
Adapting K-Medians to Generate Normalized Cluster Centers

Benjamin J. Anderson, Deborah S. Gross, David R. Musicant
Anna M. Ritz, Thomas G. Smith, Leah E. Steinberg

Carleton College
andersbe@gmail.com, {dgross, dmusican, ritza, smitht, steinbel}@carleton.edu

Abstract

Many applications of clustering require the use of
normalized data, such as text or mass spectra mining.
The spherical K-means algorithm [6], an adaptation of
the traditional K-means algorithm, is highly useful for
data of this kind because it produces normalized
cluster centers. The K-medians clustering algorithm is
also an important clustering tool because of its well-
known resistance to outliers. K-medians, however, is
not trivially adapted to produce normalized cluster
centers. We introduce a new algorithm (called MN),
inspired by spherical K-means, that integrates with K-
medians clustering to produce locally optimal
normalized cluster centers. We then show theoretically
and experimentally that MN produces clusters of
significantly higher quality than one would obtain via
a simple scaling of the cluster centers produced from
traditional K-medians.

Keywords: K-medians, clustering, normalized data

1. Introduction

Clustering is one of the key techniques used in data
mining. In this paper we focus on clustering
normalized datasets. Data is often normalized before
clustering in order to remove unimportant distinctions
of scale. In clustering a corpus of text, for example,
each document is often represented as a point where
each dimension represents a word’s frequency. When
clustering data in this format, two documents of
identical subject matter with different lengths should
not be considered different. It therefore often makes
sense to normalize text data before clustering.

Single-particle mass spectrometry [11] is another
area where it is appropriate to normalize data. The
chemical makeup of an aerosol particle is represented
as two mass spectra, which are plots of signal intensity
versus the mass-to-charge ratio (m/z) for positive and
negative ions produced by fragmenting the

components of the aerosol particle. Thus, the presence
of a peak indicates the presence of one or more ions
containing the m/z value indicated (see Figure 15 for
examples). As with text, we are generally not
interested in the absolute magnitude of these peaks, but
in the relative size of one peak when compared with
another.

Cluster centers are often used to represent
prototypical points, so it is usually desirable to
normalize cluster centers that arise from normalized
data [5, 6]. The spherical K-means algorithm [6] is
well-suited to this task.

For some applications it is more desirable to use 1-
norm distance (also known as Manhattan distance,
denoted here as ||·||1) to measure the distance between
points. This is because the cluster center that
minimizes 1-norm distance to all points within that
cluster is the median of that cluster, and using the
median instead of the mean tends to be more robust to
outliers. The K-medians algorithm [4, 9] is thus a
powerful alternative.

When attempting to use K-medians on normalized
data, however, unique challenges arise in finding
normalized locally optimal cluster centers. We present
the Manhattan Normalization (MN) algorithm, which
when integrated with K-medians addresses these
challenges.

There are two seemingly straightforward solutions
to the problem of finding normalized cluster centers
with K-medians. One could apply traditional K-
medians and scale the cluster centers at the end, or
alternatively one could use traditional K-medians and
scale the cluster centers after each iteration. Both of
these ideas are heuristically based and lack theoretical
guarantees of convergence. We will show that MN
integrated with K-medians has guaranteed
convergence properties and performs better
experimentally than either of these other approaches.
We borrow many of our ideas from spherical K-means,
but we address the additional difficulties introduced by
the use of medians.

165

Section 2 of this paper describes relevant known
clustering algorithms. Section 3 describes the
challenges that arise in normalized K-medians
clustering and our solutions to those challenges.
Experimental results and analysis are in Section 4.

2. Clustering Review

2.1 Traditional K-means

The well-known K-means algorithm [8] is used
when one wishes to find cluster centers that minimize
the total of the squared 2-norm distance (also known as
Euclidean distance, denoted here as ||·||2) from each
point to its closest cluster center. Since finding
globally optimal cluster centers is an NP-hard problem,
K-means may be used to find a local solution. In order
to run K-means, one chooses the number of clusters to
find and an initial set of cluster centers. There are
many different approaches for choosing initial cluster
centers [3], but all of our work here holds regardless of
which technique is used. The K-means framework can
then be described as follows:

K-means Algorithm. Let x1,x2,...,xn be a set of
points. We wish to partition them into K disjoint
clusters * * *

1 2, ,..., Kπ π π that minimize the objective
function:

