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Three Applications of PDE Constrained Optimization
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Characteristics of PDE Constrained Optimization Problems

I All problems are PDE constrained optimization problems - there are
many, many more.

I Evaluation of objective function and constraint functions involves
expensive simulations (in the previous examples solution of partial
differential equations (PDEs)).

I THE optimization problem does not exist. Instead each problem
leads to a family of optimization problems which are closely linked.
(Hierarchy of optimization problems obtained by refinement of
discretization.)

I The robust and efficient solution of such optimization problems
requires the integration of application specific structure, numerical
simulation and optimization algorithms.



Need to look at the big picture, not only at one component
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Optimization Approach

I Selection of suitable optimization algorithm depends on the
properties of the optimization problem, properties of the PDE
simulator, ...

I I focus on PDE constrained optimization problems with many
control variables/parameters u.

I I focus on derivative based, Newton-type algorithms for PDE
constrained optimization problems.

+ fast convergence,
+ often mesh independent convergence behavior,
+ efficiency from integration of optimization and simulation,
− require insight into simulator.

I PDE constrained optimization is a very active area, as indicated by
the large number of talks/minisymposia in the area of PDE
constrained optimization at this meeting. There are many
interesting developments that I do not have time to cover.
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Abstract Optimization Problem

min J(y, u)

s.t. c(y, u) = 0, (the governing PDE)

g(y, u) = 0, (additional equality constr.)

h(y, u) ∈ −K (additional inequality constr.)

y ∈ Yad, u ∈ Uad.

where

I (Y, ‖ · ‖Y), (U , ‖ · ‖U ), (C, ‖ · ‖C) are real Banach spaces,

I (H, ‖ · ‖H) is a real normed space,

I Yad ⊂ Y, Uad ⊂ U are nonempty, closed convex sets,

I K ⊂ H is a nonempty, closed convex cone,

I J : Y × U → R, c : Y × U → C, h : Y × U → H are smooth
mappings.

Notation:
y: states, Y: state space, u: controls, U : control space,
c(y, u) = 0 state equation.



Problem Formulation

min J(y, u)
s.t. c(y, u) = 0,

g(y, u) = 0,
h(y, u) ∈ −K

⇓
y(u) is the unique solution of c(y, u) = 0

⇓

min Ĵ(u)
s.t. ĝ(u) = 0,

ĥ(u) ∈ −K,

 reduced
problem

where Ĵ(u) def= J(y(u), u), ĝ(u) def= g(y(u), u), ĥ(u) def= h(y(u), u).

The reduced problem formulation is often used, but it is not always clear
that it can be used.



I The problem

minimize
1

2

Z
Ω

(y(x)− ŷ(x))2dx+
α

2

Z
∂Ω

u2(x)ds,

subject to −∆y(x) = l(x) in Ω,

∂

∂n
y(x) = u(x) on ∂Ω

is well-posed and has a unique solution, but for given u the state equation
does not have a solution or it has infinitely many solutions.

I The problem

minimize
1

2

Z
D

„
∂v2

∂x1
− ∂v1

∂x2

«2

dx+
α

2
‖g‖2H1/2(∂Ω)

subject to

−ν∆v(x) + (v(x) · ∇)v(x) +∇p(x) = f(x) x ∈ Ω,

div v(x) = 0 x ∈ Ω,

v(x) = g(x) x ∈ ∂Ω,Z
Ω

g(x) · n(x)dx = 0

is well-posed, but the Navier-Stokes equation is only guaranteed to have a
unique solution if ν is large (Reynolds number is small) relative to g and f .
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Karush-Kuhn-Tucker Theorem in Banach Spaces
Recall the optimization problem in Banach spaces

min J(y, u)

s.t. c(y, u) = 0, (the governing PDE)

h(y, u) ∈ −K (additional inequality constr.)

y ∈ Yad, u ∈ Uad.

