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Quantifying “Political Islands” 
with Persistent Homology
By Michelle Feng                       
and Mason A. Porter

Recent political discourse in the U.S. 
has made much ado about a growing 

demographic and political divide between 
urban and rural communities. Moreover, 
cities and metropolitan areas have long 
been described as “islands of blue in a sea 
of red,” prompting lively discussions of 
the potential implications of such political 
geography. Does something about urban 
living cause people to shift their political 
views? Are Democrats self-segregating 
into cities? Or is there another explana-
tion? Additional concerns arise, as one 
may wonder whether the concentration of 
blue (Democratic) voters in dense urban 
areas makes it harder to avoid gerryman-
dering. How can we locate these political 
“islands” to better study them and identify 
trends in their formation?

These are just a few of the questions 
about America’s political gap that pervade 
mainstream discussion. U.S. politics has 
become increasingly polarized1 over the 
last several years, impacting policy debate 
and electoral behavior and in turn leading 
to partisan gridlock. 

We use tools from topological data analy-
sis (TDA) to examine the problem of large-
scale identification of political islands. To 
explore this subject, we have proposed sev-
eral methods to examine TDA of geospatial 

1  https://www.pewresearch.org/topics/
political-polarization/

data and applied them to 2016 precinct-level 
election data2 from the state of California [1].

When searching for political islands, we 
can imagine that we are looking for gaps 
in a “sea” of regions with similar electoral 
preferences. Homology, a tool from alge-
braic topology that characterizes topologi-
cal spaces based on their “holes,” is well-
suited to finding these types of gaps [4]. A 
technique known as persistent homology 
(PH) enables us to locate these holes in 
data across a variety of scales. This is use-
ful because of variations in physical size 
between urban and rural precincts. It also 
allows us to quantify the strength of the dif-
ferences in opinion between precincts.

To apply PH [5], we need to transform 
our data into a suitable topological space. In 
our case, this space takes the form of simpli-
cial complexes [4], which use simplices as 
building blocks and permit computational 
tractability for the study of PH. In our recent 
work, we developed two methods of doing 
so that yield different interpretations with 
respect to our original quest to pinpoint 
political islands [1].

We first introduced an adjacency method 
that utilizes the network of electoral pre-
cincts as its basic structure. Each precinct 
in this network is a node, with voting 
information attached to it; each network 
adjacency is an edge. We focused on the 
2016 U.S. presidential election and consid-
ered the preference of voters for presiden-
tial candidates Hillary Clinton and Donald 

2  The data were provided by the Los 
Angeles Times data visualization team.

Trump. An edge exists between two nodes 
if the precincts that are associated with those 
nodes share a boundary. If three nodes are 
connected by all possible pairwise edges, we 
add a 2-simplex to the simplicial complex. 
Figure 1 illustrates this process. To exploit 
the power of PH, we construct a sequence 
of these simplicial complexes called a “fil-
tered simplicial complex.” We begin only 
with those precincts that possess the largest 
percentage of votes for Trump, and we con-
tinue to add precincts in order of decreasing 
preference. We then compute the PH of the 
entire sequence to track holes as they appear 
and disappear. More explicitly, we record 
the strength of preference at which a hole 
first forms, as well as the voting percentages 
at which we fill in all missing precincts. 
This allows us to determine the polarization 
strength between a voting island and its sur-
rounding precincts. Holes that last longer 
indicate stronger polarization than those that 
rapidly appear and disappear.

Our second technique, based on level 
sets, tracks a voting island’s physical size 
and uses a county map as its basic structure. 
For example, consider a map of all pre-
cincts in a county that voted for Trump. We 
triangulate this map by projecting it onto a 
triangular grid to form a simplicial complex. 
Any grid cells that are contained entirely 
within the map’s boundaries become a 
2-simplex. Using a level-set method for 
front propagation, we then evolve the map’s 
boundaries outward until we fill all of the 
grid cells. By adding 2-simplices as we 

Figure 1. Construction of a filtered simplicial complex for California’s Imperial County, with nodes, edges, and faces colored by the order in which 
we add them to the filtration. The filtered simplicial complex is strictly increasing. We add only the darkest red precincts initially, and we add the 
lighter red precincts in order of preference, from strongest to weakest. Figure courtesy of [1].

Topological Data Analysis 
of Collective Motion

See Political Islands on page 3

Figure 1. A sample from the cyclooctane variety for c2 2= , projected on a two-
dimensional space. Due to translational and rotational invariance, x1 0 0 0= ( , , )  and 
x c2 0 0= ( , , )  are fixed and the last entry of x3  is set equal to zero. Code and image 
courtesy of Paul Breiding and Sascha Timme.

In an article on page 5, Paul Breiding offers an algebraic geometry perspec-
tive on topological data analysis (TDA). While algebra and algebraic geom-
etry present obvious TDA applications, Breiding discusses some additional 
functions of algebraic geometry in TDA, such as applications of numerical 
algebraic geometry and enumerative algebraic geometry. 

An Algebraic Geometry Perspective
on Topological Data Analysis

By Henry Adams, Maria-Veronica 
Ciocanel, Chad M. Topaz,          
and Lori Ziegelmeier

Can you recover a shape via a finite 
number of points sampled from it? 

How do you numerically find periodic 
orbits in a complex dynamical system? Is 
it possible to determine whether a collec-
tion of environmental sensors not equipped 
with GPS covers a specified region? These 
types of questions inspired the birth of 
applied and computational topology in the 
early 2000s [3, 5, 6].

Topology studies shape and space, with 
particular focus on properties of objects that 
are left unchanged by transformations such 
as stretching, shrinking, bending, and warp-
ing. For much of the 20th century, it lived 
squarely in the realm of pure mathematics. 
Typical advancements involved building 
up fundamental tools, classifying topologi-
cal spaces, and studying manifolds and the 
behavior of functions on them. However, in 
recent years topology has become increas-
ingly quantitative, computable, and statisti-
cal. Now crystalized as a field of its own, 
topological data analysis (TDA) describes 

rich classes of topological spaces that have 
multiple scales of resolution, are randomly 
generated, or vary in time. TDA continues 
to grow into new application domains like 
mathematical biology, materials science, 
signal processing, computer vision, compu-
tational linguistics, and economics.

Persistent Homology
Persistent homology is the workhorse 

of TDA. Homology relates to partially 
classifying the topology of objects and 
potentially determining the topological 
equivalence of two objects. Calculating an 
object’s Betti numbers can provide a great 
deal of homological information. The Betti 
number bk  calculates the number of holes 
with a k-dimensional boundary: b0  counts 
the number of connected components, b1

counts the number of flat holes, b2  counts 
the number of trapped volumes, and so on.

To understand the persistent part of 
persistent homology, we make a connec-
tion to data (see Figure 1, on page 4). 
Suppose we have N  data points in m. 
Furthermore, suppose N  is large enough 
that it becomes necessary to summarize the 

See Topological Data Analysis on page 4
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development of the p4est soft-
ware library for adaptive mesh 
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partitions meshes in parallel. 
Various scientific applications 
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You: How Artificial Intelligence 
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the unfavorable view of sci-
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and improve data collection.
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Obituary: Peter Deuflhard
By Christof Schütte                    
and Ralf Kornhuber

On September 22, 2019, Peter Deuflhard 
passed away at the age of 75. The 

Berlin mathematics community lost one of 
its leaders — a highly respected colleague 
and overall wonderful person.

After earning a diploma in physics at the 
Technical University of Munich (TUM) 
and a doctorate in mathematics (with 
Roland Bulirsch on 
Newton methods) at the 
University of Cologne, 
Peter habilitated at 
TUM in 1977 with a 
thesis on multiple 
shooting techniques. At 
age 34, he was appoint-
ed as a full professor of 
numerical mathematics 
at the Ruprecht-Karls-
Universität Heidelberg. 
He maintained this posi-
tion until 1986, at which 
point he became chair 
of scientific comput-
ing at Freie Universität 
Berlin. Peter authored 
the pioneering green 
paper that led to the 
foundation of the Zuse Institute Berlin 
(ZIB)—the first German institute for sci-
entific computing—in 1986. He served as 
president of ZIB for over 25 years, forging 
it into a role model for interdisciplinary 
mathematical research worldwide.

In 2002, Peter co-founded MATHEON, 
the Berlin-based research center that estab-
lished ongoing successful cooperation of 

all Berlin universities and mathematical 
research institutes. MATHEON operates 
under the motto “Mathematics for key 
technologies” and was the forerunner of 
MATH+, the Berlin Mathematics Research 
Center — a Cluster of Excellence. Peter was 
also a member of the Berlin-Brandenburg 
Academy of Sciences and Humanities.

Based on his long and wide-ranging list 
of monographs, textbooks, and scientific 
papers, an unknowing contemporary might 

think that “Deuflhard” 
is the pseudonym for 
an entire interdisciplin-
ary collaborative group 
of scientists from the 
fields of mathemat-
ics, physics, chemistry, 
medicine, engineering, 
and the humanities. Yet 
at his heart, Peter was 
a mathematician. In 
2007, he received the 
Maxwell Prize of the 
International Congress 
for Industrial and Applied 
Mathematics (ICIAM), 
which is awarded to “a 
mathematician who has 
demonstrated originality 
in applied mathematics.” 

ICIAM’s prize committee published the fol-
lowing laudation about Peter: 

“Professor Peter Deuflhard’s contributions to 
applied mathematics have a breadth, depth, and 
originality that is almost without parallel. His con-
tributions to algorithm-oriented numerical analysis 
are fundamental and range from highly nonlinear 
algebraic systems through large-scale ordinary and 
partial differential equations to Markov chains. 

Within these fields, they cover direct and inverse 
problems, optimization aspects, and optimal con-
trol. Characteristic of his work is that he always 
lays a firm, often innovative mathematical basis on 
which he constructs highly efficient algorithms for 
hard real-life problems in science and technology. 
His style of research has revolutionized scientific 
computing, [and] a large number of highly-reputed 
scholars follow his tracks.”

Peter supervised more than 30 doctoral 
students in mathematics, many of whom 
pursued academic careers at ZIB. He col-
laborated intensively with engineers, physi-
cians, scientists, and practitioners in many 
different fields. He was also quintessential 
in the formation of modern scientific com-
puting as a discipline that integrates a wide 
range of applied mathematicians, computer 
scientists, and other researchers who com-
bine mathematics and computing technol-
ogy to ultimately achieve a fundamental 
understanding of phenomena and processes.

The variety of application areas to which 
Peter contributed is stunning. They range 
from spacecraft mission design, chemical 
engineering, nano-optics, systems biology, 
and medicine to bioinformatics, molecu-
lar dynamics, drug design, and even the 
humanities. Peter never dropped a subject; 
he transformed it by identifying hidden 
structures and converting them into sourc-
es of possible future developments, per-
haps in other fields. He thus built bridges 
between completely different areas. For 
example, Peter applied ideas from the 
numerics of partial differential equations 
to model-supported operation planning in 
head surgery. This proved to be an intrigu-
ing way to connect his results to the 
study of beautiful faces and contribute to 
research in the humanities.

Although Peter appreciated his interna-
tional recognition, he gleaned even more 
enjoyment from his personal interactions 
with the many colleagues and students who 
benefitted both personally and profession-
ally from his guidance.

We are so grateful for Peter’s extraor-
dinary contributions and mourn the loss 
of an outstanding member of the scientific 
community.

