Some Recent Advances in Mixed-Integer Nonlinear Programming

Andreas Wächter

IBM T.J. Watson Research Center
Yorktown Heights, New York
andreaw@us.ibm.com

SIAM Conference on Optimization 2008
Boston, MA

May 12, 2008
An MINLP Research Initiative

- CMU-IBM research collaboration, started in 2004

- The Team:

CMU
- Pietro Belotti
- Lorenz T. Biegler
- Gérard Cornuéjols
- Ignacio E. Grossmann
- Carl D. Laird (Texas A&M)
- François Margot
- Nick Sawaya
- Nick Sahinidis

IBM
- Pierre Bonami (CNRS Marseilles)
- Andrew R. Conn
- Claudia D’Ambrosio (U Bologna)
- John J. Forrest
- Joao Goncalves
- Oktay Günlük
- Laszlo Ladanyi
- Jon Lee
- Andrea Lodi (U Bologna)
- Andreas Wächter
Mixed-Integer Nonlinear Programming (MINLP)

\[
\begin{align*}
\min & \quad f(x, y) \\
\text{s.t.} & \quad c(x, y) \leq 0 \\
& \quad y_L \leq y \leq y_U \\
& \quad x \in \{0, 1\}^n, y \in \mathbb{R}^p
\end{align*}
\]

\(f, c \) sufficiently smooth (e.g., \(C^2 \))

- Often in practice: Simplify original problem to obtain
 - NLP by relaxing integrality conditions (rounding)
 - MILP by approximating nonlinearities (piece-wise linear)
Mixed-Integer Nonlinear Programming (MINLP)

\[
\begin{align*}
\min & \quad f(x, y) \\
\text{s.t.} & \quad c(x, y) \leq 0 \\
& \quad y_L \leq y \leq y_U \\
& \quad x \in \{0, 1\}^n, \ y \in \mathbb{R}^p
\end{align*}
\]

- Often in practice: Simplify original problem to obtain
 - NLP by relaxing integrality conditions (rounding)
 - MILP by approximating nonlinearities (piece-wise linear)

- Goal: Design exact algorithms

- In this talk: \textbf{Convex} MINLP \((f, c \text{ convex})\)
The Power Of MILP

- MILP has been extensively explored for decades
 - Based on branch-and-bound [Dakin (1965)]
 - Very powerful algorithms, techniques, and codes
 - Can solve very large problems
 - Used heavily in practice
The Power Of MILP

- MILP has been extensively explored for decades
 - Based on branch-and-bound [Dakin (1965)]
 - Very powerful algorithms, techniques, and codes
 - Can solve very large problems
 - Used heavily in practice

How can this be used for MINLP?

Use MILP solvers directly:
 - Piece-wise linear approximation (SOS constraints)
 - Outer approximation
The Power Of MILP

- MILP has been extensively explored for decades
 - Based on branch-and-bound [Dakin (1965)]
 - Very powerful algorithms, techniques, and codes
 - Can solve very large problems
 - Used heavily in practice

- How can this be used for MINLP?

- Use MILP solvers directly:
 - Piece-wise linear approximation (SOS constraints)
 - Outer approximation

- In a “nonlinear” branch-and-bound algorithm:
 - Try to learn from MILP tricks
MILP has been extensively explored for decades
- Based on branch-and-bound [Dakin (1965)]
- Very powerful algorithms, techniques, and codes
- Can solve very large problems
- Used heavily in practice

How can this be used for MINLP?

Use MILP solvers directly:
- Piece-wise linear approximation (SOS constraints)
- Outer approximation

In a “nonlinear” branch-and-bound algorithm:
- Try to learn from MILP tricks
Outer Approximation (Duran, Grossmann [1986])

\[
\begin{align*}
\text{min} \quad & z \quad \text{(linear objective)} \\
\text{s.t.} \quad & f(x, y) \leq z \\
& c(x, y) \leq 0 \\
& x \in \{0, 1\}^n, \quad y \in \mathbb{R}^p, \quad z \in \mathbb{R}
\end{align*}
\]
Outer Approximation (Duran, Grossmann [1986])

\[
\begin{align*}
\min & \quad z \\
\text{s.t.} & \quad f(x, y) \leq z \\
& \quad c(x, y) \leq 0 \\
& \quad x \in \{0, 1\}^n, y \in \mathbb{R}^p, z \in \mathbb{R}
\end{align*}
\]