2

1 2
1

({ })
j

K
K

j j j
j x

Q x c
π

π =
= ∈

= −∑ ∑ (1)

For each cluster j, cj is the center of each cluster,
which is defined as the point for which

2

2
j

j
x

x c
π∈

−∑ is

minimized. This has been proven to be accomplished
by choosing cj to be the centroid of cluster j, defined as

 1

j

j
xj

c x
n π∈

= ∑ (2)

where nj is the number of points in cluster j [8]. We
therefore wish to find clusters that solve the following
minimization problem:

 { }
{ }

{ }()
1

*

1 1
arg min

K
j j

K K

j jj j
Q

π

π π
=

= =
= (3)

To do this, start with an arbitrary partitioning of the
data { }(0)

1

K

j j
π

=
. Define the cluster centers associated

with this partitioning as { }(0)

1

K

j j
c

=
. Define the index of

iteration t = 1. Then follow these steps:
1. For each point, find the cluster center with closest
Euclidean distance. This yields a new partitioning

 { }2 2() () ()

2 2
: ,1 ,

1,

t t t
j j ix x c x c i K

j K

π = − ≤ − ≤ ≤

= …
 (4)

where ties between clusters are resolved by random
assignment to one of the optimal centers. Note that this
is guaranteed not to increase the objective Q, since
each point is assigned to its closest center.
2. Compute the new set of cluster centers { }()

1

Kt
j j

c
=

 by

computing the mean (centroid) of each cluster. Since
the centroid is the point that minimizes the total
distances from all points to it, this step is also
guaranteed not to increase the objective Q.

3. If a stopping criterion is met, report { }()

1

Kt
j j

π
=

 as the

final partitioning and { }()

1

Kt
j j

c
=

as the final cluster

centers. Otherwise, increment t by 1, and go to step 1
above. A variety of stopping conditions are available.
One common condition is to stop when the difference
between successive values of the objective Q is less
than a small tolerance.

K-means is ultimately a local optimization
algorithm for minimizing clustering error, where
clustering error is defined as the total squared
Euclidean distance from each point to its closest
center. The objective Q never increases from one
iteration to the next. Since K-means is applied to a
finite number of points, the algorithm must therefore
terminate.

2.2 Spherical K-means

Many applications for clustering normalized data
require normalized cluster centers. The spherical K-
means algorithm by Dhillon and Modha [6] addresses
this need. The spherical K-means literature uses the
cosine similarity metric. We find it more convenient
for this paper to use the squared Euclidean distance
metric for spherical K-means, but it is easily shown
that for normalized data both of these metrics yield
precisely the same results.

Spherical K-means produces cluster centers of
magnitude 1 by normalizing the cluster centers after
each iteration. In other words, an extra step is added to
the traditional K-means algorithm as follows:

Spherical K-means algorithm. Start with a
partitioning of the data as in the traditional K-means
algorithm. Initialize t = 1.
1. For each point, find the closest cluster center as
measured via squared Euclidean distance.

166

2. Compute the new set of cluster centers { }()

1

Kt
j j

c
=

 by

computing the mean (centroid) of each cluster.
3. Normalize each cluster center by scaling it so that it
has a magnitude of 1. In other words, redefine

()

()
()

2

: , 1, ,
|| ||

t
jt

j t
j

c
c j K

c
= = … (5)

4. Terminate if the stopping condition is met.
Increment t and go to step 1 otherwise.

Note that step 3 may actually increase the clustering
error following step 2, since step 2 finds the cluster
centers that optimize cluster error regardless of cluster
center magnitude. Step 3 modifies the optimal cluster
centers so that they have a magnitude of 1 at the
expense of increasing clustering error. However,
Dhillon and Modha show [6] that if step 2 and step 3
are considered together as one operation, this
procedure finds the optimal center of magnitude 1 for
each cluster. The property that cluster centers have a
magnitude of 1 is thus preserved from one iteration to
the next, while the algorithm ensures that cluster error
does not increase. Spherical K-means is therefore
guaranteed to converge to a solution of locally optimal
cluster centers, each with magnitude of 1.