If (y∗, u∗) is a local minimizer and if a regularity condition (CQ) holds,
then there exist continuous linear functionals (Lagrange multipliers)
λ∗ ∈ C∗,

µ∗ ∈ K∗ ≡ {` ∈ H∗ : `(v) ≥ 0 for all v ∈ K}

such that

(DyJ(y∗, u∗) + λ∗ ◦Dyc(y∗, u∗) + µ∗ ◦Dyh(y∗, u∗)) (y − y∗) ≥ 0 for all y ∈ Yad,
(DuJ(y∗, u∗) + λ∗ ◦Duc(y∗, u∗) + µ∗ ◦Duh(y∗, u∗)) (u− u∗) ≥ 0 for all u ∈ Uad,

µ∗(h(y∗, u∗)) = 0

See Zowe/Kurcyusz (1979) and the books by J. Jahn (Springer Verlag,
2nd ed., 1996), J. Werner (Friedrich Vieweg & Sohn Verlag, 1984), and
the books by D. G. Luenberger (John Wiley & Sons, 1969).



Karush-Kuhn-Tucker Theorem in Banach Spaces
I The previous KKT Theorem is a good guideline, but often cannot be

applied directly to PDE constrained optimization.
I The choice of state and control space are important.
I Precise characterization of Lagrange multipliers is important for

design and analysis of optimization algorithms.
I Precise characterization of Lagrange multipliers requires (a lot of)

extra work.
I Optimality conditions for optimal control problems with control and

state constraints have been derived by Casas, Bonnans, Kunisch,
Bergounioux, Raymond, Tröltzsch,.....



Example 1 (Only PDE Constraint)

Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x) + l(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω.

Problem fits into previous framework if we define Y = H1
0 (Ω),

U = L2(Ω),
I J(y, u) = 1

2

∫
Ω

(y(x)− ŷ(x))2dx+ α
2

∫
Ω
u2(x)dx,

I c : H1
0 (Ω)× L2(Ω)→ H−1(Ω), where

〈c(y, u), φ〉Y′,Y =
∫

Ω

∇y∇φdx−
∫

Ω

uφdx−
∫

Ω

lφdx.

If (y∗, u∗) ∈ H1
0 (Ω)× L2(Ω) is a local minimizer, then there exists

λ∗ ∈ H1
0 (Ω) such that

−∆λ∗(x) = −(y∗(x)− ŷ(x)), x ∈ Ω,
λ∗(x) = 0 x ∈ ∂Ω,

λ∗(x) + αu∗(x) = 0 a.e. in Ω.



Example 1 (Only PDE Constraint)

Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x) + l(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω.

Problem fits into previous framework if we define Y = H1
0 (Ω),

U = L2(Ω),
I J(y, u) = 1

2

∫
Ω

(y(x)− ŷ(x))2dx+ α
2

∫
Ω
u2(x)dx,

I c : H1
0 (Ω)× L2(Ω)→ H−1(Ω), where

〈c(y, u), φ〉Y′,Y =
∫

Ω

∇y∇φdx−
∫

Ω

uφdx−
∫

Ω

lφdx.

If (y∗, u∗) ∈ H1
0 (Ω)× L2(Ω) is a local minimizer, then there exists

λ∗ ∈ H1
0 (Ω) such that

−∆λ∗(x) = −(y∗(x)− ŷ(x)), x ∈ Ω,
λ∗(x) = 0 x ∈ ∂Ω,

αu∗(x)− λ∗(x) = 0 a.e. in Ω.

Optimality conditions involve another linear PDE, the adjoint PDE.



Example 2 (Pointwise Control Constraints)

Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x) + l(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω,
ulow(x) ≤ u(x) ≤ uupp(x) a.e. in Ω.

If (y∗, u∗) ∈ H1
0 (Ω)× L2(Ω) is a local minimizer, then there exist

λ∗ ∈ H1
0 (Ω) and µlow,∗, µupp,∗ ∈ L2(Ω), with µlow,∗, µupp,∗ ≥ 0 a.e. in

Ω such that

−∆λ∗(x) = −(y∗(x)− ŷ(x)), x ∈ Ω,
λ∗(x) = 0 x ∈ ∂Ω,

αu∗(x)− λ∗(x)− µlow,∗(x) + µupp,∗(x) = 0, a.e. in Ω.∫
Ω

(ulow,∗ − u∗)µlow,∗dx =
∫

Ω

(u∗ − uupp,∗)µupp,∗dx = 0.

