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Abstract

Search tree data structures like van Emde Boas (vEB)
trees are a theoretically attractive alternative to com-
parison based search trees because they have better
asymptotic performance for small integer keys and large
inputs. This paper studies their practicability using 32
bit keys as an example. While direct implementations of
vEB-trees cannot compete with good implementations
of comparison based data structures, our tuned data
structure significantly outperforms comparison based
implementations for searching and shows at least com-
parable performance for insertion and deletion.

1 Introduction

Sorted lists with an auxiliary data structure that sup-
ports fast searching, insertion, and deletion are one of
the most versatile data structures. In current algorithm
libraries [11, 2], they are implemented using compar-
ison based data structures such as ab-trees, red-black
trees, splay trees, or skip lists (e.g. [11]). These im-
plementations support insertion, deletion, and search in
time O(log n) and range queries in time O(k + log n)
where n is the number of elements and k is the size of
the output. For w bit integer keys, a theoretically at-
tractive alternative are van Emde Boas stratified trees
(vEB-trees) that replace the log n by a log w [14, 10]:
A vEB tree T for storing subsets M of w = 2k+1 bit
integers stores the set directly if |M | = 1. Otherwise
it contains a root (hash) table r such that r[i] points
to a vEB tree Ti for 2k bit integers. Ti represents

the set Mi = {x mod 22k

: x ∈ M ∧ x � 2k = i}.1

Furthermore, T stores min M , maxM , and a top data

structure t consisting of a 2k bit vEB tree storing the
set Mt =

{

x � 2k : x ∈ M
}

. This data structure takes
space O(|M | log w) and can be modified to consume only
linear space. It can also be combined with a doubly
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1We use the C-like shift operator ‘�’, i.e., x � i =

¨

x/2i
˝

.

linked sorted list to support fast successor and prede-
cessor queries.

However, we are only aware of a single implementa-
tion study [15] where the conclusion is that vEB-trees
are of mainly theoretical interest. In fact, our experi-
ments show that they are slower than comparison based
implementations even for 32 bit keys.

In this paper we address the question whether im-
plementations that exploit integer keys can be a prac-
tical alternative to comparison based implementations.
In Section 2, we develop a highly tuned data structure
for large sorted lists with 32 bit keys. The starting point
were vEB search trees as described in [10] but we arrive
at a nonrecursive data structure: We get a three level
search tree. The root is represented by an array of size
216 and the lower levels use hash tables of size up to
256. Due to this small size, hash functions can be im-
plemented by table lookup. Locating entries in these
tables is achieved using hierarchies of bit patterns sim-
ilar to the integer priority queue described in [1].

Experiments described in Section 3 indicate that
this data structure is significantly faster in searching el-
ements than comparison based implementations. For
insertion and deletion the two alternatives have compa-
rable speed. Section 4 discusses additional issues.

More Related Work: There are studies on exploiting
integer keys in more restricted data structures. In
particular, sorting has been studied extensively (refer
to [13, 7] for a recent overview). Other variants are
priority queues (e.g. [1]), or data structures supporting
fast search in static data [6]. Dictionaries can be
implemented very efficiently using hash tables.

However, none of these data structures is applicable
if we have to maintain a sorted list dynamically. Simple
examples are sweep-line algorithms [3] for orthogonal
objects,2 best first heuristics (e.g., [8]), or finding free
slots in a list of occupied intervals (e.g. [4]).

2General line segments are a nice example where a comparison
based data structure is needed (at least for the Bentley-Ottmann
algorithm) — the actual coordinates of the search tree entries
change as the sweep line progresses but the relative order changes
only slowly.



2 The Data Structure

We now describe a data structure Stree that stores an
ordered set of elements M with 32-bit integer keys sup-
porting the main operations element insertion, element
deletion, and locate(y). Locate returns min(x ∈ M :
y ≤ x).

We use the following notation: For an integer x, x[i]

represents the i-th bit, i.e., x =
∑31

i=0 2ix[i]. x[i..j], i ≤
j+1, denotes bits i through j in a binary representation
of x = x[0..31], i.e., x[i..j] =

∑j

k=i 2k−ix[i]. Note that
x[i..i − 1] = 0 represents the empty bit string. The
function msbPos(z) returns the position of the most
significant nonzero bit in z, i.e., msbPos(z) = blog2 zc =
max {i : x[i] 6= 0}.3

Our Stree stores elements in a doubly linked sorted
element list and additionally builds a stratified tree data
structure that serves as an index for fast access to the
elements of the list. If locate actually returns a pointer
to the element list, additional operations like successor,
predecessor, or range queries can also be efficiently
implemented. The index data structure consists of
the following ingredients arranged in three levels, root,
Level 2 (L2), and Level 3 (L3):

The root-table r contains a plain array with one entry
for each possible value of the 16 most significant bits
of the keys. r[i] = null if there is no x ∈ M with
x[16..31] = i. If |Mi| = 1, it contains a pointer to the
element list item corresponding to the unique element
of Mi. Otherwise, r[i] points to an L2-table containing
Mi = {x ∈ M : x[16..31] = i}. The two latter cases
can be distinguished using a flag stored in the least
significant bit of the pointer.4

An L2-table ri stores the elements in Mi. If |Mi| ≥ 2
it uses a hash table storing an entry with key j if
∃x ∈ Mi : x[8..15] = j.