2.3 K-medians

We now review the K-medians algorithm [4, 9],
which is used when one wishes to minimize the total 1-
norm distance from each point to its nearest cluster
center. K-medians is quite similar to K-means, and its
differences from K-means are defined as follows:

K-medians algorithm. Since we now work with 1-
norm distance instead of squared Euclidean distance,
our objective is stated as:

 1 1
1

({ })
j

K
K

j j j
j x

Q x c
π

π =
= ∈

= −∑∑ (6)

We start with a partitioning of the data as in K-
means. Initialize t = 1.
1. For each point, find the closest cluster center as
measured via 1-norm distance.

2. Compute the new set of cluster centers { }()

1

Kt
j j

c
=

 by

computing the median of the cluster. In other words,
for each dimension compute the median value for that
dimension over all points in the cluster. We use the
median because the median is the point that minimizes
the total 1-norm distance from all points to it [4].
3. Terminate if the stopping condition is met.
Increment t and go to step 1 otherwise.

In a similar fashion to K-means, steps 1 and 2 of K-
medians are guaranteed not to increase the objective Q.

3. Normalized K-medians cluster centers

There are a variety of tradeoffs in choosing between
K-medians and K-means. We consider the discussion
of the choice of K-medians vs. K-means (K-medians
is slower but more robust to outliers, etc.) outside the
scope of this paper. Our purpose is to enable the
appropriate use of K-medians on normalized data.

We mentioned in Section 1 some simple changes to
K-medians that might seem to appropriately adapt it
for obtaining normalized cluster centers from
normalized data. We discuss these ideas, point out
their flaws, and then move on to discuss our solution.

3.1 Simple Approaches

Simple approach #1: normalize by scaling at
each iteration. A straightforward adaptation of
spherical K-means is problematic. The concept seems
to be easy enough: during each iteration, after new
cluster centers have been determined, normalize them
via scaling using the appropriate distance metric. In
other words, redefine cluster centers as follows:

()

()
()

1

: , 1,
|| ||

t
jt

j t
j

c
c j K

c
= = … (7)

There is a key problem with this approach. Unlike
spherical K-means, scaled cluster centers are not the
points of magnitude 1 that minimize total 1-norm
distance from each point to its cluster center.

Example: Consider the 1-norm normalized points
x1 = (1/5, 1/5, 3/5), x2 = (1/5, 1/5, 3/5), x3 = (1/5, 3/5,
1/5), x4 = (1/5, 3/5, 1/5), and x5 = (3/5,1/5,1/5). The
median of these points is (1/5, 1/5, 1/5). If we simply
proportionately scale this median to have a magnitude
of 1, we end up with a cluster center of (1/3, 1/3, 1/3).
If we measure 1-norm distance from each point to this
center, each point is a distance of 8/15 from this center,
resulting in a total distance of 40/15. Suppose that we
instead choose the normalized point (1/5, 3/5, 1/5) to
be our cluster center. This center yields a total 1-norm
distance of only 36/15. The scaled median is therefore
clearly not the center that minimizes total 1-norm
distance from all points to it.

Simple approach #2: normalize by (method of
choice) when K-medians stabilizes. This approach is
heuristic in nature, though it may yield positive results.
If the normalization technique to be used is simple
scaling, however, problems arise as discussed above.
Like “Simple Approach #1,” “Simple Approach #2”

167

does not provide desirable theoretical guarantees that
spherical K-means does. By performing regular K-
medians at each iteration, the objective does not
increase but the centers found at each iteration do not
satisfy desired constraints (magnitude of 1). After K-
medians stabilizes, when the cluster centers are
normalized, the objective is likely to increase steeply.

3.2 Our Solution: The MN Algorithm

The structure of the spherical K-means algorithm is
sound. In order to obtain cluster centers of magnitude
1, one should produce normalized cluster centers
iteratively throughout the algorithm such that the
objective error metric continues to decrease. “Simple
approach #1” tried to address this, but was flawed. The
missing link needed here is an algorithm to solve the
following task: given a set of points assigned to a
cluster, find a center of magnitude 1 (in a 1-norm
sense) that minimizes the total 1-norm distance from
all points to this center. Here is our algorithm for doing
so.

Manhattan Normalization (MN) algorithm. Let
x1,x2,...,xn be a set of points where ||xi||1=1, i=1,...,n. We
wish to find a point c, where ||c||1=1, that minimizes:

 1
1 1 1

n n d

i ij j
i i j

x c x c
= = =

− = −∑ ∑∑ (8)

where d is the number of dimensions, cj indicates the
jth component of cluster center c, and xij represents the
jth component of point xi.
1. Initialize c to be the median of x1,x2,...,xn. c
minimizes the objective above, but it is not necessarily
true that ||c||1=1. (If ||c||1=1, we terminate the
algorithm.) Note that examples can be easily generated

to show that ||c||1 can in fact be less than or greater than
1 (as was done in Section 3.1).