This obituary also appears in 
ICIAM Dianoia, the newsletter of the 
International Council for Industrial and 
Applied Mathematics.

Christof Schütte is a professor of scien-
tific computing at Freie Universität Berlin 
and succeeded Peter Deuflhard as presi-
dent of the Zuse Institute Berlin (ZIB). Ralf 
Kornhuber is a professor of numerical 
analysis and scientific computing at Freie 
Universität Berlin. He began his academic 
career as a member of Peter’s group in the 
early days of ZIB.

Reflections on Big Data
and Sensitivity of Results
Mathematicians are excited by the 

significant success of “big data,” 
methods, and the recent SIAM News arti-
cle about Julia1 is no exception. But 
mathematicians have a responsibility to 
prove their results or define their valid-
ity, no matter how exciting. 
Many investigations of big 
data solve inverse problems 
using outputs of systems to 
define the inputs and the 
equations that define the system. 

Inverse problems have been analyzed in 
some detail, and the reliability of results is a 
central subject in the analysis. The sensitiv-
ity of results to uncertainties is often large 
because of the inherent ill-posedness of 
most inverse problems. This sensitivity is 
crucial to determine the reliability and thus 
utility of results. The fact that Julia can help 
determine sensitivity is of great importance. 

1  https://sinews.siam.org/Details-Page/
scientific-machine-learning-how-julia-
employs-differentiable-programming-to-
do-it-best

It is also important that workers on big 
data actually discuss issues of sensitivity 
and ill-posedness as they assess the reli-
ability of their results. It is a sad fact that 
many papers on big data do not include 
the words “ill-posed” or “sensitivity,” let 

alone confront the issues 
those words describe. The 
classical results of the the-
ory of inverse problems 
cannot help solve the prob-

lems of big data unless they are used. 
Explicit discussion of the sensitivity of 
results and the ill-posedness characteristic 
of inverse problems is likely to lead to 
more reliable and useful results. 

— Bob Eisenberg

Read “Scientific Machine Learning: 
How Julia Employs Differentiable 
Programming to Do it Best” by Jeff 
Bezanson, Alan Edelman, Stefan 
Karpinski, and Viral B. Shah, in the 
October 2019 issue of SIAM News.

LETTER TO  
THE  EDITOR 

Peter Deuflhard, 1944-2019. Photo 
courtesy of Sandra Patzelt-Schütte.
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fill cells (see Figure 2), we form a filtered 
simplicial complex, to which we apply 
PH. The resulting PH computation reveals 
the number of time steps required to fill a 
given hole. Because we evolve the entire 
boundary of a map with the same normal 
velocity, it takes longer to fill in larger holes 
than small ones. This allows us to track the 
geographical size of a given political island.

As an illustration of our methods in 
the context of real data, consider Tulare 
County in California. This county is home 
to Sequoia National Park and is known 
for the historical black farming commu-
nity of Allensworth. Tulare is a strongly 
Republican (red) county, with a few blue 
and purple cities dispersed throughout. It 
also houses Visalia, a very large red city. 
Our adjacency method (see Figure 3a) cap-
tures many loops—mostly around blue and 
light red islands—whereas the level-set 
approach (see Figure 3b) successfully cap-
tures blue islands. The bar length of a given 
feature in the “barcodes” [4, 5] in Figure 3 
corresponds to polarization strength in the 
adjacency construction and to hole size in 
the level-set construction.

We also compared tabulations of our 
computational results with existing 
Vietoris–Rips simplicial constructions [1]. 
These comparisons illustrate that our meth-
ods perform with speeds that are equal to or 
faster than standard techniques. They also 
yield more interpretable PH results for our 
quest to find political islands.

In the future, we hope to apply our meth-
ods to a longitudinal study of California 
precincts (and other map-based electoral 
data). Our adjacency and level-set con-
structions will be useful for applications 
beyond the analysis of voting islands, and 
we are currently utilizing them to study 
additional spatial systems, such as urban 
and biological structures. We hope that our 
work will inspire other researchers to begin 
or continue using topological tools to pur-
sue problems in spatial networks and other 
spatial systems [2, 3].

At the 2019 SIAM Conference on 
Applications of Dynamical Systems, which 
took place last year in Snowbird, Utah, 
Michelle Feng described a project from the 
2018 Voting Rights Data Institute that used 
an adjacency-based construction of demo-
graphic data to examine racial segregation 
in cities. The presentation is available from 
SIAM either as slides with synchronized 
audio3 or as a PDF of slides only.4
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Figure 2. Construction of a filtered simplicial complex using a level-set approach on California’s Imperial County. The initial simplicial complex 
consists of a triangulation of a map of all red precincts. We then evolve this surface outward and color the simplices based on the order in which 
they enter the filtered simplicial complex. Figure courtesy of [1].
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SIAM Announces New 2020 Leadership
SIAM is pleased to announce our new 

President-Elect, Vice President-at-
Large, Secretary, and members of the 
Board of Trustees and Council. We con-
gratulate these 10 esteemed individuals and 
thank all of the excellent candidates for 
their willingness to serve the SIAM com-
munity in this capacity.

President-Elect
The President-Elect will 

serve in this position for 
one year, as President for 
the subsequent two years, 
and as Past-President for 
the final year. This totals a 
four-year term.

Susanne C. Brenner, a 
professor in the Department 
of Mathematics and 
Center for Computation & 
Technology at Louisiana 
State University, will use 
her position to solicit input 
from SIAM membership and work with 
the outstanding officers and SIAM staff to 
address challenges and create opportuni-
ties. Brenner will strive for best practices in 
all endeavors towards the SIAM mission of 
building cooperation between mathematics 
and the worlds of science and technology.

Vice President-at-Large
The Vice President-at-Large will serve 

a two-year term and can serve up to three 
consecutive terms.

Carol S. Woodward, a project lead-
er in the Center for Applied Scientific 
Computing at Lawrence Livermore 
National Laboratory, was re-elected as 
Vice President-at-Large and will continue 
to serve on the Council. She will direct 
her efforts towards helping SIAM tackle 

challenges by supporting SIAM Activity 
Groups in developing and maintaining their 
research communities. Woodward will also 
encourage stimulated recognition of numer-
ous research fields via the various SIAM 
Prize and Fellows Programs. 

Secretary
The Secretary will 

serve a two-year term 
and can serve up to  
three consecutive terms.

Susan E. Minkoff, 
a professor in the 
Department of Math-
ematical Sciences 
and affiliated profes-
sor in the Departments 
of Geosciences and 
Science/Mathematics 
Education at the 
University of Texas at 
Dallas, will ensure that 
the committees she 

chairs are impactful and as active as pos-
sible. She aims to hear from everyone on 
the committees and inspire members to 
work towards implement-
ing ideas about which they 
are passionate.

Board of Trustees
Three SIAM members 

were elected to the Board 
for three-year terms. The 
Board consists of nine 
elected trustees, up to 
two appointed trustees, 
the President, and the 
Treasurer. Board mem-
bers can serve a total of 
three consecutive terms.

Margot Gerritsen, senior associ-
ate dean of the School of Earth, Energy 
and Environmental Sciences at Stanford 
University, was re-elected to the Board. 
She will concentrate on ethics, fair-
ness, transparency, and 
accountability—particu-
larly in relation to com-
putational math and data 
science—while retaining 
her main focus on educa-
tion and diversity. 

Randall J. LeVeque, 
emeritus professor of 
applied mathemat-
ics at the University of 
Washington,  was also re-
elected to the Board. He 
wishes to foster the future 
of scholarly publication 
and enhance the impact 
of the rapidly-changing 
landscape of SIAM books and journals.

Bonita V. Saunders, a research mathe-
matician in the Applied and Computational 
Mathematics Division at the National 
Institute of Standards and Technology, 

will use her position to 
help SIAM expand and 
continue its legacy by 
supporting wise decision-
making in the control and 
use of SIAM funds and 
investments.

Council
Four SIAM mem-

bers were elected to the 
Council for three-year 
terms. The Council con-
sists of 12 elected mem-
bers, the SIAM officers, 
and the chair of the 

Board. Council members can serve up to 
two consecutive terms.

Heike Faßbender, managing direc-
tor at the Technische Universität 
Braunschweig’s Institute of Computational 

Mathematics, will use 
her position to strengthen 
the “I” in SIAM (because 
industry seems more rel-
evant today than ever 
before) to open new 
channels of communica-
tion between researchers 
and potential users of 
mathematical tools.

Helen Moore, director 
of applied mathematics 
at Applied BioMath, was 
re-elected to the Council. 
She hopes to proactively 
address challenges such 
as decisions about ethical 

issues, open-access journal policies, and 
declining journal subscriptions, and  focus 
on emerging platforms for communicating 
research results. 

Valeria Simoncini, a professor of 
numerical analysis at Università di 
Bologna, will foster the applied mathemat-
ics community’s visibility through publica-
tions, conferences, and social media. She 
will also strongly pursue recent activities 
in innovative application areas like data 
science, where new mathematics is being 
created at incredible speed.

Suzanne L. Weekes, Associate Dean 
of Undergraduate Studies, ad interim at 
Worcester Polytechnic Institute, intends 
to strengthen efforts towards broaden-
ing SIAM membership. She believes the 
SIAM community must work effectively 
towards a more inclusive, welcoming, and 
diverse professional society.

Political Islands
Continued from page 1

Figure 3. Finding political islands in Tulare County, Calif. 3a. Features of Tulare County with the 
adjacency construction. The top panel depicts a feature map that highlights the generators of 
our persistent homology (PH) computation’s longest-persisting features. The bottom two panels 
show the barcode for this PH computation, where each bar in the code represents one feature. 
The left endpoint indicates the scale at which a feature is born (readers may ask whether the 
features are born at the right time), and the right endpoint indicates the scale at which it dies. 
All six loops (and highlighted bars) capture medium- to dark-red precincts that surround the blue 
precincts. 3b. Feature map and barcode from the level-set construction on Tulare County. All 
features capture blue precincts that are surrounded by red precincts. Figure courtesy of [1].
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data in some convenient way, yet imag-
ine that we do not know a priori what 
about the data we would like to measure. 
One approach is to characterize the data 
through the lens of homology, i.e., by cal-
culating its Betti numbers. But what does 
it mean for discrete data to have holes? To 
answer this question, we build a simpli-
cial complex out of the data. We place an 
m-dimensional ball of diameter e  around 
each point—where e  is the persistence 
scale or proximity parameter—and then 
calculate the homology of the object 
formed. In fact, we do this for all e³ 0,  
calculating the Betti numbers at every scale. 
This approach not only counts topological 
features, but equips each one with a length 
scale indicative of that feature’s geometry.

Collective Motion, Agent-based 
Models, and Data Exploration

In biological aggregations such as bird 
flocks, fish schools, and insect swarms, 
organisms interact via forces like social 
attraction, repulsion, and alignment. These 
interactions dictate the movement of indi-
viduals, and the many individual move-
ment decisions may result in collective 
motion of the group. Self-organized col-
lective motion can include vortex-like 
mills, ring structures, and strongly-aligned 
flocking groups. Agent-based models help 
elucidate the relationship between indi-
vidual movement choices and large-scale 
group behavior [4, 11].