Approximate by MILP (hyperplanes)

\[
\begin{align*}
\min & \quad z \\
\text{s.t.} & \quad \nabla f(x^k, y^k)^T \begin{pmatrix} x - x^k \\ y - y^k \end{pmatrix} + f(x^k, y^k) \leq z \\
& \quad \nabla c(x^k, y^k)^T \begin{pmatrix} x - x^k \\ y - y^k \end{pmatrix} + c(x^k, y^k) \leq 0 \\
& \quad \text{for all } (x^k, y^k) \in \mathcal{T} \\
& \quad x \in \{0, 1\}^n, y \in \mathbb{R}^p, z \in \mathbb{R}
\end{align*}
\]

- \mathcal{T} contains linearization points
Outer Approximation (Duran, Grossmann [1986])

\[
\begin{align*}
\text{min} \quad & z \\
\text{s.t.} \quad & f(x, y) \leq z \\
& c(x, y) \leq 0 \\
& x \in \{0, 1\}^n, y \in \mathbb{R}^p, z \in \mathbb{R}
\end{align*}
\]

Approximate by MILP (hyperplanes)

\[
\begin{align*}
\text{min} \quad & z \\
\text{s.t.} \quad & \nabla f(x^k, y^k)^T \left(x - x^k \right) + f(x^k, y^k) \leq z \\
& \nabla c(x^k, y^k)^T \left(x - x^k \right) + c(x^k, y^k) \leq 0 \\
& \quad \text{for all } (x^k, y^k) \in \mathcal{T} \\
& x \in \{0, 1\}^n, y \in \mathbb{R}^p, z \in \mathbb{R}
\end{align*}
\]

- \(\mathcal{T} \) contains linearization points
 - augmented during algorithm

Algorithm: Repeat

1. solve current MILP \(\rightarrow (x^l, \tilde{y}^l) \)
2. solve NLP with \(x^l \) fixed \(\rightarrow y^l \)
3. add \((x^l, y^l)\) to \(\mathcal{T} \)
Outer Approximation Discussion

- **Original algorithm:**
 - Alternatingly solve NLPs and MILPs
 - Finite termination
 - Advantage: Simple to implement; uses all MILP techniques
 - Disadvantage: Solve every MILP from scratch
Outer Approximation Discussion

- **Original algorithm:**
 - Alternatingly solve NLPs and MILPs
 - Finite termination
 - Advantage: Simple to implement; uses all MILP techniques
 - Disadvantage: Solve every MILP from scratch

- **Improvement** [Quesada, Grossmann (1992)]:
 - Build only one MILP enumeration tree
Quesada-Grossmann

\[LP \]

\[LB = 4 \]

\[x_2 = 0 \]

\[LB = 5 \]

\[x_3 = 0 \]

\[integer feasible \]

\[UB = 7 \]

\[x_3 = 1 \]

\[infeasible \]

\[LB = 8 \]

\[x_2 = 1 \]

\[x_1 = 0 \]

\[LP \]

\[x_1 = 1 \]

\[LB = 6 \]
Outer Approximation Discussion

- **Original algorithm:**
 - Alternatingly solve NLPs and MILPs
 - Finite termination
 - Advantage: Simple to implement; uses all MILP techniques
 - Disadvantage: Need to solve every MILP from scratch

- **Improvement** [Quesada, Grossmann (1992)]:
 - Build only one MILP enumeration tree
 - Solve NLP for every MILP integer feasible solution
 - Add new outer approximation cuts to current MILP
Outer Approximation Discussion

- **Original algorithm:**
 - Alternatingly solve NLPs and MILPs
 - Finite termination
 - Advantage: Simple to implement; uses all MILP techniques
 - Disadvantage: Need to solve every MILP from scratch

- **Improvement** [Quesada, Grossmann (1992)]:
 - Build only one MILP enumeration tree
 - Solve NLP for every MILP integer feasible solution
 - Add new outer approximation cuts to current MILP