We also assume through the remainder of this
algorithm and in the theorem that follows that cj ≥ 0,
j=1,...,d. This is true for many applications of
normalized data. If 0jc < for a particular j, transform
this dimension by negating both cj and all values xij
(i=1,...,n). On completion of the algorithm, negate cj
again. This makes the rest of the algorithm easier to
state (no special cases for negatives), yet has no effect
on its correctness.

The algorithm is symmetric with respect to whether
1 1c < or 1 1c > , so we describe the 1 1c < case

and indicate the 1 1c > case in brackets.

2. For each dimension j, count the number of values xij
that are strictly greater than [less than] cj. Denote these
counts as zj , j=1,...,d.
3. Let m be the dimension for which zj is maximal. If
more than one dimension zj has the same maximal
value, choose one arbitrarily.
4. Redefine cm to be the smallest [largest] value xim
(i=1,...,n) greater than [less than] cm. If cm < 0, set cm =
0.
5. If 1 1c = , terminate the algorithm. If 1 1c <

1 1c⎡ > ⎤⎣ ⎦ , go to step 2. Otherwise, redefine cm as

()1
1mc c− − ()1

1mc c⎡ ⎤+ −
⎣ ⎦

 and terminate.

The idea behind the algorithm can be clarified via
Figure 1. At each iteration, the dimension that we
change is the one that has a maximal number of values
in the direction that we want the center to move. To
see this, consider sliding any of the circles in Figure 1
upward a small distance ε , which would have the
effect of increasing ||c||1 by ε . Furthermore, the
objective error metric (sum of 1-norm distances from
all points to the cluster center) is increased by ε for
each tick on or below the circle moved, and decreased
by ε for each tick above the circle. Therefore, we
slide the circle with the most ticks above it in order to
increase ||c||1 while incurring as little error as possible.
We repeat this entire process until ||c||1 = 1. With this
intuition in mind, we prove the following theorem.

Theorem: Given a set of points x1,x2,...,xn where
||xi||1=1, i=1,...,n, the MN algorithm finds a point c
(||c||1=1) that minimizes the total 1-norm error from all
points to it. Formally, c is the solution to the following
optimization problem:

Figure 1: Graphical representation of our MN
algorithm. Vertical lines are dimensions,
horizontal lines are values (thick horizontal
lines are the same value occurring twice),
and circles are current cluster center
locations. Sliding the second circle upward
incurs less error than sliding any other circle
would since more values are above it.

168

 1
1 1 1

1

arg min

. . 1

n n d

i ij jc i i j

x c x c

s t c
= = =

− = −

=

∑ ∑∑
 (9)

Proof: We know that the initial value of c as chosen
in Step 1 of the algorithm minimizes the following
alternative problem [4]:

 1
1

arg min
n

ic i

x c
=

−∑ (10)

If ||c||1=1, then the theorem is trivially true.
Suppose that 1c < . Steps 2 and 3 choose a

dimension m of c to modify. Suppose that 0mc ≥ . Step
4 redefines the mth component of c. We denote here
the new value of c as ĉ . We then observe that ĉ must
be a solution for the following optimization problem:

 1
1 1 1

1 1

arg min

ˆ. .

n n d

i ij jc i i j
x c x c

s t c c
= = =

− = −

=

∑ ∑∑
 (11)

To see this, recall that ĉ was obtained by adding
ˆm mc c− to the thm component of c . This adds to the

objective an additional error of ˆm mc c− times the
number of values xim, i=1,...,n less than or equal to cm.
Likewise, it subtracts from the objective an error of
ˆm mc c− times the number of values xim, i=1,...,n

greater than cm. Since m was chosen to be the
dimension with maximal values greater than cm, and
since the total number of values in each dimension is
the same, any increase at all in any other dimension of
value less than or equal to ˆm mc c− cannot result in a
lesser increase of the objective.

This argument is easily adapted for the 1c > and
0mc < cases through appropriate reversals (positive /

negative, less than / greater than, etc.). We omit these
other cases for space saving purposes.