Lagrange multipliers corresponding to pointwise control constraints are
L2 functions.



Example 2 (Pointwise Control Constraints)

Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω,
u(x) ≤ 1 a.e. in Ω.

u∗ µupp,∗



Example 3 (Pointwise State Constraints)

Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x) + l(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω,
ylow(x) ≤ y(x) ≤ yupp(x) a.e. in Ω.

I Need more regular states y to make sense out of
ylow(x) ≤ y(x) ≤ yupp(x) a.e. in Ω. Require y ∈ C(Ω).

I Lagrange multipliers νlow,∗, νupp,∗ are in y ∈ C(Ω)∗.
Lagrange multipliers are measures.

I Optimality conditions

−∆λ∗ = −(y∗ − ŷ) + νupp,∗ − νlow,∗, x ∈ Ω,
λ∗ = 0 x ∈ ∂Ω,

αu∗ − λ∗ = 0, a.e. in Ω.∫
Ω

(ylow,∗ − y∗)dνlow,∗ =
∫

Ω

(y∗ − yupp,∗)dνupp,∗ = 0.

Adjoint equation involves measures on the right hand side.
I Often, more can be said about the structure of νupp,∗, νlow,∗. See

Casas, Kunisch, Bergounioux, Raymond, .....



Example 3 (Pointwise State Constraints)

Minimize
1
2

∫
Ω

(y(x)− sin(2πx1x2))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω,
y(x) ≤ 0.1 a.e. in Ω.

y∗ νupp,∗
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I The problem we want to solve

min J(y, u)

s.t. c(y, u) = 0, (the governing PDE)

g(y, u) = 0, (additional equality constr.)

h(y, u) ∈ −K (additional inequality constr.)

where Y,U , C,G,H are Banach spaces, K ⊂ H is a cone, and

J : Y × U → R, c : Y × U → C,
g : Y × U → G, h : Y × U → H.

I The problem we can solve

min Jh(yh, uh)
s.t. ch(yh, uh) = 0,

gh(yh, uh) = 0,
hh(yh, uh) ∈ −Kh

where Yh,Uh, Ch,Gh,Hh are finite dimensional Banach spaces,

Jh : Yh × Uh → R, ch : Yh × Uh → Ch,
gh : Yh × Uh → Gh, hh : Yh × Uh → Hh.

I Does the solution (uh, yh) of the discretized problem converge to
the solution (u, y) of the original problem? How fast?



Standard Approach

Discretize-then-optimze

min J (y, u)
s.t. c(y, u) = 0

(y, u) ∈ K

discretize- large-scale nonlinear
programming problem

optimize

?

apply nonlinear pro-
gramming



Example (W.W. Hager, 2000)

Optimal Control Problem

Minimize 1
2

∫ 1

0

u2(t) + 2y2(t)dt

where

ẏ(t) = 1
2y(t) + u(t), t ∈ [0, 1],

y(0) = 1.

Solution

y∗(t) =
2e3t + e3

e3t/2(2 + e3)
,

u∗(t) =
2(e3t − e3)
e3t/2(2 + e3)

.

DOES NOT CONVERGE! WHY?

Discretization using a 2nd order
Runge Kutta method

Minimize
h

2

K−1∑
k=0

u2
k+1/2 + 2y2

k+1/2

where

yk+1/2 = yk +
h

2
( 1

2yk + uk),

yk+1 = yk + h( 1
2yk+1/2 + uk+1/2),

k = 0, . . . ,K.
Solution of the discretized problem:

yk = 1, yk+1/2 = 0,

uk = −4 + h

2h
, uk+1/2 = 0,

k = 0, . . . ,K.



Discretization of state equation and objective function implies a
discretization for the adjoint equation, which may have different
convergence properties than the discretization scheme applied to state
equation and objective function.