Biological aggregations can generate 
massive amounts of data, thus requiring 
tools that summarize the dynamic informa-
tion arising from experimental observations 
or model simulations. As a thought experi-
ment, consider the recording and imaging of 
2,600 starlings during a flocking event [1]. 
The imaging technique provides the three-
dimensional position and velocity of each 
bird in every video frame, recorded at 
10 frames per second. Just one minute 
of video for a field observation creates 
107 pieces of information. Flocking events 
called murmurations can last for minutes or 
hours; the latter could produce 109 pieces 
of information. Data analysis is essential to 
the study of phenomena that are not easily 
detectable by the human eye.

A topological approach to collective 
motion data encodes the Betti number bk  
as a function of the scale parameter e  for a 
given homology dimension k  and a static 
set of points [9]. Repeating this process for 
each moment in time creates a two-variable 
function b tk ( , )e  that provides a topologi-
cal signature of time-varying data across 
scales. If values of t  and e  are selected 
on a grid, we can represent the Betti num-
bers as a matrix and visualize them as a 
contour plot called a CROCKER (Contour 
Realization of Computed k-dimensional 

hole Evolution in the Rips complex). 
Exploration of CROCKERs arising from the 
simulations of agent-based models (such as 
those in [4, 11]) detects phenomena that are 
not easily visible or noticed by commonly-
used order parameters like group polariza-
tion. These phenomena include intermittent 
clustering of agents, lone agents, unoccu-
pied regions of the simulation domain, and 
double mills comprising two superposed 
counter-rotating groups.

Model Selection
Biologists and mathematical biologists 

routinely face the challenge of model 
selection, i.e., choosing between several 
mathematical models that may describe 
a given dataset. TDA can help address 
this challenge. One example involves pea 
aphids filmed walking in an experimental 
arena (see Figure 1a) [8]. Researchers 
fed their video data into motion track-
ing software to obtain the coordinates of 
each insect during every frame. They then 
introduced the following modeling frame-
work. Each aphid transitions stochastically 
between a moving and stationary state. 
Moving aphids perform an unbiased cor-
related random walk, which incorporates 
a randomly drawn step length and turning 
angle. A key biological question is whether 
the aphids interact socially. To address this 
query, the researchers proposed two ver-
sions of their model. The interactive model 
incorporates social interactions via the 
model parameters’ dependence on distance 
to an aphid’s nearest neighbor, while the 
control model ignores social interactions 
and uses fixed (optimized) constants for 
these parameters.

Which model is more faithful to the 
experimental data? One study adopted 
three approaches to answer this ques-
tion [10]. The first method utilized order 
parameters traditionally studied in collec-
tive motion, such as group polarization and 
angular momentum. For these traditional 
order parameters, scientists compared 
simulated order parameter time series to 
experimental ones and chose the model 
with the statistically closer time series. 
Though similar to the first, the second 
strategy instead used order parameters that 
are closely related to model inputs, such as 
average distance from an aphid to its near-
est neighbor. Because these parameters 
reflect a priori knowledge of the model, 
they are called a priori order parameters. 
The third method was again similar, but 
employed topological summaries of the 
data, namely CROCKERs.

While traditional order parameters offer 
a mixed message about model preference, a 
priori order parameters consistently indicate 
that the interactive model is closer to exper-
imental data than the control model [10]. 
The topological approach also suggests 
that the interactive model is more consis-
tent with experimental data. Given that 

CROCKERs do not use any a priori knowl-
edge about the datasets or the models that 
generate them, the topological approach 
could be useful for describing and compar-
ing collective motion when little is known 
about key model mechanisms.

Parameter Inference
Mathematical biologists are also interest-

ed in parameter inference — that is, deduc-
ing appropriate model parameters from an 
observed dataset. Scientists applied topo-
logical data analysis and machine learning 
[2] to the model in [4]. By nondimensional-
izing the model and fixing both the number 
of agents and the parameters that describe 
self-propulsion and drag, one can reduce 
the model to a two-dimensional space of 
parameters: the ratio of the characteristic 
strengths of attraction and repulsion, and 
the ratio of their distinctive length scales. 
Depending on the parameters, the model 
might produce collective behaviors includ-
ing single mills, double mills, disorganized 
swarms, and group dispersal.

Researchers have developed a TDA-
based method for parameter recovery in 
this system (see Figure 2) by generating a 
large library of model simulations and sys-
tematically varying the two model param-
eters [2]. Each simulation transforms 
into a feature vector that summarizes the 
dynamics. One class of feature vectors 
comprises the aforementioned traditional 
order parameters. A second class contains 
vectorized CROCKER data: b0 ,  b1,  or the 
concatenation of both. One can calculate 
these CROCKERs from agent position 
or augment them with time-delayed posi-
tion data to incorporate information about 
velocity. For every simulation, feeding 
each feature vector into machine learn-
ing algorithms recovers parameters and 
identifies a phenotypic pattern. In both 
supervised and unsupervised machine 
learning approaches, topological features 
give rise to far more accurate results than 
traditional ones, even though they do not 
require contextual knowledge about model 
phenomena (see Figure 2).

Concluding Perspectives
Persistent homology measures both 

a dataset’s global topology and its local 
geometry. By using CROCKER data (or 
more sophisticated invariants [7]) in concert 
with simple data visualization, statistical 
tests, and machine learning techniques, we 
can possibly detect important events in 
dynamical data, choose between potential 
data models, and even recover parameters. 
These approaches have aided our under-
standing of collective motion in biological 
aggregations and may provide similar ben-
efits in other areas of mathematical biology.
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Figure 2. Analysis pipeline [2] for recovering parameters and inferring collective motion phe-
notypes from data produced by simulations of an influential model of collective motion [4]. In 
this pipeline, one simulates the model many times and constructs a feature vector for each 
simulation. The feature vectors serve as input to machine learning algorithms, which identify 
parameters and the type of collective motion. Feature vectors arising from order parameter 
time series are traditionally used in studies of collective motion, such as group polarization or 
angular momentum. In contrast, one can utilize feature vectors that originate from topological 
data. Topological features yield far more accurate results than traditional features, even though 
they do not require contextual knowledge about model phenomena [2]. Researchers explore 
the limit of very low-dimensional features and attain 93.1 percent supervised classification 
accuracy using topological feature vectors reduced to three dimensions via principal compo-
nent analysis (PCA) [2]. In contrast, three-dimensional feature vectors computed via PCA on 
group polarization and angular momentum achieve 46.7 percent and 30.0 percent accuracy 
respectively. Figure courtesy of Angelika Manhart and adapted from [2].

Figure 1. Pedagogical example of persistent homology computations. 1a. Initial locations of nine 
pea aphids in a circular domain, taken from a collective motion experiment [8] and analyzed in [10]. 
1b. A persistence diagram summarizing the homology of the data in 1a across a range of per-
sistence scales e.  The horizontal and vertical axes respectively specify the values of e at which 
a topological feature is born and dies. Black circles represent connected components and red 
triangles represent flat holes in the data. 1c. The Vietoris-Rips complexes of the data in 1a as the 
persistence scale e  takes on three increasing values. Each point is a 0-simplex and each edge 
is a 1-simplex, created if the e/2-balls around two points intersect. Every triangle is a 2-simplex 
that forms if all vertices are pairwise connected by edges. Note the red quadrilateral in the last 
panel; because the four vertices are connected in a cyclic manner, there is a flat hole in the 
data. This hole manifests as the red triangle in 1b. Figure courtesy of Maria-Veronica Ciocanel.

Topological Data Analysis
Continued from page 1



January/February 2020 SIAM NEWS • 5

An Algebraic Geometry Perspective 
on Topological Data Analysis
By Paul Breiding

Topological data analysis (TDA) is a suc-
cess story with a wide range of diverse 

applications. Here I will survey TDA from 
the point of view of algebraic geometry.

Algebra and algebraic geometry present 
certain immediate applications to TDA. 
The persistence module—the data structure 
behind persistent homology (PH)—is an 
inherently algebraic concept, and attempts 
to extend PH to multiple parameters utilize 
concepts from commutative algebra [4,10]. 
However, I would like to discuss some of 
algebraic geometry’s other roles in TDA 
— specifically applications of numerical 
algebraic geometry (NAG) and enumerative 
algebraic geometry (EAG).

NAG concerns the computation of numer-
ical solutions to a system of n  polynomial 
equations F x f x f xn( ) ( ( ), , ( ))= … =1 0 in 
n  variables x x xn= …( , , )1  over the com-
plex numbers. Numerical homotopy con-
tinuation is the computational paradigm in 
NAG. This paradigm involves the genera-
tion of a system of equations G x( ) whose 
solutions are known (a so-called start sys-
tem), and the continuation of the solutions 
of G x( ) = 0  along a deformation of G x( ) 
towards F x( ).  Such continuation leads to a 
Davidenko differential equation, an ordinary 
differential equation (ODE) that is solved by 
standard numerical methods for ODEs. The 
state-of-the-art implementations are Bertini,1 
HOM4PS,2 HomotopyContinuation.jl,3 
NAG4M2,4 and PHCPack.5

On the other hand, EAG counts the 
number of solutions to a system of poly-
nomial equations. Although they might 
initially appear different, NAG and 
EAG are intimately related: NAG’s 
key benefit is that one can generate ini-
tial values for all isolated solutions of 
F x( ) = 0  in n .  For instance, if the 
degree of the ith polynomial is di ,  then 

1 bertini.nd.edu/
2 hom4ps3.org
3 juliahomotopycontinuation.org/
4 people.math.gatech.edu/~aleykin3/NAG4M2
5 phcpack.org

G x x ai
d

i i
ni( ) ( )= − =1—where a an1, , *… ∈

—can serve as a start system for the 
homotopy ( ) ( ) ( ), .1 0 1− + ≤ ≤t G x tF x t  
G x( ) = 0 has D d dn= 1  isolated solu-
tions, and a theorem from algebraic geom-
etry implies that F x( ) = 0  has at most D 
isolated solutions. Continuing the solutions 
of G x( ) = 0  towards F x( ) = 0  produces 
all isolated solutions of F x( ) .= 0  In prac-
tice, however, F x( ) = 0  has significantly 
fewer solutions than D,  and diverging 
solutions must be eliminated. EAG helps 
construct other start systems that are adapt-
ed to the structure of F x( )  and improve 
the algorithm’s efficiency.

Returning to TDA, let us consider the 
situation in which M nÌ  is the zero 
set of s  polynomials in n  variables 
F x f x f xs( ) ( ( ), , ( )).= …1  In algebraic 
geometry, such an M  is called a real alge-
braic variety. The conformation space of the 
cyclooctane molecule serves as an example. 
Cyclooctane is comprised of eight carbon 
atoms x x1 8

3, ,… ∈  aligned in a ring, 
such that the distances between neighboring 
atoms all equal c> 0.  The energy of config-
uration ( , , )x x1 8¼  is minimized when each 
angle between successive bonds amounts 

to arccos( ) . .− ≈ °1

3
109 5  The polynomial 

equations in 3 8 24⋅ =  variables are
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The solution set of these equations—up 
to simultaneous translation and rotation—is 
homeomorphic to a union of the Klein bottle 
and a sphere, which intersect in two rings [6].

NAG can generate a sample of points 
from M ,  which may then serve as input 
for PH; Figure 1 (on page 1) depicts a 
sample from the cyclooctane variety. One 
idea involves sampling linear spaces L  of 
a dimension equal to the codimension of 

M ,  and computing the points in the inter-
section of M  and L.  In another approach, 
researchers sample points q nÎ  in the 
ambient space and determine the point on 
M  that minimizes the distance to q.  One 
can cast both computational problems as 
a system of polynomial equations and use 
NAG to solve them. Investigative direc-
tions in NAG include how to sample with 
respect to a probability distribution on M  
[1] and produce samples with the desired 
level of density in M  [8].