Let Mij = {x ∈ M : x[8..15] = j, x[16..31] = i}. If
|Mij | = 1 the hash table entry points to the element list
and if |Mij | ≥ 2 it points to an L3-table representing
Mij using a similar trick as in the root-table.

An L3-table rij stores the elements in Mij . If
|Mij | ≥ 2, it uses a hash table storing an entry with
key k if ∃x ∈ Mij : x[0..7] = k. This entry points
to an item in the element list storing the element with
x[0..7] = k, x[8..15] = j, x[16..31] = i.

3msbPos can be implemented in constant time by converting
the number to floating point and then inspecting the exponent.
In our implementation, two 16-bit table lookups turn out to be
somewhat faster.

4This is portable without further measures because all modern
systems use addresses that are multiples of four (except for
strings).

Minima and Maxima: For the root and each L2-
table and L3-table, we store the smallest and largest
element of the corresponding subset of M . We store
both the key of the element and a pointer to the element
list.

The root-top data structure t consists of three bit-
arrays t1[0..216 − 1], t2[0..4095], and t3[0..63]. We
have t1[i] = 1 iff Mi 6= ∅. t2[j] is the logical-
or of t1[32j]..t1[32j + 31], i.e., t2[j] = 1 iff ∃i ∈
{32j..32j + 31} : Mi 6= ∅. Similarly, t3[k] is the
logical-or of t2[32k]..t2[32k + 31] so that t3[k] = 1 iff
∃i ∈ {1024k..1024k + 1023} : Mi 6= ∅.

The L2-top data structures ti consists of two bit
arrays t1i [0..255] and t2i [0..7] similar to the bit arrays
of the root-top data structure. The 256 bit table t1i
contains a 1-bit for each nonempty entry of ri and the
eight bits in t2i contain the logical-or of 32 bits in t1i .
This data structure is only allocated if |Mi| ≥ 2.

The L3-top data structures tij with bit arrays
t1ij [0..255] and t2ij [0..7] reflect the entries of Mij in a
fashion analogous to the L2-top data structure.

Hash Tables use open addressing with linear probing
[9, Section 6.4]. The table size is always a power of two
between 4 and 256. The size is doubled when a table
of size k contains more than 3k/4 entries and k < 256.
The table shrinks when it contains less than k/4 entries.
Since all keys are between 0 and 255, we can afford to
implement the hash function as a full lookup table h
that is shared between all tables. This lookup table is
initialized to a random permutation h : 0..255 → 0..255.
Hash function values for a table of size 256/2i are
obtained by shifting h[x] i bits to the right. Note
that for tables of size 256 we obtain a perfect hash
function, i.e., there are no collisions between different
table entries.

Figure 1 gives an example summarizing the data
structure.

2.1 Operations: With the data structure in place,
the operations are simple in principle although some
case distinctions are needed. To give an example,
Figure 2 contains high level pseudo code for locate(y)
that finds the smallest x ∈ M with y ≤ x. locate(y)
first uses the 16 most significant bits of y, say i =
y[16..31] to find a pointer to Mi in the root table.
If Mi is empty (r[i] = null), or if the precomputed
maximum of Mi is smaller than y, locate looks for
the next nonzero bit i′ in the root-top data structure
and returns the smallest element of Mi′ . Otherwise, the
next element must be in Mi. Now, j = y[8..15] serves
as the key into the hash table rj stored with Mi and the
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Figure 1: The Stree-data structure for M = {1, 11, 111, 1111, 111111} (decimal).