- **“Hybrid” approach** [Bonami et al. (2005)]:
 - Solve NLPs also at non-integer nodes
 - For example, solve NLP in every 10th node
 - Includes information about nonlinear geometry more quickly
 - Requires solution of more NLPs
 - Don’t solve NLP, just add linearization (Extended cutting plane)
Preliminary Numerical Experiments

- **Software implementation**
 - **Bonmin** (Open source software on COIN-OR)
 - http://www.coin-or.org/Bonmin
 - Based on other COIN-OR projects (**Cbc**, **Clp**, **Cgl**, **Ipopt**, ...)
 - Essential for fast development: Availability of open source
 - NLP solvers: **FilterSQP** [Fletcher, Leyffer] and **Ipopt**
Preliminary Numerical Experiments

Software implementation

- **Bonmin** (Open source software on COIN-OR)

 http://www.coin-or.org/Bonmin

- Based on other COIN-OR projects (**Cbc, Clp, Cgl, Ipopt, ...**)
 - Essential for fast development: Availability of open source

- NLP solvers: **FilterSQP** [Fletcher, Leyffer] and **Ipopt**

Test problems

- Representative selection of 44 convex MINLPs from
 - CMU/IBM library

 http://egon.cheme.cmu.edu/ibm/page.htm

 - **MacMinlp** [Leyffer]

- Difficult, but mostly solvable within 3 hour time limit

- Problem statistics

 - # total vars: 42–1796 (289.8); # discrete vars: 14–432 (93.7)
 - # constraints: 42–3190 (395.4)
Developer Version with FilterSQP (CPU)

Performance

% of problems vs. not more than x times worse than best

Hybrid, QG, OA

Andreas Wächter (IBM)
The Success Story Of MILP

Mixed-Integer Programming: A Progress Report

What lead to the dramatic improvement of MILP solvers?
The Success Story Of MILP

Mixed-Integer Programming: A Progress Report

What lead to the dramatic improvement of MILP solvers?

- Very efficient node solvers
The Success Story Of MILP

* Mixed-Integer Programming: A Progress Report *

What lead to the dramatic improvement of MILP solvers?

- Very efficient node solvers
- Variable/node selection
- Primal heuristics
- Presolve
- Cutting planes
The Success Story Of MILP

Mixed-Integer Programming: A Progress Report

What lead to the dramatic improvement of MILP solvers?

- Very efficient node solvers
- Variable/node selection
- Primal heuristics
- Presolve
- Cutting planes

What can we learn from this for a B&B-based method for MINLP?
Branch-and-bound: Variable Selection

\begin{align*}
LB &= 4 \\
x_2 &= 0 \\
LB &= 5 \\
x_3 &= 0 \\
& \text{integer feasible} \\
UB &= 7 \\
& \text{infeasible} \\
LB &= 6 \\
& \text{infeasible} \\
LB &= 8 \\
x_1 &= 1
\end{align*}
Variable Selection

Some possible options:

- Random

- Most-fractional (most integer-infeasible)
 - used in MINLP-BB [Fletcher, Leyffer]
Variable Selection

Some possible options:

- Random

- **Most-fractional** (most integer-infeasible)
 - used in **MINLP-BB** [Fletcher, Leyffer]

- **Strong branching** [Applegate et al. (1995)]

- **Pseudo costs** [Benichou et al. (1971), Forrest et al. (1974)]
 - optional in **SBB** [GAMS]

- **Reliability branching** [Achterberg et al. (2005)]
Strong Branching

Q: Which variable x_i should be branched on?
Strong Branching

- Q: Which variable x_i should be branched on?
- Idea: Try some candidates x_{i_1}.
Strong Branching

- Q: Which variable x_i should be branched on?
- Idea: Try some candidates x_{i_1}, x_{i_2}, \ldots
Strong Branching

- Q: Which variable x_i should be branched on?

- Idea: Try some candidates x_{i_1}, x_{i_2}, \ldots

- Choose candidate with largest LB^0_i and LB^1_i

![Diagram showing branching on variable x_{i_2} with $LB^0_{i_2}$ and $LB^1_{i_2}$]
Q: Which variable x_i should be branched on?

Idea: Try some candidates x_{i_1}, x_{i_2}, \ldots

Choose candidate with largest LB_i^0 and LB_i^1

If candidate’s child infeasible: fix variable
Strong Branching

Q: Which variable x_i should be branched on?