Researchers also use NAG and EAG to 
study two important numbers for TDA: the 
homological feature size hfs( )M  [5] and 
the reach t( )M  of M  [12]. Emil Horobet 
and Madeleine Weinstein showed that if M  
is an algebraic manifold (i.e., a real algebraic 
variety that is also a manifold) defined by 
polynomials over 

,  then both hfs( )M  and 
t( )M  are algebraic over 


 [11]. Therefore, 

one can compute both by means of NAG.
M 's  reach is the distance from M  

to its medial axis. An equivalent defini-
tion is τ ρσ( ) min{ , ( )},( )M MM= 1 1

2  where 
s( )M  is the maximal curvature of a geo-
desic in M  and r( )M  is the width of 
M 's narrowest bottleneck.  A bottleneck 
is a pair ( , ) ,x y MÎ 2  such that x y-  is 
perpendicular to both tangent spaces TxM  
and TyM .  One can formulate this as a sys-
tem of polynomial equations (solved using 
NAG) and extract the real solutions from 
the complex ones. Recall that one computes 
the isolated solutions of a polynomial sys-
tem in NAG; the trivial solutions for which 
x y=  are not computed. Scientists have 
studied bottlenecks intensely, both from the 
perspective of NAG [9] and EAG in terms 
of polar classes of M  [7].

Equations for s( )M  are less straight-
forward, but a direct formula for the 
curvature g( )x  at x MÎ  indicates that 
σ γ( ) min ( )M xx M= ∈  for planar curves. In 
this case, the first-order optimality condi-
tions for s( )M —that the gradient of g( )x  
is perpendicular to the tangent space TxM—
generate a system of polynomial equations. 
Solving this yields s( ).M

In summary, one can compute r( )M   
and s( )M  separately via NAG, and infer 
the reach t( )M  from those numbers. 
Figure 2 illustrates an example of this com-
putation for a planar curve.6

One can also replace the reach with a 
lower bound that involves the real condition 
number of a system of polynomials [3]. This 
lower bound holds for both real algebraic 
varieties and the more general class of semi-
algebraic sets. Researchers use the condi-
tion number to derive a complexity analysis 
of an algorithm for computing homology.

Finally, I would like to propose three 
possible future directions for the use of 
algebraic geometry in TDA. The first is an 
analysis of s( )M  in the context of NAG 
and EAG for bottlenecks [7, 9]. This is 

6  View an accompanying video in the 
online version of this article.

indispensable when computing the reach 
beyond planar curves. The second is PH 
using ellipsoids. Experiments show that 
this approach can greatly improve the 
output diagrams’ quality in PH [2], yet it 
lacks a theoretical explanation. The third 
direction involves sampling. The stan-
dard approach to sampling from nonlinear 
objects uses Markov Chain Monte Carlo 
methods. Combining this approach with 
NAG seems promising.
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By Hans Kaper

The National Science Foundation (NSF) 
has updated its request for proposals 

for the Algorithms for Threat Detection 
(ATD) program. This program supports 
research projects to develop the next gen-
eration of mathematical and statistical algo-
rithms for analysis of large spatiotemporal 
datasets, with application to quantitative 
models of human dynamics. The initiative 
is a partnership between the NSF’s Division 
of Mathematical Sciences (DMS) and the 
National Geospatial Intelligence Agency 
(NGA). The deadline for proposal submis-
sion is March 18, 2020.

The ATD program—which is not well 
known in the applied mathematics and com-
putational science community—currently 
supports 64 proposals, several of which 
represent collaborative projects. The pro-
gram awarded 14 proposals during the latest 
funding cycle (FY19). These proposals cov-
ered a broad range of topics in mathematics 
and statistics, including the dynamics of 
content spreading in multilayer networks, 
real-time detection of pattern changes in 
networks, topological data analysis, mul-
timodal spatiotemporal data in computer 
vision, and detection of time-lapse changes 
in imagery. The awards range from approxi-
mately $57K to just over $500K. Successful 

A Special Funding 
Opportunity at the NSF/DMS

proposals from prior years addressed a simi-
lar breadth of topics, such as the dynamics 
of drone-based threat detection, spectral 
interpretations of essential subgraphs for 
threat discoveries, precision agriculture and 
satellite imaging, vector-borne diseases and 
weather patterns, and harmonic analysis and 
machine learning for emergency response.

The ATD program offers a unique 
opportunity for researchers to develop 
new mathematics and demonstrate the 
subject’s broad applicability to issues of 
national security. Submitted proposals are 
reviewed according to the usual NSF crite-
ria: intellectual merit and broader impacts. 
Successful proposals are jointly funded by 
the NSF and NGA. Awardees must include 
appropriate acknowledgment of NGA sup-
port in reports and/or publications of work 
performed under the award.

Details about proposal submission, pro-
cessing, and review procedures are avail-
able in NSF solicitation 20-531.1

Hans Kaper, founding chair of the 
SIAM Activity Group on Mathematics 
of Planet Earth and editor-in-chief of 
SIAM News, is affiliate faculty in the 
Department of Mathematics and Statistics 
at Georgetown University.

1  h t tps : / /www.nsf .gov/pubs/2020/
nsf20531/nsf20531.htm
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p4est: A Parallel Software Toolbox for 
Efficient Mesh Refinement and Partitioning
By Carsten Burstedde

Many proven principles from tradition-
al systems programming remain cur-

rent and valuable in the development of sci-
entific software. Three long-time favorites 
are (1) Do one thing and do it well, (2) Keep 
it simple, stupid!, and arguably (3) Use the 
source, Luke. In this article, I will review 
how these principles apply to the develop-
ment of the p4est software library for 
adaptive mesh refinement (AMR). p4est 
adapts and partitions meshes in parallel 
and is used as a mesh provider for various 
scientific applications, as well as for gen-
eral numerical mathematics libraries such 
as deal.II and PETSc.

Forest-of-linear-octrees AMR
In 2007, during my time as a postdoc-

toral researcher at the University of Texas 
at Austin’s Center for Computational 
Geosciences and Optimization, my group 
realized that AMR is necessary for global 
mantle convection simulations due to the vast 
discrepancy of geological scales. We had 
learned a lot from Tiankai Tu—author of the 
octor code that implemented a pointer-based, 
distributed Cartesian octree and scaled well 

to several thousand message passing inter-
face (MPI) processes—yet had no solution 
for spherical domains. We did consider sev-
eral options, including fictitious or embedded 
domains and the use of multiple octrees.

One day, I approached my fellow postdoc 
Lucas Wilcox (now at Naval Postgraduate 
School) with a proposal to reimplement 
octor and really understand its method of 
operation. Lucas immediately suggested 

extending the new code to a forest of 
octrees and building it along the algo-
rithmic concepts of Hari Sundar and 
Rahul Sampath—then at the University of 
Pennsylvania working with George Biros— 
using flat arrays rather than pointers and 
storing only the leaves of the octree. After 
about a month of pair-programming, we 
were able to refine a two-dimensional forest 
manifold and write VTK files. Subsequent 
months saw 2:1 balance capabilities, a ghost 
layer algorithm, three-dimensional support, 
and node numbering for piecewise d-linear 
finite elements — scaling to 62e3 cores of 
the Texas Advanced Computing Center’s 
Ranger supercomputer.

Simplicity, Correctness,                
and Performance

We were clear in our desire for a library 
that “just” does the meshing. For the forest, 
the first requirement was an encoding of the 
connectivity of tree roots, which themselves 
constitute a conforming hexahedral mesh. 
In two dimensions and for each tree face, 
we record which neighbor-
ing tree connects at which 
face and whether the con-
nection is flipped. For each 

tree corner, we 
separately record 
which other trees 
and respective corners connect; 
there can be any number of 
these. In three dimensions, we 
have four possible rotations at a 
face and an arbitrary number of 
tree neighbors across any edge, 
possibly flipped [4]. This con-
cept allows for near arbitrary 
domain topologies, including 
periodicity (see Figure 1).

The quadrant object encodes 
any two- or three-dimensional 
tree node. Its length is a (nega-
tive) power of two in relation 
to the root, and the coordinates 
of its lower left corner are inte-
gers aligned at multiples of its 
length. Obtaining a parent quad-
rant; a given child; a sibling; or 
a face, edge, or corner neighbor 
amounts to bitwise operations on 
this coordinate tuple (see Figure 

2). Because each tuple has an equivalent 
interpretation as an index in a space-filling 
curve, an array of quadrants is sortable 
and searchable by the C library functions 
qsort and bsearch.

Figure 2 documents several time-tested 
p4est features, such as dimension inde-
pendence. We compile both two- and three-
dimensional code from the same source based 
on a preprocessor definition. Another feature 

is the favorability of clarity over optimiza-
tion. A third and most underrated attribute 
is assertion; a lot of functions have about as 
many assertions as lines of actual code, which 
reliably catches mistakes during development 
and certainly helps keep the number of bugs 
we find to below one per year on average.

We benefit from the use of 
linear arrays of leaves that are 
directly suitable as send and 
receive buffers with regard to 
MPI. Since we continue the 
space-filling curve through 
all trees in order—using MPI 

to replicate the lower left corner and tree 
number of the first quadrant on each rank—
the Allgather routine can sufficiently 
encode the entire partition’s shape. One can 
use top-down traversals to search for arbitrary 
sets of local and remote points or geometric 
objects [2]. p4est algorithms determine 
message pairs and sizes ahead of time, allow-
ing us to post asynchronous point-to-point 

messages with known envelopes and buffer 
allocations. Repartitioning the mesh works in 
this manner, and the algorithm executes con-
sistently in under one second (see Figure 3).

Application Interfacing
The boundary between an application 

and p4est is fairly sharp; the application 
indicates where to refine and when to repar-
tition, and p4est builds the updated mesh 
in parallel — with the communication out 
of sight on the inside.

The application may query the mesh 
on several levels, trading off generality 
and ease of interfacing. The p4est ghost 
layer algorithm, which collects the set of 
all remote leaves adjacent to any local leaf, 
permits an application to define any type of 
discretization; we used this approach to cre-
ate the p4est mesh backend for the finite 
element library deal.II [1].

SOFTWARE  AND 
PROGRAMMING

Figure 1. An adaptive mesh for the two-dimensional 
Moebius strip embedded in three-dimensional space. We 
have executed the 2:1 balance algorithm, which limits 
the size difference between neighboring leaf quadrants. 
The color encodes a ±1 leaf partition on three MPI ranks. 
Figure courtesy of [4].

Figure 2. p4est quadrant child computes the ith child of a quadrant.

Figure 3. Scalability of mesh repartitioning on “Juqueen.” Its wall-clock time is between one 
second and one millisecond, revealing two regimes: one is linear in the number of local leaf 
quadrants N P/ , and the other depends on total process count P  through partition encoding. 
The maximum number of leaves is over .5e12. Figure courtesy of [3].

See p4est on page 7



January/February 2020 SIAM NEWS • 7

For some common cases, we added the 
globally-consistent numbering of degrees 
of freedom as interface functions and inter-
nally queried the ghost layer. For example, 
the original mantle convection project calls 
the piecewise linear variant (see Figure 4).