(* return handle of min x ∈ M : y ≤ x *)
Function locate(y : N) : ElementHandle

if y > maxM then return ∞ // no larger element
i := y[16..31] // index into root table r
if r[i] = null or y > maxMi then return min Mt1.locate(i)

if Mi = {x} then return x // single element case
j := y[8..15] // key for L2 hash table at Mi

if ri[j] = null or y > max Mij then return min Mi,t1
i
.locate(j)

if Mij = {x} then return x // single element case
return rij [t

1
ij .locate(y[0..7])] // L3 Hash table access

(* find the smallest j ≥ i such that tk[j] = 1 *)
Method locate(i) for a bit array tk consisting of n bit words

(* n = 32 for t1, t2, t1i , t1ij ; n = 64 for t3; n = 8 for t2i , t2ij *)
(* Assertion: some bit in tk to the right of i is nonzero *)
j := i div n // which n bit word in b contains bit i?
a := tk[nj..nj + n − 1] // get this word
set a[(i mod n) + 1..n − 1] to zero // erase the bits to the left of bit i
if a = 0 then // nothing here → look in higher level bit array

j := tk+1.locate(j) // tk+1 stores the or of n-bit groups of tk

a := tk[nj..nj + n − 1] // get the corresponding word in tk

return nj + msbPos(a)

Figure 2: Pseudo code for locating the smallest x ∈ M with y ≤ x.



pattern from level one repeats on level two and possibly
on level 3. locate in a hierarchy of bit patterns walks
up the hierarchy until a “nearby” nonzero bit position
is found and then goes down the hierarchy to find the
exact position.

We now outline the implementation of the remain-
ing operations. A detailed source code is available at
http://www.mpi-sb.mpg.de/~kettner/proj/veb/.

find(x) descends the tree until the list item correspond-
ing to x is found. If x 6∈ M a null pointer is returned.
No access to the top data structures is needed.

insert(x) proceeds similar to locate(x) except that
it modifies the data structures it traverses: Minima and
maxima are updated and the appropriate bits in the
top data structure are set. At the end, a pointer to the
element list item of x’s successor is available so that x
can be inserted in front of it. When an Mi or Mij grows
to two elements, a new L2/L3-table with two elements
is allocated.

del(x) performs a downward pass analogous to find(x)
and updates the data structure in an upward pass: Min-
ima and maxima are updated. The list item correspond-
ing to x is removed. When an L2/L3-table shrinks to
a single element, the corresponding hash table and top
data structure are deallocated. When an element/L3-
table/L2-table is deallocated, the top-data structure
above it is updated by erasing the bit corresponding
to the deallocated entry; when this leaves a zero 32 bit
word, a bit in the next higher level of bits is erased etc.

2.2 Variants: The data structure allows several in-
teresting variants:

Saving Space: Our Stree data structure can con-
sume considerably more space than comparison based
search trees. This is particularly severe if many trees
with small average number of elements are needed. For
such applications, the 256 KByte for the root array r
could be replaced by a hash table with a significant but
“nonfatal” impact on speed. The worst case for all in-
put sizes is if there are pairs of elements that only differ
in the 8 least significant bits and differ from all other
elements in the 16 most significant bits. In this case,
hash tables and top data structures at levels two and
three are allocated for each such pair of elements. The
standard trick to remedy this problem is to store most
elements only in the element list. The locate oper-
ation then first accesses the index data structure and
then scans the element list until the right element is
found. The drawback of this is that scanning a linked
list can cause many cache faults. But perhaps one could
develop a data structure where each item of the element

list can accommodate several elements. A similar more
problem specific approach is to store up to K elements
in the L2-tables and L3-tables without allocating hash
tables and top data structures. The main drawback of
this approach is that it leads to tedious case distinc-
tions in the implementation. An interesting measure is
to completely omit the element list and to replace all
the L3 hash tables by a single unified hash table. This
not only saves space, but also allows a fast direct ac-
cess to elements whose keys are known. However range
queries get slower and we need hash functions for full
32 bit keys.

Multi-sets can be stored by associating a singly linked
list of elements with identical key with each item of the
element list.

Other Key Lengths: We can further simplify and
speed up our data structure for smaller key lengths. For
8 and 16 bit keys we would only need the root table and
its associated top data structure which would be very
fast. For 24 bit keys we could at least save the third
level. We could go from 32 bits to 36–38 bits without
much higher costs on a 64 bit machine. The root table
could distinguish between the 18 most significant bits
and the L2 and L3 tables could also be enlarged at some
space penalty. However, the step to 64 bit keys could be
quite costly. The root-table can no longer be an array;
the root top data structure becomes as complex as a 32
bit data structure; hash functions at level two become
more expensive.

Floating Point Keys can be implemented very easily
by exploiting that IEEE floats keep their relative order
when interpreted as integers.

3 Experiments

We now compare several implementations of search tree
like data structures. As comparison based data struc-
tures we use the STL map which is based on red-black
trees and ab tree from LEDA which is based on (a, b)-
trees with a = 2, b = 16 which fared best in a previ-
ous comparison of search tree data structures in LEDA
[12].5 We present three implementations of integer data
structures. orig-Stree is a direct C++ implemen-
tation of the algorithm described in [10], LEDA-Stree

is an implementation of the same algorithm available
in LEDA [15], and Stree is our tuned implementa-
tion. orig-Stree and LEDA-Stree store sets of integers
rather than sorted lists but this should only make them
faster than the other implementations.