Idea: Try some candidates x_{i_1}, x_{i_2}, \ldots

Choose candidate with largest LB_i^0 and LB_i^1

If candidate’s child infeasible: fix variable

If $LB_i^0/LB_i^1 > UB$: fix variable
Strong Branching

Q: Which variable x_i should be branched on?

Idea: Try some candidates x_{i_1}, x_{i_2}, \ldots

Choose candidate with largest LB^0_i and LB^1_i

If candidate’s child infeasible: fix variable

If $LB^0_i / 1 > UB$: fix variable

Requires to solve many relaxations
Strong Branching Improvements

Approximate node solutions

- For MILP: Limit the number of simplex iterations
 - Dual simplex algorithm gives valid bounds
Strong Branching Improvements

Approximate node solutions

- For MILP: Limit the number of simplex iterations
 - Dual simplex algorithm gives valid bounds

- For MINLP: Solve approximation problem
 - LP: Linearize functions at parent solution
 - QP: Use QP from last SQP iteration (BQPD [Fletcher])
Approximate node solutions

- For MILP: Limit the number of simplex iterations
 - Dual simplex algorithm gives valid bounds

- For MINLP: Solve approximation problem
 - LP: Linearize functions at parent solution
 - QP: Use QP from last SQP iteration (BQPD [Fletcher])

- Can use hot-starts (reuse factorization)
 - Only one bound changes
Strong Branching Improvements

Pseudo costs

- Idea: Collect statistical data about the effect of fixing each x_i:
 - Average change in LB_i^0 and LB_i^1 per unit change in x_i
 (up and down change separately)
- Use to estimate LB_i^0 and LB_i^1 of child nodes
Strong Branching Improvements

Pseudo costs

- **Idea**: Collect statistical data about the effect of fixing each x_i:
 - Average change in LB_i^0 and LB_i^1 per unit change in x_i
 (up and down change separately)
- Use to estimate LB_i^0 and LB_i^1 of child nodes
- Initialize with strong branching
- Update each time a node has been solved
Strong Branching Improvements

Pseudo costs

- Idea: Collect statistical data about the effect of fixing each x_i:
 - Average change in LB_i^0 and LB_i^1 per unit change in x_i
 (up and down change separately)
- Use to estimate LB_i^0 and LB_i^1 of child nodes
- Initialize with strong branching
- Update each time a node has been solved

Reliability branching

- Pseudo costs, but do strong-branching on non-trusted variables
- Limit the number of strong-branching solves
Variable Selection

Comparative experiments in literature:

- **MILP**
 - Linderoth, Savelsbergh (1999):
 - Pseudo costs work very well
 - Achterberg, Koch, Martin (2005):
 - Reliability branching best
 - Most-fractional about as good as Random
Variable Selection

Comparative experiments in literature:

- **MILP**
 - Linderoth, Savelsbergh (1999):
 - Pseudo costs work very well
 - Achterberg, Koch, Martin (2005):
 - Reliability branching best
 - Most-fractional about as good as Random

- **MINLP**
 - Gupta, Ravindran (1985)
 - Most-fractional works best
Branch-And-Bound Comparison (\# Nodes)

Performance

- Random
- MostFra
- StrongNLP
- StrongQP
- PseudoNLP
- PseudoQP

% of problems

not more than x times worse than best
Branch-And-Bound Comparison (CPU time)

Performance

% of problems

not more than x times worse than best

Random
MostFra
StrongNLP
StrongQP
PseudoNLP
PseudoQP

Andreas Wächter (IBM)
MINLP
SIOPT 2008 20 / 30
B&B and Hybrid Comparison

Performance

- PseudoQP
- Hybrid

Andreas Wächter (IBM)

MINLP

SIOPT 2008
Experiments Summary

- Strong-branching, pseudo-costs work for nonlinear B&B
 - Hot-started QP approximations improve performance
 - LP approximation not efficient
 - In these experiments: Reliability branching not helpful
Experiments Summary

- Strong-branching, pseudo-costs work for nonlinear B&B
 - Hot-started QP approximations improve performance
 - LP approximation not efficient
 - In these experiments: Reliability branching not helpful

- B&B competitive to OA-based Hybrid method
 - Methods should “learn from each other”
 - e.g., use nonlinear strong-branching in Hybrid approach