To reduce the impact of log ( / )N P  
time searches, Tobin Isaac (now at Georgia 
Institute of Technology) implemented an 
amortized top-down iteration that informs 
an application about every quadrant inter-
face across faces, edges, and corners [5]. 
This approach supports 
all types of element-
local discretizations and 
became the basis for inte-
grating p4est with the 
PETSc software.

Considerations for 
Adopters

Given that p4est 
offers flexibility and scal-
ability, in what aspects 
must a user invest? The 
primary answer is that 
p4est works with non-
conforming, hanging-
node meshes. Many dis-
cretizations can accom-
modate this with the addition of element-
local interpolation and projection operators. 
Users can decide whether these additions 
compromise accuracy and stability.

Another attribute is p4est’s takeover 
of element ordering, which determines the 
partition’s geometric shape. The third solu-
tion points to our encoding scheme of 
neighbor trees and elements, into which 
the application must adopt or translate. The 
associated authoritative documentation is 
still a big comment block in the p4est 
connectivity header file.

Our collection of examples in the source 
tree is now quite broad. In practise, users 
might study them and devise a thin wrapping 
layer around p4est based on their preferred 
conventions (a C++ interface templated on 
the space dimension is one such example).
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SIAM to Sponsor Project NExT Fellows
By Kathleen Kavanagh,           
Lidia Mrad, and Carl Giuffre

In an effort to further support the pro-
fessional development of junior faculty, 

particularly in the area of teaching and 
applied mathematics education, SIAM will 
now annually sponsor 
two Project NExT  (New 
Experiences in Teaching) 
fellows. Organized 
by the Mathematical 
Association of America 
(MAA), Project NExT 
is a professional devel-
opment program for 
new or recent Ph.D.s in 
the mathematical sci-
ences that “addresses all 
aspects of an academic 
career: improving the 
teaching and learning of 
mathematics, engaging in 
research and scholarship, 
finding exciting and inter-
esting service opportunities, and participat-
ing in professional activities,” per the MAA.

Workforce preparation and fulfillment 
of industry begins with teaching excellence 
in applied mathematics. Junior faculty play 
a key role in fostering an appreciation for 
math while empowering students from dif-
ferent backgrounds to solve a wide range 
of complex, real-world problems. However, 

not all recent Ph.D.s are 
equipped with the right 
resources or training to 
thrive in an academic 
setting. One of the most 
valuable aspects of Project 
NExT is its creation of a 
network of peers and men-
tors for fellows navigating 
their new careers.

Each cohort of fellows 
participates in Project 
NExT workshops pre-
ceding MathFest (the 
MAA’s summer meet-
ing) for two consecutive 
years. They also take part 
in Project NExT sessions 

during MathFest and additional activities 
throughout the meeting. In addition, fellows 
organize Project NExT-sponsored sessions 

at MathFest and the Joint Mathematics 
Meetings. Workshop topics include engag-
ing students in specific mathematics cours-
es, supporting individuals from historically 
underserved groups, involving undergradu-
ates in mathematical research, writing grant 
proposals, and balancing teaching and 
research. In late July, the SIAM Conference 
on Applied Mathematics Education will be 
co-located with MathFest in Philadelphia, 
Penn., thus offering synergy between these 
two communities.

Carl Giuffre and Lidia Mrad are the first 
two SIAM Project NExT fellows. Giuffre 
received his Ph.D. in biomathematics from 
North Carolina State University, where he 
studied honey bees. His 
present research encom-
passes all social insects, 
including ants and ter-
mites. Giuffre uses com-
puter vision, differential 
equations, and mathemat-
ical modeling to answer 
important questions in 
entomology. He is cur-
rently teaching at Adelphi 
University, where his 
Project NExT fellowship 
has allowed him to step 
outside of the tradition-
al “college lecture” and 
promote a more inquiry-
based learning environ-
ment. Project NExT has provided Giuffre 
with the tools and resources to challenge 
pedagogical norms while also maximizing 
his leadership skills and teaching potential.

Lidia Mrad earned her Ph.D. in math-
ematics, with a concentration in computa-
tional science, from Purdue University. She 
seeks to blend computational and analytical 
techniques to solve problems in materials 
science, specifically in the area of liquid 
crystals. Using methods from the calcu-
lus of variations, partial differential equa-
tions, and mathematical modeling, Mrad 
studies liquid crystal behavior relevant to 
optical and biological applications. After 
completing her postdoctoral training at 
the University of Arizona, she joined the 
Department of Mathematics and Statistics 

at Mount Holyoke College. Mrad’s Project 
NExT fellowship has allowed her to connect 
with like-minded educators who wish to fur-
ther engage students with mathematics inside 
and outside the classroom. She plans to use 
the program’s support and resources to intro-
duce more applied mathematics courses in 
her department and work with undergraduate 
students on exciting new projects.

Applications for the Project NexT fellow-
ship require a personal statement, research 
statement, one-page curriculum vitae, and 
letter of support from the department chair. 
Eligibility requirements include a recent 
Ph.D. in mathematics, statistics, math edu-
cation, or other math-intensive field, with 

a teaching position and 
experiences, attitudes, 
ideas, and leadership abil-
ities that would contribute 
to the cohort. For con-
sideration for the SIAM 
position, candidates must 
indicate their SIAM 
membership on their 
applications. Fellows are 
selected by an MAA com-
mittee. The next applica-
tion deadline is April 15, 
2020. See the website for 
further information.1

The impact of one 
exceptional faculty mem-
ber undoubtedly has a far 

reach in the scientific community and at 
SIAM. SIAM is excited about this oppor-
tunity to contribute to excellence in applied 
mathematics education for the next genera-
tion of interdisciplinary problem-solvers.

Kathleen Kavanagh is a professor of 
mathematics at Clarkson University and 
the Vice President for Education at SIAM. 
Lidia Mrad is an assistant professor in the 
Department of Mathematics and Statistics 
at Mount Holyoke College. Carl Giuffre is 
an assistant professor in the Department 
of Mathematics and Computer Science at 
Adelphi University.

1  https://www.maa.org/programs-and-
communities/professional-development/
project-next

Carl Giuffre, Adelphi University.

Lidia Mrad, Mount Holyoke College.

Texas Tech University Chapter of SIAM 
Holds Graduate-Level Research Competition

This fall, the Texas Tech University (TTU) Chapter of SIAM organized a series of talks 
titled “Graduate Student Research Days” (GSRD). GSRD was a two-day research 

competition that provided graduate students from the Department of Mathematics and 
Statistics with the opportunity to share results from their ongoing research with peers and 
faculty members. Students presented their work to a committee composed of three faculty 
members from the statistics, pure mathematics, and applied mathematics disciplines. Alex 
Trindade, David Weinberg, and Eugenio Aulisa served as judges for the contest.

GSRD received remarkable interest from both faculty members and graduate students. 
The event featured oral presentations from 10 graduate students studying various subjects 
in pure and applied mathematics. The judges evaluated each talk according to six criteria: 
identification and/or background of research topic, methodology, interpretation of results, 
clear presentation of material, ability to answer questions, and overall delivery. The top 
three speakers were awarded monetary prizes, and all presenters received certificates of 
participation. Given the positive feedback from both students and faculty, the TTU Chapter 
of SIAM has decided to make the event an annual activity. 

— Texas Tech University Chapter of SIAM

Attendees of the Texas Tech University Chapter of SIAM’s “Graduate Student Research Days” 
competition watch students present their research. Photo courtesy of Isuru Dassanayake.

Figure 4. A p4est mesh for Earth’s mantle. Adaptivity is crucial 
to resolve tectonic plate boundaries at one-kilometer resolution; 
this keeps the elements coarser elsewhere for a total leaf count 
of only a few 100 million. Figure courtesy of [6].
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The Threat of AI Comes 
from Inside the House

You Look Like a Thing and I Love You: 
How Artificial Intelligence Works and 
Why It’s Making the World a Weirder 
Place. By Janelle Shane. Voracious / Little, 
Brown and Company (Hachette Book 
Group, Inc.), New York, NY, November 
2019. 272 pages, $28.00.

Artificial intelligence (AI) will either 
destroy us or save us, depending on 

who you ask. Self-driving cars might soon 
be everywhere, if we can prevent them from 
running over pedestrians. Public cameras 
with automated face recognition technology 
will either avert crime or create inescap-
able police states. Some tech billionaires 
are even investing in projects that aim to 
determine if we are enslaved by computers 
in some type of Matrix-style simulation.

In reality, the truest dan-
gers of AI arise from the 
people creating it. In her 
new book, You Look Like 
a Thing and I Love You, 
Janelle Shane describes how 
machine learning is often good at narrowly-
defined tasks but usually fails for open-
ended problems.1

Shane—who holds degrees in physics 
and electrical engineering—observes that 
we expect computers to be better than 
humans in areas where the latter often fail. 
This seems unreasonable, considering that 
we are the ones teaching the machines 
how to do their jobs. 
Problems in AI often 
stem from these very 
human failings.

As followers of her 
social media accounts 
and AI Weirdness 
blog2 know, Shane 
often probes the lim-
its of publicly-avail-
able AI algorithms 
for the sake of humor. 
Her codes produce 
machine-generated 
cat names, Dungeons 
& Dragons spells, 
Halloween costume 
ideas, and even com-
plete recipes for the 
purpose of comedy. 
For instance, the title 
of her book comes 
from a set of comput-
er-generated pickup 
lines: attempts to attract potential partners 
using clever wordplay.

While Shane’s humorous lists make 
extensive cameos in her book, it is not 
simply a rehash of her blog. Neither is 
it intended as a textbook about AI. Her 
goal is to describe machine learning as it 
is actually implemented while debunking 
both the hype and fearmongering that sur-
round AI. She accomplishes this objective 
with wit, humor, and her own (self-admit-
ted) low-quality artwork.

My only real complaint with You Look 
Like a Thing is its mild structural awk-
wardness. Many of the examples that 
Shane returns to in detail are introduced 
early on, which gives rise to slight redun-
dancies. A section on bot-human interac-
tions and humans pretending to be AI 
seems a trifle abrupt in a book that is 
largely about the failures of AI.

However, these are minor oversights. 
Overall, the book offers an engaging read 
for those interested to learn about the reality 

1  Shane uses “AI” as shorthand for the 
types of machine learning implemented today, 
which I will also do in this review. She refers 
to the more common usage for human-level 
AI that encompasses science fiction robots and 
computers as “artificial general intelligence,” 
which does not yet exist.

2  https://aiweirdness.com/

of AI beyond the headlines and gain per-
spective on machine learning’s true capabili-
ties. It is replete with humor and geeky refer-
ences — from Star Trek to Martha Wells’ 
Murderbot Diaries book series.

Opening the Black Box
Most people who write scientific com-

puter programs work in “rules-based” code: 
algorithms constructed to produce specific 
outputs. Machine learning, in contrast, takes 
in data and develops its own rules for pro-
ducing output. This necessitates “training” 
the AI program on existing datasets, and 
Shane spends much of her book outlining 
the challenges of this approach.

Because AI generates its own rules, the 
details of its algorithms are hidden from 
researchers. Shane argues that studying 

failures in machine learn-
ing is essential for reveal-
ing the contents of the 
black box. In a running 
gag, she highlights image-

description algorithms that find giraffes 
in completely unrelated images due to the 
overrepresentation of giraffe photos in the 
image libraries used to train them.