5To use (2, 16)-trees in LEDA you can declare a sortseq with
implementation parameter ab tree. The default implementation
for sortseq based on skip lists is much slower in our experiments.
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The implementations run under Linux on a 2GHz
Intel Xeon processor with 512 KByte of L2-cache using
an Intel E7500 Chip set. The machine has 1GByte of
RAM and no swap space to exclude swapping effects.
We use the g++ 2.95.4 compiler with optimization
level -O6. We report the average execution time per
operation in nanoseconds on an otherwise unloaded
machine. The average is taken over at least 100
000 executions of the operation. Elements are 32 bit
unsigned integers plus a 32 bit integer as associated
information.

Figure 3 shows the time for the locate operation for
random 32 bit integers and independently drawn ran-
dom 32 bit queries for locate. Already the comparison
based data structures show some interesting effects. For
small n, when the data structures fit in cache, red-black
trees outperform (2, 16)-trees indicating that red-black
trees execute less instructions. For larger n this picture
changes dramatically, presumably because (2, 16)-trees
are more cache efficient.

Our Stree is fastest over the entire range of inputs.
For small n, it is much faster than comparison based
structures up to a factor of 4.1. For random inputs
of this size, locate mostly accesses the root-top data
structure which fits in cache and hence is very fast. It
even gets faster with increasing n because then locate

rarely has to go to the second or even third level t2

and t3 of the root-top data structure. For medium size
inputs there is a range of steep increase of execution
time because the L2 and L3 data structures get used
more heavily and the memory consumption quickly
exceeds the cache size. But the speedup over (2, 16)-
trees is always at least 1.5. For large n the advantage
over comparison based data structures is growing again
reaching a factor of 2.9 for the largest inputs.

The previous implementations of integer data struc-
tures reverse this picture. They are always slower than
(2, 16)-trees and very much so for small n.6

We tried the codes until we ran out of memory
to give some indication of the memory consumption.
Previous implementations only reach 218 elements. At
least for random inputs, our data structure is not more
space consuming than (2, 16)-trees.7

Figures 4–5 show the running times for insertions
and deletions of random elements. Stree outperforms
(2, 16)-trees in most cases but the differences are never
very big. The previous implementations of integer

6For the LEDA implementation one obvious practical improve-
ment is to replace dynamic perfect hashing by a simpler hash table
data structure. We tried that using hashing with chaining. This
brings some improvement but remains slower than (2, 16)-trees.

7For hard inputs, Stree and (2, 16)-trees are at a significant
disadvantage compared to red-black trees.

data structures and, for large n, red-black trees are
significantly slower than Stree and (2, 16)-trees.

The dominating factor here is memory management
overhead. In fact, our first versions of Stree had
big problems with memory management for large n.
We tried the default new and delete, the g++ STL
allocator, and the LEDA memory manager. We got
the best performance with with a reconfigured LEDA
memory manager that only calls malloc for chunks of
size above 1024 byte and that is also used for allocating
the hash table arrays8. The g++ STL allocator also
performed quite well.

We have not measured the time for a plain lookup
because all the data structures could implement this
more efficiently by storing an additional hash table.

Figures 6 shows the result for an attempt
to obtain close to worst case inputs for Stree.
For a given set size |M | = n, we store
Mhard =

{

28i∆, 28i∆ + 255 : i = 0..n/2− 1
}

where

∆ =
⌊

225/n
⌋

. Mhard maximizes space consumption of
our implementation. Furthermore, locate queries of the
form 256j + 128 for random j ∈ 0..224 force Stree to
go through the root table, the L2-table, both levels of
the L3-top data structure, and the L3-table again. As
to be expected, the comparison based implementations
are not affected by this change of input. For very small
inputs (n ≤ 256) Stree is now slower than its compar-
ison based competitors. However, for large n we still
have a similar speedup as for random inputs.

4 Discussion

We have demonstrated that search tree data structures
exploiting numeric keys can outperform comparison
based data structures. A number of possible questions
remain. For example, we have not put particular
emphasis on space efficient implementation. Some
optimizations should be possible at the cost of code
complexity but with no negative influence on speed.

An interesting test would be to embed the data
structure into other algorithms and explore how much
speedup can be obtained. However, although search
trees are a performance bottleneck in several important
applications that have also been intensively studied
experimentally (e.g. the best first heuristics for bin
packing [5]), we are not aware of real inputs used in
any of these studies.9

8By default chunks of size bigger than 256 bytes and all arrays
are allocated with malloc.

9Many inputs are available for dictionary data structure from
the 1996 DIMACS implementation challenge. However, they
all affect only find operations rather than locate operations.
Without the need to locate, a hash table would always be fastest.
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