- Best choice depends on problem instance
 - Need to identify relevant problem characteristics
Experiments Summary

- Strong-branching, pseudo-costs work for nonlinear B&B
 - Hot-started QP approximations improve performance
 - LP approximation not efficient
 - In these experiments: Reliability branching not helpful

- B&B competitive to OA-based Hybrid method
 - Methods should “learn from each other”
 - e.g., use nonlinear strong-branching in Hybrid approach

- Best choice depends on problem instance
 - Need to identify relevant problem characteristics

- Number of nodes for solved problems:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>GeoMean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>8</td>
<td>436393</td>
<td>6226.5</td>
</tr>
<tr>
<td>StrongQP</td>
<td>14</td>
<td>2033352</td>
<td>1685.8</td>
</tr>
</tbody>
</table>
Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient
Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient

In MINLP:

- NLP solvers now much more robust and efficient than in the past
 - For trimloss4: Solved >2,000,000 NLPs! (105 [85] var, 64 con)
Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient

In MINLP:

- NLP solvers now much more robust and efficient than in the past
 - For trimloss4: Solved >2,000,000 NLPs! (105 [85] var, 64 con)
- Large-scale problems:
 - Large-scale active-set methods?
 - Combine interior-point and active-set methods?
Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient

In MINLP:

- NLP solvers now much more robust and efficient than in the past
 - For \textit{trimloss4}: Solved >2,000,000 NLPs! (105 [85] var, 64 con)
- Large-scale problems:
 - Large-scale active-set methods?
 - Combine interior-point and active-set methods?
- Hot-starts possible?
Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient

In MINLP:

- NLP solvers now much more robust and efficient than in the past
 - For \textsc{trimloss4}: Solved $>2,000,000$ NLPs! (105 [85] var, 64 con)
- Large-scale problems:
 - Large-scale active-set methods?
 - Combine interior-point and active-set methods?
- Hot-starts possible?
- Storing warm-start information more memory intensive
 - In experiments: Use optimal solution of root node
Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient

In MINLP:

- NLP solvers now much more robust and efficient than in the past
 - For trimloss4: Solved $>2,000,000$ NLPs! (105 [85] var, 64 con)
- Large-scale problems:
 - Large-scale active-set methods?
 - Combine interior-point and active-set methods?
- Hot-starts possible?
- Storing warm-start information more memory intensive
 - In experiments: Use optimal solution of root node
- Need fast detection of infeasibility
Cuts

- Approximate convex hull of integer-feasible points
 - Strengthen the relaxation
Cuts

- Approximate convex hull of integer-feasible points
 - Strengthen the relaxation

- MILP: (hot topic over past 30 years)
 - Many cut generators available (many easy to compute)
Cuts

- Approximate convex hull of integer-feasible points
 - Strengthen the relaxation

- **MILP:** (hot topic over past 30 years)
 - Many cut generators available (many easy to compute)

- **MINLP:**
 - For linear parts, can use MILP machinery directly
 - Hybrid method works with linear formulation
 - B&B: could work with linearizations
Cuts

- Approximate convex hull of integer-feasible points
 - Strengthen the relaxation

MILP: (hot topic over past 30 years)
 - Many cut generators available (many easy to compute)

MINLP:
 - For linear parts, can use MILP machinery directly
 - Hybrid method works with linear formulation
 - B&B: could work with linearizations
 - Some research specific for nonlinear case:
 - Stubbs, Mehrotra (1999, 2002)
 - Atamtürk, Narayanan (2007)
 - ...
 - Can also use nonlinear cuts
 - Ideally: Need access to problem representation (expression tree)
Other MILP techniques

Primal heuristics (quickly finding good integer feasible points)

- Have answer when time limit exceeded
- Improve upper bounds (e.g., for strong branching)
Other MILP techniques

Primal heuristics (quickly finding good integer feasible points)

- Have answer when time limit exceeded
- Improve upper bounds (e.g., for strong branching)
- MILP: A dozen generic heuristics (root node and in tree)
 (hot topic over last 7 years)
- MINLP: Preliminary work, e.g.,
 - Nonlinear feasibility pump [Bonami et al. (2006)]
Other MILP techniques

Node selection

- In experiments: Use “best-bound” (node with smallest LB)

- Diving
 - Quickly find integer solution
 - Allows hot-starts when proceeding to child nodes
Other MILP techniques

Node selection

- In experiments: Use “best-bound” (node with smallest LB)
- Diving
 - Quickly find integer solution
 - Allows hot-starts when proceeding to child nodes

Presolve (tighten and simplify formulation)

- At root node and in search tree
- MILP: Just look at coefficients of linear functions
- MINLP: General nonlinear functions difficult to predict
 - Requires access to problem representation
 (e.g., expression tree)
What is Good Modeling?