The disconnect between training scenari-
os and reality is a major theme of You Look 
Like a Thing. In one of Shane’s examples, 
a programmer tasked AI to teach a virtual 
robot to go from point A to point B. While 
creative solutions are sometimes desirable, 

this AI preferred to 
find unworkable solu-
tions — such as falling 
flat and scooting along 
the ground, and rewrit-
ing the rules of physics 
within the simulation 
to make the robot fly.

Shane does not 
spend much space 
detailing the vari-
ous types of machine 
learning. She high-
lights one important 
aspect of AI as it is 
today: we often expect 
be t te r - than-human 
results from a program 
that contains roughly 
as many “neurons” as 
a worm. It is there-
fore hardly surprising 
that tasks like image 
description or driv-

ing—which rely on a great deal of prior 
knowledge—pose difficulties for computers. 
AI must learn what images are and what a 
human face looks like from different angles 
and with varying expressions; these are tasks 
that people spend a lot of time learning to do 
with varying levels of proficiency.

Garbage in, Garbage out: AI Style
Shane also discusses “math washing” and 

“bias laundering,” which occur when AI 
users claim that their algorithms must be 
objective because they are free of human foi-
bles. Such users fail to recognize when bias 
is either built into the training data or carried 
over from the programmers themselves.

Science fiction aside, AI that kills delib-
erately is not a major concern, but Shane 
describes multiple cases where algorithms 
can indirectly cause harm. For example, a 
recent Science paper exposed built-in rac-
ism in a healthcare algorithm that resulted 
in black patients receiving far less care than 
their medical conditions merited [1]. This 
is not the first instance in which AI has 
reinforced systemic racism.

Additionally, some of the damage 
inflicted by computers arises directly from 
humans. Shane points out that most social 
media “bots” have people behind them 

You Look Like a Thing and I Love You: 
How Artificial Intelligence Works and Why 
It’s Making the World a Weirder Place. By 
Janelle Shane. Image courtesy of Hachette 
Book Group, Inc.

   BOOK REVIEW
By Matthew R. Francis

See Threat of AI on page 10
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In the December 2019 issue of SIAM 
News, I offered an explanation1 of 

Richard Feynman’s observation on the wob-
ble of a plate in free flight when launched 
with a spin around its central axis. Feynman 
noted that the plate wobbles twice as fast 
as it spins in the limit of small wobble (he 
actually states that the ratio is the other way 
around [3], but I think it is safe to say that 
he misremembered the result of his deriva-
tion). I recently came across Andy Ruina’s 
different, direct explanation of the effect; a 
much more extensive discussion and list of 
references to later work is available on his 
website [5]. His analysis is more general and 
does not rely on axisymmetry, as mine does.

Here I provide yet another explanation of 
the 1:2 ratio, this one based on making the 
gyroscopic effect’s role explicit. Since the 
spinning airborne plate is just a gyroscope, 
the key to the explanation is to first under-
stand precisely how it feels to move a gyro-
scope when holding it by its axle. It will 
then be easy to understand the gyroscope’s 
motion when it is released, with its axis 
changing direction at the moment of release. 
This is precisely what happens to the plate 
when it is launched in the air.

Gyroscope as a Particle on 
the Sphere Subject to Lorentz 
“Magnetic” Force

 Instead of a flying plate, let us consider 
an equivalent object: a spinning wheel 
whose center O  is fixed in space, with a 

1  https://sinews.siam.org/Details-Page/
feynmans-flying-saucer-explained

Feynman’s Flying Saucer: The Second Serving
Explaining the 1:2 Ratio 

The “Lorentz” force F Lv= = const., 
since L = const. and v = const.; the latter 
holds because the vectors F v^  in Figure 
2. Every trajectory thus has constant geo-
desic curvature k  and is therefore a circle. 
We can find k  from Newton’s second law: 
mkv F2= .  Substituting F Lv=  gives

  	         k L mv= / ,
 

an interesting observation in 
its own right: the geodesic 
curvature of circular orbits of 
the axle’s tip is the ratio of 
the angular momentum to the 
linear momentum.

Let us now find the wob-
ble’s frequency, i.e., the angular veloc-
ity w  of P  in the limit of a tight circle. 
Treating the small spherical cap enclosed 
by the tight circle as planar, the gyroscopic 
force in Figure 3 provides the centripetal 
acceleration w2r :

      w w2r F m Lv m L r m= = =/ / / .

Cancellation yields

           
w w= =L m I

I
/ .axial

diam
axial

For flat disks, I Iaxial diam/ ,= 2  so that 
w w= 2 axial  (in the limit of small wobble). 
For the other extreme of prolateness, such 
as a pencil spun around its longitudinal 

axis or a rifle bullet, I Iaxial diam/  is small 
and  w w axial .  This is also easily visible 
from the Poinsot description of the motion 
of free rigid bodies [4].

The Lagrange Top
The Lagrange top, i.e., the axisymmetric 

top, is treated with Euler’s angles in most 
books on classical mechanics (e.g., [1, 4]). 
But the Lagrange top is equivalent to the 
particle in Figure 2 with an additional gravi-
tational force. And this equivalence allows 
for a more intuitive and less cumbersome 
analysis of the problem than the traditional 
one. I may provide this analysis elsewhere.

The figures in this article were provided 
by the author.
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massless axle of length R=1  (see Figure 
1). The axle’s endpoint P  lies on the unit 
sphere. How does it feel trying to move 
this point? First, there is inertia propor-
tional to the wheel’s moment of inertia 
Idiam  around the diameter. More precisely, 
the inertial mass is

    	 m I R I= =−diam diam
2 .

One could object to equating mass with a 
moment of inertia, but they 
are numerically equal if R  
is one unit of distance, as 
specified above.

Second, if the wheel is also 
spinning around its axis with 
angular velocity waxial ,  then 
point P  will feel a gyroscopic force (see 
Figure 2). This force is normal to the 
velocity and of magnitude

	          F Lv= ,  		   (1)

where L I= axial axialw  is the axial angular 
momentum and v  is the speed. It is as if P  
were a charged particle, with charge L mov-
ing in the magnetic field perpendicular to the 
sphere of magnitude B=1.2 At the root of 
this gyroscopic effect is the fact that as we 
reorient OP,  each particle of the wheel—
while confined to a sphere—is constrained 
to move with a nonzero geodesic curvature, 
thus exerting a centrifugal force upon this 
constraint and producing a torque; the hand 
that moves P  feels the sum of all such 
reaction torques. Computing this sum, i.e., 
integrating over all of the body’s particles, 
results in (1). Incidentally, it is immediately 
clear without any calculation that the force 
and velocity in Figure 2 must necessarily be 
orthogonal to each other; otherwise, work 
would have been done in spinning the wheel 
up or down around its axle — an impossibil-
ity since the wheel bearings are perfect.

2 Actually, B R= −2  happens to be the 
Gaussian curvature of the sphere (I chose 
R=1  only for simplicity). In fact, Gaussian 
curvature plays a key role in the motion of 
spinning tops [2].

Figure 2. Equivalence between a gyroscope 
and a point mass subject to a Lorentz force.

Figure 1. Relating a gyroscope to a point 
mass on the sphere.

Figure 3. Magnified view of small wobble 
of the axle’s tip.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Advocating for Science as a 
Science Policy Fellowship Recipient
By Sheri Martinelli

I was immediately intrigued by SIAM’s 
call for new Science Policy Fellowship 

applicants, which came less than a year 
after the 2016 U.S. presidential election. 
Concerned about the view of science in the 
U.S.—especially within the government—I 
felt powerless to do anything about it. My 
previous experience working in a U.S. 
Department of Defense (DoD) laboratory, 
where I observed a gradual shift away from 
fundamental research, further piqued my 
interest in the program. I was therefore 
thrilled to be offered a fellowship, even 
though I was uncertain about the work I 
would actually be doing.

The first major event of my term as a 
Science Policy Fellowship recipient was 
the meeting of the Committee on Science 
Policy in spring 2018. The committee meets 
biannually, and the spring gathering is the 
main event. Fellowship recipients arrive a 
day early for orientation, which includes an 
overview of the government budget process 
with emphasis on science funding. We also 
received a primer on science advocacy that 
detailed SIAM’s role in this area. I learned 
about the hierarchical structure of science 
advocacy, which comprises broad coali-
tions such as the American Association for 
the Advancement of Science, more special-
ized coalitions like large math societies, and 
individual organizations.

Our orientation was followed by the 
committee meeting on the second day, 
which featured an update from Lewis-
Burke Associates (SIAM’s legislative liai-
son) and invited talks by those with leader-
ship roles in agencies that support research 
in applied and computational mathematics. 
These presenters typically include rep-
resentatives from the National Science 
Foundation, the Department of Energy 
(DOE), and DoD offices with direct over-
sight of mathematics research. Past gath-
erings have also invited guests from the 
Office of Science and Technology Policy 
and the National Institutes of Health. This 
day-long session is an opportunity for 
attendees to better understand the agen-
cies’ perspectives and gain insight into 
their future initiatives and priorities.

Fellowship recipients spend the third 
day on Capitol Hill. They break into 
groups with committee members based on 
their experiences and interests, and visit 
U.S. congressional offices accompanied 
by Lewis-Burke specialists. For example, 
groups focus on science, technology, engi-
neering, and mathematics (STEM) educa-
tion; the DOE; and the DoD. I am routinely 
paired with the DoD group because of 
my background. At the 2018 spring meet-
ing, my fellow group members consisted 
of Thomas Grandine (Boeing), Margaret 
Cheney (Colorado State University), John 
Burns (Virginia Polytechnic Institute and 

State University), and occasionally James 
Crowley (executive director of SIAM), all 
of whom are distinguished SIAM members 
with a great deal of experience with DoD 
research agencies. The prestige of these 
individuals was certainly awe-inspiring, but 
I viewed our interactions as my opportunity 
to be heard and did not refrain from speak-
ing up. In fact, I felt I had to hold myself 

back much of the time! Fortunately, inter-
acting with non-technically minded people 
has somewhat of a leveling effect.

My time on Capitol Hill allowed me to 
express my concerns about very applied 
research masquerading as basic research, 
something I have increasingly observed 
over the last several years. This situation 

Sheri Martinelli’s time as a SIAM Science Policy Fellowship recipient has included meet-
ings with staff from the U.S. House and Senate Committees on Armed Services. Photo 
courtesy of Margaret Cheney.

See Science Policy on page 11
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The Mathematics Underlying Gun Violence
By Shelby M. Scott and Louis J. Gross

Each year, gun violence is responsible for 
approximately 31,000 deaths and 78,000 

non-fatal injuries in the U.S. [1]. These 
casualties cost roughly $229 billion, with 
rural communities and younger individuals 
experiencing a higher burden [11]. Exposure 
to gun violence is associated with a greater 
propensity toward both chronic health condi-
tions and risky social behaviors [11].

The consequences of gun violence 
impact diverse populations across a wide 
variety of scales, and research therefore 
involves multidisciplinary perspectives. 
Unfortunately, work in this field is lim-
ited. In 1996, the Dickey Amendment 
prevented the Centers for Disease Control 
and Prevention from using federal funds to 
promote or advocate for gun control, effec-
tively shutting down research [9].

Last spring, the National Institute for 
Mathematical and Biological Synthesis 
and the Center for the Dynamics of 
Social Complexity hosted 29 individu-
als at an investigative workshop entitled 
“Mathematics of Gun Violence.”1 The 
workshop aimed to review existing lit-
erature, identify areas that require further 
research, develop cross-disciplinary col-
laborations, and suggest data collection to 
assist evidence-based policy recommenda-
tions. In summarizing workshop findings, 
we present valuable ideas surrounding the 
mathematics of gun violence.