For the example problem

ẏ(t) = 1
2y(t) + u(t),

y(0) = 1,

λ̇(t) = − 1
2λ(t) + 2y(t),

λ(1) = 0,

u(t)− λ(t) = 0.

yk+1/2 = yk +
∆t
2

( 1
2yk + uk),

yk+1 = yk + ∆t( 1
2yk+1/2 + uk+1/2),

λk+1/2 = ∆t( 1
2λk+1 − 2yk+1/2),

λk = λk+1 + (1 + ∆t/4)λk+1/2,

−λk+1/2 = 0,
uk+1/2 − λk+1 = 0.

Note, this is a discretization issue, not an issue of how the discretized
optimization problem is solved!



Discretize-then-optimize

min J (y, u)
s.t. c(y, u) = 0

(y, u) ∈ K

discretize-
large-scale non-
linear
programming
problem

optimize

?
apply AD and
nonlinear pro-
gramming

optimize

?
optimality condi-
tions & deriva-
tives in PDE form

discretize- apply nonlinear
programming

same result?

Optimize-then-discretize



I To analyze the convergence of the discretization scheme for the
optimization problem we need to investigate convergence of the
discretization schemes for the state equation, the adjoint equation,
and the gradient equation.

I (Local) convexity of the optimization problem is important (second
order sufficient optimality conditions).

I Discretize-then-optimize and optimize-then-discretize are two
approaches. One is not universally better than the other.
It is important to understand the whole picture (state PDE, adjoint
PDE, ...)



I For convex problems one can solve the system of optimality
conditions. In this case the optimize-then-discretize gives
approximation properties that are at least as good as those given by
discretize-then-optimize approach.
But, the optimality system is now potentially non-symmetric.

I For nonlinear problems, the optimize-then-discretize may lead to
inexact gradients:

(∇Ĵ(uh))h 6= ∇Ĵh(uh).

But, usually one can show ‖(∇Ĵ(uh))h −∇Ĵh(uh)‖ → 0.
Need to use optimization carefully! At a fixed discretization the
(gradient based) optimization algorithm will get suck if the stopping
tolerance is too fine relative to the accuracy in the computed
gradient (∇Ĵ(uh))h.

Figure 8: Level curves of the functional and projected negative approximate gradient of the func-
tional on the same two-dimensional slice of parameter space used for Figure 7; the gradient of the
functional is determined by the finite difference quotient approach. The square and circle have the
same meaning as in Figure 7.

Figure 9: Level curves of the functional and projected negative approximate gradients of the func-
tional on the same two-dimensional slice of parameter space used for Figures 7 and 8 and in
the vicinity of the point (the filled square) returned by the optimizer after 33 iterations of the
differentiate-then-discretize sensitivity equation approach; the direction of the approximate nega-
tive gradient of the functional determined by both the finite difference quotient approximation and
by the sensitivity equation approach are displayed.

4 Spurious minima

Now that we know that using finite difference quotients to approximate the gradient of the functional
yields consistent gradients, let’s solve the optimization problem (with the matching line located at

11

(∇Ĵ(uh))h and ∇Ĵh(uh) for
a shape design problem from
Burkardt, Gunzburger, Peterson
(2002).



I Approaches to coordinate choice of discretization level and
optimization.

I Consistent approximations (Polak (1997)):
How accurately does one solve the discretized optimization prolem
before increasing the discretization level? Requires only asymptotic
error estimates.

I Trust-region based model management approaches (Carter
(1989/91), Alexandrov/Dennis/Lewis/Torczon (1998), ...):
At a given iterate yk, uk select an approximate problem based on
function and derivative information for the original problem. Can go
back to approximate model. Requires error estimates.

I Adaptive mesh refinement for elliptic/parabolic optimal control
problems
Becker/Rannacher (2001,...), Liu et. al. (2003,...), Günther/Hinze
(2008), Hintermüller/Hoppe (2005,..), S. Ulbrich (2008), Vexler
(2005,...). Applies mostly to linear-quadratic or convex optimal
control problems.

I Efficient solution of optimization subproblems at fixed level.
I Interior point
I multigrid
I domain decomposition
I ....
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Infinite Dim. Problem and Optimization

I Consider the unconstrained optimization problem

min
U
Ĵ(u), (P )

where U is a Hilbert space with inner product 〈·, ·〉U .