Now that we have established the MN algorithm,

we can integrate it with K-medians:
MN iterative K-medians algorithm. We start with

a partitioning of the data. Initialize t = 1.
1. For each point, find the cluster center with closest
1-norm distance.

2. Compute the new set of cluster centers { }()

1

Kt
j j

c
=

 by

computing the median of the cluster.
3. Normalize each cluster so that it has a 1-norm
magnitude of 1 by using the MN algorithm.
4. Terminate if the stopping condition is met.
Increment t and go to step 1 otherwise.

If one wishes to use K-medians on normalized data
and yield normalized cluster centers, MN iterative K-
medians will find cluster centers at each iteration with
error no greater than that from the previous iteration.

3.3 MN Algorithm Performance Issues

K-medians is clearly not as fast as K-means due to
its median computations. Since our MN algorithm
occurs after a median is calculated, any pre-existing
algorithm for calculating medians quickly can be used.
The MN algorithm itself, in its worst case, could
require an iteration for each value above the median in
each dimension. This is yields an upper bound of nd
iterations. At the beginning of the algorithm, there is
an initial step where the number of values greater than
or less than the initial center must be counted for each
dimension. This also requires nd calculations (d
dimensions, n points for each), but this is only
necessary once. Each successive iteration then requires
determination of which dimension has the greatest
number of values above the current center. This could
be handled via a priority queue where the priority is
the number of values above the current center. With d
entries in the priority queue, this would result in

2log d calculations per iteration to update it. This
yields a complexity of (log)O nd d each time that MN
is used, i.e. at each major K-medians iteration.

For a sizeable dataset, then, MN forms a relatively
negligible portion of calculation time. While there are
many optimized approaches for calculating medians
under certain circumstances, a straightforward
modified quicksort algorithm has a complexity of

(log)O n n on average. Since each major iteration of
the K-medians algorithm requires that a median be
calculated in each dimension within each cluster, this
has a complexity of (log)O nd n . (In the case where
the n points are distributed evenly among the K
clusters, we can refine this complexity to

logn nO dK
K K

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Since K is the number of clusters

and is not expected to be dramatically large, this
complexity can again be simplified to (log)O nd n .)
Therefore, for a large dataset where n d , these

(log)O nd n calculations required by the median
algorithm will completely dominate the

(log)O nd d calculations required by the MN
algorithm.

It should also be pointed out that when the data is
all non-negative, as our atmospheric data is, equation
(8) can be formulated as a linear program (LP). An LP

169

solver could therefore be used as an alternative to our
MN algorithm. To test this, we used CLP [7], a high
quality open-source LP solver. Because the MN
algorithm is designed to attack this problem directly
and CLP is a generic LP solver, CLP took dramatically
longer than MN.

Finally, we point out that our algorithm does not
claim to have competitive running time with K-means.
It is well known that K-means is considerably faster
than K-medians. The purpose of this paper is to
demonstrate that if one wishes to use K-medians
because of its outlier-resistant properties, it can be so
adapted by using the MN algorithm.

4. Experiments

In order to test the effectiveness of the MN
algorithm in improving traditional K-medians, we
compare four different versions of K-medians:
1. “MN at each iteration.” This is our MN iterative K-
medians algorithm as described in Section 3.2.
2. “MN only at the end.” This is Simple Approach #2
(Section 3.1) with MN used as the normalization
algorithm at the end.
3. “Scaling at each iteration.” This is Simple
Approach #1 (Section 3.1): at each iteration of the K-
medians algorithm, 1-norm scaling is used to
normalize the median.
4. “Scaling only at the end.” This is “Simple
Approach #2” with 1-norm scaling (Section 3.1) used
as the normalization algorithm at the end.

We also compare these four algorithms with K-
means as a sanity check. For all five techniques, we
choose initial centers via the heuristic technique of
choosing the first point as the first center, then
choosing each successive center to be the point in the
dataset whose distance to its closest center is greatest.
We terminate iteration of the algorithm when the error
metric changes by no more than 0.01. For the two
approaches that normalize only at the end, note that the
error undergoes a sudden increase after the last
iteration.

We test our clustering algorithms against three
different data sets. We first discuss results from text
documents that are clustered by word frequency. We
then move on to two mass spectral datasets, both
representing aerosol particle data. The first of these
two datasets consists of a synthetic dataset generated
by adding noise to seven actual particle mass spectra.
The second dataset corresponds to actual aerosol data
taken from St. Louis in February of 2004.