Existing Literature
While statistical methods have addressed 

aspects of gun crime and violence in the 
U.S., mathematical modeling approaches 
are limited (with the exception of a few 
existing models). To analyze the dynamics 
of crime hotspots, Martin B. Short and his 
collaborators produced a partial differential 
equation model that interprets supercritical 
or subcritical bifurcations in a crime context 
[8]. Other researchers have studied the effi-
cacy of law enforcement deployment and 
found that the dynamics of policing have 
significant effects on crime distribution [7].

In the context of crime, networks may 
correlate with the dynamics of spread. Ben 
Green and his coauthors evaluated the extent 
to which modeling contagion on a social 
network can predict victimization [6]. Paul 
Brantingham and his group used ecological 

1  http://www.nimbios.org/workshops/
WS_gunviolence

modeling to address the intergroup dynam-
ics of gangs [3]. Sara Bastomski and her 
collaborators examined the way in which 
neighborhood-level criminal networks shape 
crime distribution and determined that 
embeddedness has a positive association 
with local homicide rate [2]. Violence may 
propagate through networks, but the impacts 
of intervention can spill over in similar ways 
[12]. Analysis of network structure could 
suggest improved interventions.

In addition to networks, other meth-
ods have found success in analyzing the 
spread of gun violence and crime. Due 
to the complicated relationships between 
individuals, systems dynamic models can 
be useful when investigating incarcerations 
and interventions [4]. Researchers have also 
used game theory to determine the efficacy 
of gun control policies [10], and developed 
systems of ordinary differential equations 
to analyze the dynamics of gun crime as it 
spreads throughout a population [5].

Key Takeaways
Below we identify some promising ideas 

that emerged from the workshop.
Collaboration with Stakeholders: A 

variety of relevant actors exist in situations 
of gun crime and violence. Therefore, identi-
fication of key players and their interactions 
with the affected community is important, 
and analysis of stakeholder network struc-
tures and their generalizability may improve 
interventions. Unfortunately, obtaining data 
to parameterize such models is difficult.

Interventions: Observing how dif-
ferent interventions affect various types 
of firearm-related events can allow the 
implementation of multifaceted, evidence-
based approaches. It is also imperative 
to develop a consensus for intervention 
evaluation. Considering the root causes of 
crime and violence—rather than focusing 
on the outcomes—may improve response. 
Mathematical and statistical modeling can 
address both individual and population-
level intervention effects.

Quantifying the Impact of Rare 
Events: Rarity is context-dependent, both 
in terms of scale and field of study. Rare 
events also introduce uncertainty due to 
outliers. Mass shootings are rare relative 
to interpersonal violence, and analysis of 
each scenario requires different methods. 
Borrowing from other disciplines that study 
rare events can help forecast the occur-
rence of future violent incidents and suggest 
appropriate reduction strategies.

Epidemiological Criminology: Applying 
tenets from epidemiology to criminology is 
common, and not just in the formal paradigm 
of “epidemiological criminology.” When 
employing multiscale models that connect 
the individual scale to the population and 
community scales (as in disease ecology), 
one must consider the nuances and limita-
tions of the analogy between disciplines.

Theoretical Models: Investigating the 
factors and interactions that push an indi-
vidual from nonviolence to violence, even 
in the absence of data, can offer insight 
about crime interruption. Ideas from sociol-
ogy and psychology—when combined with 
quantitative models—may provide informa-
tion about generalizable concepts and their 
interactions for violence analysis.

Technology: The introduction of new 
technologies that are relevant to gun vio-
lence and crime requires that one deter-
mine the technology’s specific purpose, 
evaluation, and impact — not only on 

the social system, but also for the indi-
viduals who are subject to the new tools. 
Practitioners must consider ethical issues 
and concerns of bias when working with 
collected data and conclusions drawn from 
technological advances.

Data Collection and Use: There is a 
dearth of data quality and quantity pertain-
ing to crime assessment. Tradeoffs also 
occur in the applicability of available data-
sets between precision, realism, and gener-
alizability. In light of this, interdisciplinary 
collaborations are necessary to fill gaps in 
the data using theory and methods from 
various fields. As with technology, it is 
important to address ethical matters and the 
data’s overall purpose.

Spatiotemporal Characteristics: Many 
quantitative models have contemplated 
the spatial, temporal, and spatiotemporal 
aspects of gun violence, but it is important 
to account for the differing data scales and 

A summary of the influences on gun violence research. Figure courtesy of Shelby M. Scott.

See Gun Violence on page 12

(though their biographies may be automati-
cally generated), simply because algorithms 
are not yet sophisticated enough to mimic 
human behavior online. Similarly, repres-
sive governments claim to use AI-driven 
facial recognition, but evidence indicates 
that most analysis of surveillance footage is 
typically done by humans.

Shane pulls no punches without losing 
sight of the fun inherent in the field. You 
Look Like a Thing is therefore a good 
choice for people who are either fearful of 
AI or excessively optimistic about it. And 
as with all good science fiction, the story 
ends up being as much about us as about the 
machines. If it takes imaginary giraffes and 
murderbots to expose the truth about our 
own limitations, so be it.
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Whether you’re just entering the 
workforce, taking the next step in 
your career, or looking for talent to 
propel your business, the SIAM Job 
Board is the place for you! The site 
allows job seekers and employers to 
easily connect via up-to-date listings 
in the mathematical and computa-
tional sciences. Job seekers can use 
personal accounts to find employment 
opportunities, manage resumés, and 
set up job alerts, while employers can 
quickly post jobs, browse resumés, 
and manage online recruiting efforts. 
Learn more at http://jobs.siam.org/. 

Visit the SIAM Job Board
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Students (and others) in search of information about careers in the mathematical 
sciences can click on “Careers” at the SIAM website (www.siam.org) or proceed 

directly to www.siam.org/careers.

Professional Opportunities 
and Announcements

Reward for Finding 
Qualified Number Theorist

I will pay $500.00 to the reader who puts me 
in touch with a number theorist who:

(a) recognizes the significance of the results in 
my paper, “A Solution to the 3 1x +  Problem,” 
on occampress.com;

(b) has published at least five papers on 
number theory;

(c) is willing to work with me to prepare a 
paper for submission to a number theory journal, 
with the paper setting forth what the number 
theorist regards as the most important results in 
the above paper;

(d) is willing to write a letter or email to 
accompany the submission, stating the number 
theorist’s belief that the results are correct.

All of this is necessary because I am not an 
academic mathematician (my degree is in com-
puter science, and for most of my career I have 
been a researcher in the computer industry). 
I have published no papers in number theory. 
Editors are reluctant to even consider a paper 
on such a difficult problem if it is written by a 
non-academic mathematician.

I should mention that in more than two 
years, no visitor to the above paper has notified 
me of an error.

— Peter Schorer, peteschorer@gmail.com

poses a challenge to students who find 
it difficult to publish their work and 
invariably sacrifice long-term global leader-
ship in basic science in favor of near-term 
deployment of technology.

Fellowship recipients and committee 
members typically meet with staffers; 
elected officials participate on occasion, 
especially if any of the SIAM members 
happen to be constituents. The spring 
meeting is scheduled to not only accom-
modate as many regular committee mem-
bers as possible, but also to coincide with 
a stage of the budget process (e.g., draft-
ing of appropriations or authorizations) 
at which SIAM members can be most 
influential. While attendees still hear from 
the agencies at the fall meeting, it is not 
as productive a time to effectively insert 
our priorities into the budget. Therefore, 
Capitol Hill visits do not occur in the fall.

In addition to mandatory meeting atten-
dance, Science Policy Fellowship recipi-
ents must complete a project in an area 
of interest. Given my DoD experience, 
I chose a project that would draw from 
that familiarity. An oft-quoted speech by 
Michael Griffin, the Under Secretary of 
Defense for Research and Engineering, 
lays out the top priorities of future DoD 
research. Using these stated priorities as a 
guide, I wrote a white paper for SIAM—
with much help from Lewis-Burke—on 
the contributions of previous and ongo-
ing support for fundamental research in 
applied and computational mathematics to 
advances in these areas. 

By writing this document and attend-
ing agency presentations at committee 
meetings, I began to truly understand the 
challenges of communicating the value of 
mathematics to an increasingly myopic 
society. Unfortunately, it takes years—
if not decades—for purely mathematical 

results to morph into technology, or a 
“thing” whose importance most people 
can grasp. For this reason, involvement in 
policy or other less technical aspects of our 
profession is immensely valuable — we 
must get better at promoting the importance 
of our work to nonspecialists.

Despite media reports about hyper-parti-
sanship and varying degrees of gridlock—
not to mention troubling rhetoric from poli-
ticians themselves—the government largely 
continues to function. Staffers perform most 
of the groundwork, and simply being pres-
ent and meeting with them, regardless of 
political affiliation, allows us to influence 
policy. Although the president’s recent bud-
get requests have sought to make large 
cuts to scientific research, congressional 
members who actually control the budget 
are more pragmatic. We have had fruitful 
discussions with staffers from both major 
parties. We have also had rushed, unpro-
ductive interactions with staffers from both 
major parties. The meetings with major-
ity and minority staff from the U.S. House 
and Senate Committees on Armed Services 
have been of particular interest.

Ultimately, I’ve found my experience 
as a SIAM Science Policy Fellowship 
recipient to be extremely valuable. It has 
provided a wonderful opportunity to con-
tribute to SIAM, learn a great deal about 
communicating the value of applied and 
computational mathematics, and gain more 
confidence in the system. The fellowship 
has reassured me that those with direct 
influence are aware of and working on the 
concerns that I raised about the state of 
support for fundamental research in math-
ematics within the DoD.

Sheri Martinelli is an assistant research 
professor at Pennsylvania State University’s 
Applied Research Laboratory. Her research 
is primarily in the areas of computational 
and ocean acoustics. She also holds a fac-
ulty appointment in Penn State’s Graduate 
Program in Acoustics.
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Texas-Louisiana Section Meeting
The SIAM Texas-Louisiana Section held 

its second annual meeting jointly with 
Southern Methodist University’s (SMU) 
Department of Mathematics in Dallas, Texas, 
last November. SIAM contributions—along 
with two grants from the National Science 
Foundation (NSF)—helped support the con-
ference and enabled the attendance of stu-
dents and early career mathematicians.

The meeting attracted over 200 attendees, 
largely from Texas and Louisiana. Topics 
spanned a wide variety of fields, ranging 
from imaging to geometry — with two 
“tracks” devoted to applications of topol-
ogy and machine learning. The conference 
consisted of nearly 40 minisymposia, an 
undergraduate session, and a poster session 
with over 30 posters (including those from 
undergraduate participants). A panel also 
focused on the future of applied mathemat-
ics in business, industry, and government. 

Three plenary speakers covered a 
breadth of important mathematical appli-
cations. Steve Jiang (University of Texas 
Southwestern Medical Center) described 
his group’s research in medical functions 
of artificial intelligence. Susan E. Minkoff 
(University of Texas at Dallas) presented 
an overview of mathematical problems 
in geosciences, including micro-seismic 
events (extremely small earthquakes) 

generated during the process of frack-
ing for hydrocarbons on land. And Peter 
Kuchment (Texas A&M University) sur-
veyed three recent techniques in medical 
and homeland security imaging: hybridiza-
tion of physical modalities in the imaging 
process to simultaneously achieve accept-
able contrast and resolution, invoking of 
“internal information” in solving inverse 
problems, and “cone transforms” and 
Compton-type camera imaging for emis-
sion imaging with low signal-to-noise data. 