Example: Uncapacitated facility location problem

$$\begin{align*}
\text{min} & \quad \sum_{i=1}^{n} c_i x_i + \sum_{i=1}^{n} \sum_{j=1}^{m} d_{ij} y_{ij} \\
\text{s.t.} & \quad \sum_{j=1}^{m} y_{ij} = 1 \quad (i = 1, \ldots, n) \\
& \quad \sum_{j=1}^{m} y_{ij} \leq n \cdot x_i \quad (j = 1, \ldots, m) \\
& \quad y_{ij} \leq x_i \quad (i = 1, \ldots, n; \; j = 1, \ldots, m) \\
x & \in \{0,1\}^n \; , \; y \in \mathbb{R}_+^m
\end{align*}$$

<table>
<thead>
<tr>
<th>$n = 30, m = 100$</th>
<th>MILP</th>
<th>MINLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>weak formulation</td>
<td>46,294</td>
<td>143.16</td>
</tr>
<tr>
<td>strong formulation</td>
<td>0</td>
<td>0.18</td>
</tr>
</tbody>
</table>
What is Good Modeling?

Example: Uncapacitated facility location problem

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{n} c_i x_i + \sum_{i=1}^{n} \sum_{j=1}^{m} d_{ij} y_{ij}^2 \\
\text{s.t.} & \quad \sum_{j=1}^{m} y_{ij} = 1 \quad (i = 1, \ldots, n) \\
\quad \text{Weak} & \quad \sum_{i=1}^{n} y_{ij} \leq n \cdot x_i \quad (j = 1, \ldots, m) \\
\quad \text{Strong} & \quad y_{ij} \leq x_i \quad (i = 1, \ldots, n; \; j = 1, \ldots, m) \\
\end{align*}
\]

\[x \in \{0, 1\}^n, \; y \in \mathbb{R}_+^m\]

| \(n = 30, m = 100\) | \text{MILP} \begin{tabular}{l|l|l} \text{nodes} & \text{time} \end{tabular} | \text{MINLP} \begin{tabular}{l|l|l} \text{nodes} & \text{time} \end{tabular} |
|---|---|---|
| weak formulation | 46,294 & 143.16 | 46,384 & 8117.52 |
| strong formulation | 0 & 0.18 | 30,112 & 7888.24 |
What is Good Modeling?

Example: Uncapacitated facility location problem

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{n} c_i x_i + \sum_{i=1}^{n} \sum_{j=1}^{m} d_{ij} y_{ij}^2 \\
\text{s.t.} & \quad \sum_{j=1}^{m} y_{ij} = 1 \quad (i = 1, \ldots, n) \\
\text{Weak} : & \quad \sum_{i=1}^{n} y_{ij} \leq n \cdot x_i \quad (j = 1, \ldots, m) \\
\text{Strong} : & \quad y_{ij} \leq x_i \quad (i = 1, \ldots, n; \ j = 1, \ldots, m) \\
x & \in \{0, 1\}^n, \ y \in \mathbb{R}_+^m
\end{align*}
\]

<table>
<thead>
<tr>
<th>$n = 30, m = 100$</th>
<th>MILP</th>
<th>MINLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>weak formulation</td>
<td>46,294</td>
<td>143.16</td>
</tr>
<tr>
<td>strong formulation</td>
<td>0</td>
<td>0.18</td>
</tr>
<tr>
<td>weak with cuts/presolve</td>
<td>25</td>
<td>2.71</td>
</tr>
</tbody>
</table>
The Nonconvex Case