I After a discretization, this leads to

min
Uh

Ĵ(uh) (Ph)

for some finite dimensional subspace Uh ⊂ U .

I If we select a basis φ1, . . . , φn of Uh, then we can write every u ∈ U
as u =

∑n
i=1 uiφi.

(Ph) becomes an optimization problem in u = (u1, . . . , un)T ∈ Rn,
but the inner product leads to a weighted Euclidean product

〈u1, u2〉U = u>1 Tu2

with positive definite T ∈ Rn×n given by Tij = 〈φi, φj〉U .



The discretized problem can be viewed as problem in Rn

min
Rn

Ĵ(u),

but Rn is equipped with the weighted Euclidean product

u>1 Tu2

not with u>1 u2.

This introduces a scaling that depends on the basis chosen and on the
mesh. Optimization algorithms that are not scaling invariant, will be
affected by this.



Gradient Computation

I Let Ĵ : Rn → R. Denote the derivative of Ĵ by DĴ .

I The gradient ∇Ĵ(u) is defined to be the vector that satisfies

〈∇Ĵ(u),u′〉 = DĴ(u)u′ ∀u′

(Riesz representation). ∇Ĵ(u) depends on the inner product.

I If we use
〈u1,u2〉 = u>1 u2,

then

∇Ĵ(u) = ∇1Ĵ(u) :=
(

∂

∂uj
Ĵ(u)

)
j=1,...,n

,

i.e., ∇Ĵ(u) is the vector of partial derivatives.

I If we use
〈u1,u2〉 = u>1 Tu2,

then

DĴ(u)u′ = ∇1Ĵ(u)>u′ =
(
T−1∇1Ĵ(u)

)>
Tu′

i.e., ∇Ĵ(u) = T−1∇1Ĵ(u).

I Same result as scaling of the u-variable by T1/2.



I If we discretize the optimal control and solve the discretized problem
as a nonlinear problem in Rn with standard Euclidean inner product,
the convergence of

I gradient
I quasi-Newton
I conjugate gradient (CG)
I Newton CG
I ...

methods depend on the mesh size.

I Often, the finer the mesh size, the more poorly scaled the discretized
nonlinear programming problems become.

I It is important to analyze the optimization algorithm for the infinite
dimensional problem and to apply it properly to the discretized
problems.

I If one can prove convergence of the optimization algorithm for the
infinite dimensional problem, if one choses an appropriate
discretization, and if one applies the optimization algorithm properly
to the discretized problem, then the convergence of (Newton-type)
optimization algorithms applied to the discretized problems if often
(nearly) independent of the size of the discretization.



Example: Mesh Independence of Newton’s Method

Newton’s method applied to two elliptic optimal control problems.
α penalty parameter for the control.
h mesh size

Number of Iterations

Example 1

TOL = 10−8 TOL = 10−6

α h−1 12 24 48 96 192 384 12 24 48 96 192 384

10−6 7 7 7 7 7 7 7 7 7 7 7 7
10−4 8 8 8 8 8 8 7 7 7 7 7 7
10−2 10 10 10 10 10 10 8 8 8 8 8 8

Example 2

10−6 7 7 7 7 7 7 6 6 6 6 6 6
10−4 9 9 9 9 9 9 7 7 7 7 7 7
10−2 9 9 9 9 9 9 7 7 7 7 7 7

Number of Newton iterations is independent of mesh size h!



Example: Flow Separation in Driven Cavity

min J(u,g) =
1
2

∫
{x2=0.4}

|u2(x)|2 dx+
γ

2
‖g‖2H1(Γc)

subject to

− 1
Re ∆u + (u · ∇)u +∇p = f in Ω = (0, 1)2,

div u = 0 in Ω,
u = b on Γu,
u = g on (0, 1)× {1}.

−→ Velocity g (control) −→

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

−→ Velocity b (given 0.5) −→

Note change of notation:
u, p (velocities, pressure) states,
g control. Control space H1(Γc).

We solve the optimal control prob-
lem using a reduced SQP method
with BFGS approximation of the
reduced Hessian.

