Pattern Anal. Mach. Intell., 25 (2003), pp. 1285–1295.

[16] A. Foulonneau, P. Charbonnier, and F. Heitz, Affine-invariant geometric shape
priors for region-based active contours, IEEE Trans. Pattern Anal. Mach. Intell., 28
(2006), pp. 1352–1357.

[17] F. Galland, A. Jaegler, M. Allain, D. Savéry, and P. Réfrégier, Smooth
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