For each of these three datasets, we report our
experiments using a single value for K (number of

clusters) for brevity. Our goal is to examine
differences in clustering error and convergence
properties, and we point out that the theoretical
discussion above on the merits of these algorithms is
independent of number of clusters. We typically
choose K to be our best estimate as to the number of
clusters actually in the data, since this enables an easy
scan of the resulting clusters for correctness.
Clustering error in these experiments is defined as the
average Manhattan distance from each point to its
closest center.

4.1 Text Documents

Our text dataset was generated from a set of 505
sonnets from 5 different authors (Rossetti, Spenser,
Browning, Sidney, and Shakespeare), where each
sonnet was represented as a single point by counting
word frequencies within that text [2]. We pre-
processed our data with the Porter stemming algorithm
[10]. We clustered with K = 5 for all algorithms.

We compare the clustering error from our four K-
medians variants in Figure 2. Both of the iterative
normalization methods have the same general curve,
but MN iterative normalization has lower error than
scaled iterative normalization. The scaled iterative
normalization error increases and decreases slightly as
it stabilizes, while MN iterative always decreases as
explained in Section 3.2. For the two cases where
normalization is performed only at the end, the errors
are identical until the very end of the algorithm
because these two clustering methods are exactly the
same until the last pass. Notice, however, that after
normalization scaling gives a higher error than MN.

Figure 2 also shows that for this dataset,
normalizing with either technique at the end yields
only slightly worse errors than normalization at each
iteration. This suggests that one can use this shortcut of
normalizing only at the end if a slight degradation in
cluster accuracy and a rapid increase in clustering error
at the end are acceptable.

Figures 5-9 (grouped together at the end of the
paper) represent the breakdown of each cluster by
author for the four K-medians algorithms and the
spherical K-means algorithm. Since we know the
author of each sonnet, we can then measure how
homogenous each cluster is with respect to the five
authors.

Figures 7 and 8, which represent the clusters
generated from the two algorithms that use scaled
normalization, show fairly poor results. Cluster 2 in
Figure 7 and cluster 1 in Figure 8 each contain the bulk
of the sonnets by all authors. MN iterative (Figure 5),
on the other hand, does a much better job clustering by

170

author: clusters 1, 3, 4, and 5 are mostly homogenous.
These results are considerably better than scaled
normalization. Additionally, though MN at the end
has worse clusters than iterative MN (Figure 6 only
has three decent clusters; 3, 4, and 5), it still performs
better than scaled normalization.

 Finally, when comparing iterative MN with
spherical K-means (Figure 9), we see that it performs
at least as well. Note that we are unable to directly
compare the clustering error from spherical K-means
to the error from the K-medians algorithms in Figure 2
because the distance metrics are different.

4.2 Synthetic Particles

We generated a synthetic dataset of mass spectra by
starting with spectra from seven actual aerosol
particles. Based on these seven particles, we created
2000 artificial particles by adding noise to the spectra
of the seven particles [1]. Since there are seven known
particles, we clustered using K = 7.

Looking at the error versus the number of passes,
we see the same trends as in the text data (Figure 3).
MN outperforms scaled normalization when performed
either iteratively or at the end.

There is one important difference to note between
Figures 2 and 3. The final errors for iterative MN and
MN at the end are identical in Figure 3. (Technically,
iterative MN is 2.46 x 10-4 higher than MN at the end,
but this is negligible due to possible rounding errors.)
In Figure 2, however, iterative MN has visibly lower
error. This again shows that our MN algorithm is a
considerably better normalization technique than
simple scaling, and the user can choose between using

it at each iteration or at the end depending on needs.
The improvement that MN shows over simple

scaling is not as dramatic in Figure 3 as it is in Figure
2. Note that we have chosen a scale for the vertical
axis to render the results as clearly as possible.
Although we have shown theoretically that MN will
always perform better than (or equal to) simple scaling,
how much better MN performs depends on the
particular dataset. It is apparently the case that for this
synthetic dataset, simple scaling is less error-prone
than it is for our sonnets dataset. Nonetheless, in both
examples, MN performs better. This is to be expected,
since MN has been proven to be locally optimal.