An NSF Research Training Group grant 
allowed approximately 15 undergraduate 
students to attend a presentation on math-
ematics and economics by Cullum Clark 
(George W. Bush Presidential Center), as 
well as a lecture on linear algebra’s appli-
cations to imaging science by Prasanna 
Rangarajan (SMU). Additionally, a mini-
symposium focused on research opportuni-
ties for undergraduates. 

Thanks to the efforts of the organiz-
ing committee, the SIAM Texas-Louisiana 
Section’s annual meeting was success-
ful and almost all reviews were positive. 
Many attendees indicated that they gained 
new ideas and collaborations as a direct 
result of the conference.

— Officers of the SIAM Texas-Louisiana 
Section



12 • January/February 2020 SIAM NEWS 

By Richard Moore

January marks the start of a new decade 
and the end of my first year as SIAM’s 

director of Programs and Services. Both 
occasions inspire reflection on the suc-
cess of SIAM conferences1 and programs 
over the last year, and the challenges and 
opportunities that lie ahead.

The 2019 SIAM Conference on 
Computational Science and Engineering 
(CSE19), which took place last February in 
Spokane, Wash., had the distinction of being 
SIAM’s biggest-ever meeting with 1,895 
attendees. The 2019 SIAM Conference 
on Applied Algebraic Geometry (AG19), 
held last July in Bern, Switzerland, and the 
2019 SIAM Conference on Applications 
of Dynamical Systems (DS19), held 
last May in Snowbird, Utah, also expe-
rienced significant jumps in attendance. 
Indeed, the meeting commonly known as 

1  https://www.siam.org/conferences/
calendar

SIAM Conferences and 
Programs Roar into the Twenties

travel awards. SIAM Activity Groups also 
organized 48 minisymposia.

In 2020, SIAM will partner with other 
societies at two of its meetings: the 2020 
SIAM Annual Meeting (AN20)—to be held 
this July in Toronto, Canada, in conjunction 
with the annual meeting of the Canadian 
Applied and Industrial Mathematics 
Society4—and the SIAM Conference on 
Applied Mathematics Education (ED20), 
to be co-located with the Mathematical 
Association of America’s MathFest5 in 
Philadelphia, Penn., later that month.

Perhaps the most exciting event on our 
conference horizon is the launch of the 
new SIAM Conference on Mathematics of 
Data Science,6 whose first instantiation—
MDS20—will occur jointly with the 2020 
SIAM International Conference on Data 
Mining (SDM20) in Cincinnati, Ohio, this 
May. MDS20/SDM20 will include a career 
fair (in addition to the traditional career 
fair to be held at AN20), thus marking the 
increasingly important role of our confer-
ences in developing our workforce and 
launching the careers of young scientists.

2020 will also bring about some changes 
to modernize SIAM conferences, includ-
ing the discontinuation of full printed 
programs;7 instead, attendees are encour-
aged to use the mobile app or the continu-
ously updated online program (at-a-glance 
programs will still be provided on site, and 
full program PDFs will be available for 
download). SIAM is also retooling its child 
care grants to make them more flexible and 
better aligned with conference duration.8 
Lastly, adaptations to SIAM’s conference 
management system will accommodate 
requests by conference organizing commit-
tees more efficiently. Experimenting with 

4   https://caims.ca/
5   https://www.maa.org/meetings/mathfest
6 https://www.siam.org/conferences/cm/

conference/mds20
7  https://sinews.siam.org/Details-Page/

updates-from-the-december-siam-board-meeting
8  https://sinews.siam.org/Details-Page/

changes-to-siams-child-care-grant-program

scheduling and poster judging tools are on 
my to-do list for early 2020.

As director of Programs and Services, I 
am also involved in the implementation of 
special programs old and new, such as those 
funded via a generous grant by Philippe 
and Claire-Lise Tondeur.9 One such initia-
tive is the BIG (Business, Industry, and 
Government) Jobs Live Interview Series, 
during which graduate students in the math-
ematical sciences have the opportunity 
to interview mathematicians working in 
industry. The series launched in November 
2019, and the second installment took 
place this January. The interviewers were 
selected by a committee10 based on video 
submissions and trained at WHYY-FM, 
Philadelphia’s public radio station.

A longer-standing program is the Gene 
Golub SIAM Summer School (G2S3),11 
now entering its second decade. G2S3 2019 
took place last June in Aussois, France, 
with a focus on high performance data ana-
lytics, and G2S3 2020—on the theory and 
practice of deep learning—will occur this 
July in Muizenberg, South Africa.

SIAM’s conferences and programs are 
only possible due to the hard work and 
dedication of countless individuals, from 
conference co-chairs and committee mem-
bers to the SIAM staff with whom I have 
the pleasure of working. SIAM wishes to 
extend special thanks to Cynthia Phillips 
(Sandia National Laboratories), outgoing 
Vice President for Programs, for her tireless 
work in support of SIAM’s activities. We 
look forward to working with James Nagy 
(Emory University), whose tenure as VP for 
Programs begins this month.

Richard Moore is the director of Programs 
and Services at SIAM.

9  https://www.siam.org/students-education/
programs-initiatives/tondeur-initiatives

10  https://sinews.siam.org/Details-Page/
siam-ams-student-media-fellows-announced

11 https://www.siam.org/students-education/
programs-initiatives/gene-golub-siam-summer-
school

“Snowbird” has grown so large that its 
next iteration in May 2021 will take place 
in Portland, Ore., to better accommodate 
attendees. In addition to providing more 
hotel capacity and meeting space, the move 
to sea level from the high Utah mountains 
will allow individuals with altitude-related 
health issues to attend DS21.

2019 also saw the quadrennial 
International Congress for Industrial and 
Applied Mathematics (ICIAM),2 which 
took place last July in Valencia, Spain. 
While this is not strictly a SIAM meet-
ing, SIAM is a contributing society to 
its organization and supported ICIAM 
2019 in various ways. SIAM organized 
the presentation of the Peter Henrici, John 
von Neumann, and AWM-SIAM Sonia 
Kovalevsky Prize Lectures,3 and adminis-
tered a National Science Foundation grant 
that provided 63 student and early-career 

2 http://www.iciam.org/
3 https://iciam2019.org/index.php/scientific-

program/highlighted-speakers/siam-prize-lectures

Attendees of the 2019 SIAM Conference on Computational Science and Engineering—which 
took place last February in Spokane, Wash., and was SIAM’s largest meeting to date—mix and 
mingle between sessions. SIAM photo.

appropriateness of analysis methods based 
on the situation. One must note measure-
ment error—common in spatiotemporal 
data—when drawing conclusions or making 
actionable recommendations.

Network Models: Networks of individu-
als often perpetuate gun crime and violence, 
but these networks can also be instrumental 
in interrupting it. Determining the structure 
and influence of violence that perpetu-
ates and interrupts networks could lead to 
improved interventions.

Concluding Thoughts
Common discussion topics at the work-

shop included the need for more cross-
disciplinary and interdisciplinary work. 
Leveraging diverse expertise across a wide 
range of fields can improve methods to 
study gun violence. Model verification, 
intervention programs, and technologies 
also require better evaluation techniques. 
Finally, workshop participants emphasized 
the importance of data improvements. The 
quality of available data is unreliable and 
necessitates the collection of many addi-
tional datasets. Enhanced opportunities for 
broadening the pool of researchers depends 
on increased funding agency support for 
projects in this major area of concern.

References
[1] American Psychological Association. 

(2013). Gun violence: Prediction, prevention, 
and policy (Technical report). Washington, 
D.C.: American Psychological Association.

[2] Bastomski, S., Brazil, N., & 
Papachristos, A.V. (2017). Neighborhood 
co-offending networks, structural embed-
dedness, and violent crime in Chicago. Soc. 
Netw., 51, 23-39.

[3] Brantingham, P.J., Valasik, M., & 
Tita, G.E. (2019). Competitive dominance, 
gang size and the directionality of gang 
violence. Crim. Sci., 8(7). 

[4] Cirone, J., Bendix, P., & An, G. 
(2019). A system dynamics model of violent 
trauma and the role of violence intervention 
programs. J. Surg. Res., 245.

[5] Gonzalez-Parra, G., Chen-Charpentier, 
B., & Kojouharov, H.V. (2018). Mathematical 
modeling of crime as a social epidemic. J. 
Interdiscipl. Math., 21(3), 623-643.

[6] Green, B., Horel, T., & Papachristos, 
A.B. (2017). Modeling contagion through 
social networks to explain and predict gun-
shot violence in Chicago, 2006 to 2014. 
JAMA Intern. Med., 177(3), 326-333. 

[7] Mohler, G.O., Short, M.B., Malinowski, 
S., Johnson, M., Tita, G.E., Bertozzi, A.L., & 
Brantingham, P.J. (2015). Randomized con-

trolled field trials of predictive policing. J. 
Am. Stat. Assoc., 110(512), 1399-1411.

[8] Short, M.B., Brantingham, P.J., Bertozzi, 
A.L., & Tita, G.E. (2010). Dissipation and 
displacement of hotspots in reaction-diffusion 
models of crime. PNAS, 107(9), 3961-3965.

[9] Stark, D.E., & Shah, N.H. (2017). 
Funding and publication of research on gun 
violence and other leading causes of death. 
JAMA, 317(1), 84-86.

[10] Taylor, R. (1995). A game theoretic 
model of gun control. Int. Rev. Law Econ., 
15(3), 269-288.

[11] U.S. Congress Joint Economic 
Committee. (2019). A state-by-state exami-
nation of the economic costs of gun violence. 
U.S. Congress Joint Economic Committee.

[12] Wiley, S.A., Levy, M.Z., & Branas, 
C.C. (2016). The impact of violence interrup-
tion on the diffusion of violence: A mathemat-
ical modeling approach. In Advances in the 
Mathematical Sciences: Research from the 
2015 Association for Women in Mathematics 
Symposium (pp. 225-249). Switzerland: 
Springer International Publishing.  

Shelby M. Scott is a Ph.D. candi-
date and National Defense Science and 
Engineering Graduate Fellow in the 
Department of Ecology and Evolutionary 
Biology at the University of Tennessee, 
Knoxville, where she is also pursuing a 
master’s degree in statistics. Her research 
interests include applying mathematical 
and statistical modeling to topics in pub-
lic policy, ecology, and healthcare, as 
well as quantitative biology education and 
outreach. Louis J. Gross is Chancellor’s 
Professor of Ecology and Evolutionary 
Biology and Mathematics at the University 
of Tennessee, Knoxville, where he 
also directs the National Institute for 
Mathematical and Biological Synthesis, a 
synthesis center supported by the National 
Science Foundation. His research focuses 
on applications of mathematics and com-
putational methods in disease ecology, 
landscape ecology, spatial control for 
natural resource management, climate 
change, and the development of quantita-
tive curricula for life sciences students.

Gun Violence
Continued from page 10

Participants of the “Mathematics of Gun Violence” workshop, organized by the National Institute for Mathematical and Biological Synthesis and 
the Center for the Dynamics of Social Complexity. Photo courtesy of Catherine Crawley.