We use two variants:



1. Discretize the problem and treat the
discretized problem as an NLP in Rn.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

Computed Control (Iteration 6)

(Grid size h = 1/5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

Computed Control (Iteration 7)

(Grid size h = 1/10).

2. Use the infinite dimensional struc-
ture, i.e., control space is a subspace of
H1(Γc) with H1(Γc)-inner product,....

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

x

Computed Control (Iteration 7)

(Grid size h = 1/10).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

x

Computed Control (Iteration 7)

(Grid size h = 1/15).



Dealing with Control and State Constraints

I Semismooth Newton Methods
M. Ulbrich (2001), Kunisch/Hintermüller (2003),..

I Interior Point Methods
Ito/Kelley/Sachs (1995), Prüfert/Tröltzsch/Weiser (2008), Schiela
(2004,...), Schiela/Weiser (2004), Ulbrich/Ulbrich/H. (1999),
Ulbrich/Ulbrich (2006),....

I Primal-Dual Active Set Methods
Bergounioux/Ito/Kunisch (1997), Hintermüller/Kunisch (2001,...),
...

I Regularization Methods for State Constrained Problems
Meyer/Rösch/Tröltzsch (2006), Hintermüller/Kunisch (2001,...),..

I Many (modifications of) algorithms motivated by PDE constrained
optimization problems.

I Convergence analyses are available for infinite dimensional problems,
but often only for small classes of problems (especially when state
constraints are present).



Inexact Linear System Solves in Optimization Algorithms

I In Newton-type methods for PDE constrained optimization most of
the computing time is spent on solving linear systems.

I We need efficient iterative solvers and (matrix-free) preconditioners.

I Ho do we rigorously incorporate iterative (and therefore inexact)
linear systems solves into the optimization algorithm?
Adjust the accuracy of the iterative linear system solves based on
the progress of the optimization iteration (avoid over-solving the
linear systems).
Use only quantities that can actually be computed (no Lipschitz
constants).

I Old question (Ypma (1984), Dembo, Eisenstat, Steihaug (1982,...),
Dennis, Walker (1984),....), but still not complely solved
(H./Vicente (2001), H./Ridzal (2007), Curtis/Nocedal (2007),.... ).

I Some ideas can be extended to inexactness coming, e.g., for
discretization.



Example: Navier Stokes Problem in 2D

Minimize
1

2

Z
D

|∇× u|2 dx +
α

2

Z
Γc

|∇sg|2dx,

subject to

−ν∆u + (u · ∇)u +∇p = f in Ω,

div u = 0 in Ω,

(ν∇u− pI)n = 0 on Γout,

u = g on Γc, u = b on ∂Ω \ (Γc ∪ Γout).
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Solve using composite-step trust-region method, using GMRES with ILU

preconditioning (Ridzal (2006))



SQP Convergence history (� beginning of SQP iteration, * absolute
solver tolerances for linear systems solves within SQP iteration
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CG iterations (for all SQP iterations)

inx. ctrl 1e-12 1e-11 1e-10 1e-9 1e-8
converges YES YES YES YES NO NO

GMRES iter’s 2672 4020 3728 3404 >10000 >10000

CG iter’s 162 142 142 142 >500 >500

SQP iter’s 9 8 8 8 >50 >50

Optimization algorithm must control stopping tolerances if linear systems
have to be solved iteratively - which is the case for most PDE
constrained problems.
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Conclusions

I PDE constrained optimization problems arise in many applications.

I The robust and efficient solution of such optimization problems
requires the integration of application specific structure, numerical
simulation and optimization algorithms.

I Much progress has been made in the areas of
I existence and characterization of solutions,
I handling of inequality constraints, especially inequality constraints on

the state variables,
I analysis of discretization errors in the optimization context and

adaptation of the discretization
I handling of inexactness,
I efficient solution of optimization subproblems (KKT systems),
I efficient integration of multiple meshes
I ....

I .... but often only for model problems. All of these areas still pose
many interesting and challenging research questions.



Thanks

I Thanks to
I Collaborators, graduate students, colleagues,
I AFOSR, DOE, NSF, Texas ATP, ExxonMobil, Bell Textron for past

and/or current support.

I Thank you for your attention
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