- Global optimization already very difficult
 - Spatial branch-and-bound with convex under-estimators
 - Incorporation of discrete variables natural
 - Several algorithms and codes:
 - Alpha-BB [Adjiman et al.], BARON [Sahinidis, Tawarmalani],
 - Couenne [Belotti et al.], LaGO, [Nowak, Vigerske], ...
 - Limitation in problem size
The Nonconvex Case

- Global optimization already very difficult
 - Spatial branch-and-bound with convex under-estimators
 - Incorporation of discrete variables natural
 - Several algorithms and codes:
 Alpha-BB [Adjiman et al.], BARON [Sahinidis, Tawarmalani],
 Couenne [Belotti et al.], LaGO, [Nowak, Vigerske], ...
 - Limitation in problem size

- Heuristics based on convex MINLP algorithms
 - Outer-approximation based (e.g., DICOPT [Grossmann et al.])
 - use one side of equality constraints based on multipliers
 - allow penalized slack in OA cuts
 - delete violated OA cuts
The Nonconvex Case

- Global optimization already very difficult
 - Spatial branch-and-bound with convex under-estimators
 - Incorporation of discrete variables natural
 - Several algorithms and codes:
 - Alpha-BB [Adjiman et al.], BARON [Sahinidis, Tawarmalani],
 - Couenne [Belotti et al.], LaGO, [Nowak, Vigerske], ...
 - Limitation in problem size

- **Heuristics** based on convex MINLP algorithms
 - Outer-approximation based (e.g., DICOPT [Grossmann et al.])
 - use one side of equality constraints based on multipliers
 - allow penalized slack in OA cuts
 - delete violated OA cuts
 - Nonlinear branch-and-bound
 - resolve NLPs from different starting points
 - do not trust lower bounds or infeasibilities
Conclusions

- Encouraging progress
 - New algorithms and implementations (e.g., Bonmin, FilMINT)
 - Outer-approximation based algorithms
 - MILP framework with NLP solves
 - Nonlinear branch-and-bound
 - Pseudo costs, QP-based strong branching
Conclusions

- Encouraging progress
 - New algorithms and implementations (e.g., Bonmin, FilMINT)
 - Outer-approximation based algorithms
 - MILP framework with NLP solves
 - Nonlinear branch-and-bound
 - Pseudo costs, QP-based strong branching

- Many open questions
 - Can we repeat the success of MILP?
 - Further explore MILP techniques in the nonlinear case
 - Robust large-scale NLP solvers with hot starts?
 - Devise specific nonlinear techniques (e.g., cuts)
Conclusions

- **Encouraging progress**
 - New algorithms and implementations (e.g., Bonmin, FilMINT)
 - Outer-approximation based algorithms
 - MILP framework with NLP solves
 - Nonlinear branch-and-bound
 - Pseudo costs, QP-based strong branching

- **Many open questions**
 - Can we repeat the success of MILP?
 - Further explore MILP techniques in the nonlinear case
 - Robust large-scale NLP solvers with hot starts?
 - Devise specific nonlinear techniques (e.g., cuts)
 - Nonconvex problems
Conclusions

- Encouraging progress
 - New algorithms and implementations (e.g., Bonmin, FilMINT)
 - Outer-approximation based algorithms
 - MILP framework with NLP solves
 - Nonlinear branch-and-bound
 - Pseudo costs, QP-based strong branching

- Many open questions
 - Can we repeat the success of MILP?
 - Further explore MILP techniques in the nonlinear case
 - Robust large-scale NLP solvers with hot starts?
 - Devise specific nonlinear techniques (e.g., cuts)
 - Nonconvex problems
 - Implementation
 - Collaboration essential (through open source?)
 - “Accessible” nonlinear problem representation
 - Parallel implementation
Conclusions

- Encouraging progress
 - New algorithms and implementations (e.g., Bonmin, FilMINT)
 - Outer-approximation based algorithms
 - MILP framework with NLP solves
 - Nonlinear branch-and-bound
 - Pseudo costs, QP-based strong branching

- Many open questions
 - Can we repeat the success of MILP?
 - Further explore MILP techniques in the nonlinear case
 - Robust large-scale NLP solvers with hot starts?
 - Devise specific nonlinear techniques (e.g., cuts)
 - Nonconvex problems
 - Implementation
 - Collaboration essential (through open source?)
 - “Accessible” nonlinear problem representation
 - Parallel implementation

- Need representative real-world test problems
Thank you!