Figures 10-13 (grouped together at the end of the
paper) show the cluster distributions from these four
algorithms. All four graphs show that each cluster is
mostly homogeneous. Figure 14 shows the results from
spherical K-means clustering on this data. Three of the
clusters in this graph (clusters 1, 3, and 5) show
considerably less homogeneity.

4.3 St. Louis Dataset

We finally present results from clustering a dataset
of mass spectra corresponding to 2966 particles
collected during February 2004 in East St. Louis,
Illinois at the EPA SuperSite location. We used K=9
which seemed to provide easily interpretable results.
Figure 4 shows error versus the number of passes for
the four K-medians algorithms, indicating behavior
consistent with the previous datasets.

We have no knowledge of what the “correct”
clusters are for this dataset. We did, however, examine
the cluster centers that resulted from these four K-
medians algorithms (author Prof. Gross is an
atmospheric scientist accustomed to examining such
plots). We observed that the MN iterative K-medians
algorithm picked up more peaks due to negative ions

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

1 2 3 4 5 6 7 8 9 10
Iteration

Er
ro

r
MN at each iteration
Scaled at each iteration
MN only at the end
Scaled only at the end

Figure 2: Error per iteration for the four K-
medians algorithms on the text data. Note that
the algorithms involving scaling consistently
perform worse than the algorithms using MN.
The scale for the vertical axis has been chosen
to render the results as clearly as possible.

0.58

0.59

0.6

0.61

0.62

0.63

0.64

1 3 5 7 9 11 13 15 17 19 21
Iteration

Er
ro

r

MN at each iteration
Scaled at each iteration
MN only at the end
Scaled only at the end

Figure 3: Error per iteration for the four K-
medians algorithms on the synthetic
particles.

171

than any of the other three K-medians algorithms did.
This set of cluster centers is therefore more likely to be
correct than the other three sets. The MN iterative K-
medians algorithm also showed considerably more
peaks at locations with high m/z values (mass-to-
charge ratios) than any of the other algorithms did,
which also added to its credibility. Interestingly, the
only other one of these four algorithms to show a
cluster center with peaks at high m/z values was the
scaled iterative algorithm. We present two sample
cluster centers to illustrate these findings (Figure 15).

5. Conclusions and Future Work

We have presented the MN algorithm, which allows
successful use of K-medians on normalized data when
normalized cluster centers are desired. This algorithm
can be used during each iteration of K-medians or
simply at the end of the algorithm, depending on
whether one wants to emphasize non-increasing
clustering error or speed. We provided theoretical and
experimental evidence that our algorithm is correct.
Finally, to demonstrate experimentally the viability of
our technique, we provided some brief comparisons
with spherical K-means. On our datasets, K-medians
combined with MN yields clusters that are comparable
to or better than those produced by spherical K-means.

Most of the scalability issues for our algorithm are
limited by the state of the art in scaling traditional K-
medians. There is nonetheless room for future work in
considering how to scale our algorithm, particularly
when the number of dimensions is high.

Acknowledgements. This research is supported by

NSF ITR grant IIS-0326328 and by Carleton College.

6. References

[1] B. J. Anderson, D. R. Musicant, A. M. Ritz, A. Ault,
D. S. Gross, M. Yuen, and M. Gaelli, "User-Friendly

Clustering for Atmospheric Data Analysis," Carleton
College, Northfield, MN, Technical Report 05-a, 2005.
[2] E. Blomquist, Sonnet Central, 2003, www.sonnets.org.
[3] P. S. Bradley and U. M. Fayyad, "Refining Initial
Points for K-Means Clustering," presented at Proc. 15th
International Conf. on Machine Learning, 1998.
[4] P. S. Bradley, O. L. Mangasarian, and W. N. Street,
"Clustering via Concave Minimization," in Advances in
Neural Information Processing Systems, vol. 9, M. C. Mozer,
M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT
Press, 1997, pp. 368-374.
[5] I. S. Dhillon, Y. Guan, and J. Fan, "Efficient Clustering
of Very Large Document Collections," in Data Mining for
Scientific and Engineering Applications, 2001, pp. 357-381.
[6] I. S. Dhillon and D. S. Modha, "Concept
Decompositions for Large Sparse Text Data using
Clustering," Machine Learning, vol. 42, pp. 143-175, 2001.
[7] J. Forrest, D. d. l. Nuez, and R. Lougee-Heimer, "CLP:
COIN Linear Program Code," 1.02.02 ed, 2005.
[8] T. Hastie, R. Tibshirani, and J. H. Friedman, The
Elements of Statistical Learning: Springer, 2001.
[9] A. K. Jain and R. C. Dubes, Algorithms for Clustering
Data: Prentice-Hall, 1981.
[10] M. F. Porter, "An Algorithm for Suffix Stripping,"
Program, vol. 14, pp. 130-137, 1980.
[11] D. T. Suess and K. A. Prather, "Mass Spectrometry of
Aerosols," Chemical Reviews, vol. 99, pp. 3007-3035, 1999.

0.45
0.47
0.49
0.51
0.53
0.55
0.57
0.59
0.61
0.63
0.65

1 3 5 7 9 11 13 15 17
Iteration

Er
ro

r

MN at each iteration
Scaled at each iteration
MN only at the end
Scaled only at the end

Figure 4: Error per iteration for the four K-
medians algorithms on the St. Louis data.

172

0

20

40

60

80

100

120

140

1 2 3 4 5
Cluster #

of

 D
oc

um
en

ts

Figure 5: K-medians with MN at each iteration

0

20

40

60

80

100

120

140

1 2 3 4 5
Cluster #

of

 D
oc

um
en

ts

Figure 6: K-medians with MN only at the end

0

20

40

60

80

100

120

140

1 2 3 4 5
Cluster #

of

 D
oc

um
en

ts

Figure 7: K-medians scaled at each iteration

0

20

40

60

80

100

120

140

1 2 3 4 5
Cluster #

of

 D
oc

um
en

ts

Figure 8: K-medians scaled only at the end

0

20

40

60

80

100

120

140

1 2 3 4 5
Cluster #

of

 D
oc

um
en

ts

Figure 9: Spherical K-means

I. Text Documents

1

Cluster ##
of

 D
oc

um
en

ts

Rossetti
Spenser
Browning
Sidney
Shakespeare

173

0
50

100
150
200
250
300
350
400
450

1 2 3 4 5 6 7
Cluster #

of

 P
ar

tic
le

s

700

Figure 10: K-medians with MN at each iteration

0
50

100
150
200
250
300
350
400
450

1 2 3 4 5 6 7
Cluster #

of

 P
ar

tic
le

s

700

Figure 11: K-medians with MN only at the end

0
50

100
150
200
250
300
350
400
450

1 2 3 4 5 6 7
Cluster #

of

 P
ar

tic
le

s

700

Figure 12: K-medians scaled at each iteration

0
50

100
150
200
250
300
350
400
450

1 2 3 4 5 6 7
Cluster #

of

 P
ar

tic
le

s

700

Figure 13: K-medians scaled only at the end

0
50

100
150
200
250
300
350
400
450

1 2 3 4 5 6 7
Cluster #

of

 P
ar

tic
le

s

700

Figure 14: Spherical K-means

II. Synthetic Particles

- 3 0 0

7 0 0

1 4 7

C lus t e r s

Ambient Metals
Ambient Brake Dust
Ambient General
Ambient Smoke
Elemental Carbon
Organic Carbon
PAH

174

0 50 100 150 200 250 300
m/z

202

215
247

252

274

-168

-122

b

0 50 100 150 200 250 300
m/z

202

215
247

252

274

-168

-122

0 50 100 150 200 250 300
m/z

0 50 100 150 200 250 300
m/z

202

215
247

252

274

-168

-122

b

Figure 15: St. Louis cluster samples. Corresponding aerosol particle mass spectra cluster centers
from K-medians with MN at each iteration (a) and K-medians scaled at each iteration (b). Of the
four K-medians algorithms, only these two produced cluster centers such as these with peaks in
the high m/z range. K-medians with MN at each iteration shows more of these peaks. Additionally,
K-medians with MN at each iteration produces more cluster centers with peaks in negative
spectra. These characteristics are more representative of this data.

0 50 100 150 200 250 300
m/z

202

217

215

247252
254
274

-168

-46
-62

-167

-122

a

0 50 100 150 200 250 300
m/z

202

217

215

247252
254
274

-168

-46
-62

-167

-122

0 50 100 150 200 250 300
m/z

0 50 100 150 200 250 300
m/z

202

217

215

247252
254
274

-168

-46
-62

-167

-122

a

III. St. Louis Data

175

