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Abstract 

Many applications of clustering require the use of 
normalized data, such as text or mass spectra mining. 
The spherical K-means algorithm [6], an adaptation of 
the traditional K-means algorithm, is highly useful for 
data of this kind because it produces normalized 
cluster centers. The K-medians clustering algorithm is 
also an important clustering tool because of its well-
known resistance to outliers. K-medians, however, is 
not trivially adapted to produce normalized cluster 
centers. We introduce a new algorithm (called MN), 
inspired by spherical K-means, that integrates with K-
medians clustering to produce locally optimal 
normalized cluster centers. We then show theoretically 
and experimentally that MN produces clusters of 
significantly higher quality than one would obtain via 
a simple scaling of the cluster centers produced from 
traditional K-medians. 

Keywords: K-medians, clustering, normalized data 

1. Introduction 

Clustering is one of the key techniques used in data 
mining. In this paper we focus on clustering 
normalized datasets. Data is often normalized before 
clustering in order to remove unimportant distinctions 
of scale. In clustering a corpus of text, for example, 
each document is often represented as a point where 
each dimension represents a word’s frequency. When 
clustering data in this format, two documents of 
identical subject matter with different lengths should 
not be considered different. It therefore often makes 
sense to normalize text data before clustering.  

Single-particle mass spectrometry [11] is another 
area where it is appropriate to normalize data. The 
chemical makeup of an aerosol particle is represented 
as two mass spectra, which are plots of signal intensity 
versus the mass-to-charge ratio (m/z) for positive and 
negative ions produced by fragmenting the 

components of the aerosol particle.  Thus, the presence 
of a peak indicates the presence of one or more ions 
containing the m/z value indicated (see Figure 15 for 
examples). As with text, we are generally not 
interested in the absolute magnitude of these peaks, but 
in the relative size of one peak when compared with 
another.  

Cluster centers are often used to represent 
prototypical points, so it is usually desirable to 
normalize cluster centers that arise from normalized 
data [5, 6]. The spherical K-means algorithm [6] is 
well-suited to this task. 

For some applications it is more desirable to use 1-
norm distance (also known as Manhattan distance, 
denoted here as ||·||1) to measure the distance between 
points. This is because the cluster center that 
minimizes 1-norm distance to all points within that 
cluster is the median of that cluster, and using the 
median instead of the mean tends to be more robust to 
outliers. The K-medians algorithm [4, 9] is thus a 
powerful alternative. 

When attempting to use K-medians on normalized 
data, however, unique challenges arise in finding 
normalized locally optimal cluster centers. We present 
the Manhattan Normalization (MN) algorithm, which 
when integrated with K-medians addresses these 
challenges. 

There are two seemingly straightforward solutions 
to the problem of finding normalized cluster centers 
with K-medians. One could apply traditional K-
medians and scale the cluster centers at the end, or 
alternatively one could use traditional K-medians and 
scale the cluster centers after each iteration. Both of 
these ideas are heuristically based and lack theoretical 
guarantees of convergence. We will show that MN 
integrated with K-medians has guaranteed 
convergence properties and performs better 
experimentally than either of these other approaches. 
We borrow many of our ideas from spherical K-means, 
but we address the additional difficulties introduced by 
the use of medians. 
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Section 2 of this paper describes relevant known 
clustering algorithms. Section 3 describes the 
challenges that arise in normalized K-medians 
clustering and our solutions to those challenges. 
Experimental results and analysis are in Section 4. 

2. Clustering Review 

2.1 Traditional K-means 

The well-known K-means algorithm [8] is used 
when one wishes to find cluster centers that minimize 
the total of the squared 2-norm distance (also known as 
Euclidean distance, denoted here as ||·||2) from each 
point to its closest cluster center. Since finding 
globally optimal cluster centers is an NP-hard problem, 
K-means may be used to find a local solution. In order 
to run K-means, one chooses the number of clusters to 
find and an initial set of cluster centers. There are 
many different approaches for choosing initial cluster 
centers [3], but all of our work here holds regardless of 
which technique is used. The K-means framework can 
then be described as follows: 

K-means Algorithm. Let x1,x2,...,xn be a set of 
points. We wish to partition them into K disjoint 
clusters * * *

1 2, ,..., Kπ π π  that minimize the objective 
function: 
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For each cluster j, cj is the center of each cluster, 
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where nj is the number of points in cluster j [8]. We 
therefore wish to find clusters that solve the following 
minimization problem:  
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To do this, start with an arbitrary partitioning of the 
data { }(0)
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iteration t = 1. Then follow these steps: 
1. For each point, find the cluster center with closest 
Euclidean distance. This yields a new partitioning 
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where ties between clusters are resolved by random 
assignment to one of the optimal centers. Note that this 
is guaranteed not to increase the objective Q, since 
each point is assigned to its closest center. 
2. Compute the new set of cluster centers { }( )

1

Kt
j j

c
=

 by 

computing the mean (centroid) of each cluster. Since 
the centroid is the point that minimizes the total 
distances from all points to it, this step is also 
guaranteed not to increase the objective Q. 

3. If a stopping criterion is met, report { }( )

1
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j j

π
=

 as the 

final partitioning and { }( )

1

Kt
j j
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=

as the final cluster 

centers. Otherwise, increment t by 1, and go to step 1 
above. A variety of stopping conditions are available. 
One common condition is to stop when the difference 
between successive values of the objective Q is less 
than a small tolerance. 

K-means is ultimately a local optimization 
algorithm for minimizing clustering error, where 
clustering error is defined as the total squared 
Euclidean distance from each point to its closest 
center. The objective Q never increases from one 
iteration to the next. Since K-means is applied to a 
finite number of points, the algorithm must therefore 
terminate. 

2.2 Spherical K-means 

Many applications for clustering normalized data 
require normalized cluster centers. The spherical K-
means algorithm by Dhillon and Modha [6] addresses 
this need. The spherical K-means literature uses the 
cosine similarity metric. We find it more convenient 
for this paper to use the squared Euclidean distance 
metric for spherical K-means, but it is easily shown 
that for normalized data both of these metrics yield 
precisely the same results. 

Spherical K-means produces cluster centers of 
magnitude 1 by normalizing the cluster centers after 
each iteration. In other words, an extra step is added to 
the traditional K-means algorithm as follows: 

Spherical K-means algorithm. Start with a 
partitioning of the data as in the traditional K-means 
algorithm. Initialize t = 1. 
1. For each point, find the closest cluster center as 
measured via squared Euclidean distance. 
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2. Compute the new set of cluster centers { }( )

1

Kt
j j

c
=

 by 

computing the mean (centroid) of each cluster. 
3. Normalize each cluster center by scaling it so that it 
has a magnitude of 1. In other words, redefine 
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4. Terminate if the stopping condition is met. 
Increment t and go to step 1 otherwise. 

Note that step 3 may actually increase the clustering 
error following step 2, since step 2 finds the cluster 
centers that optimize cluster error regardless of cluster 
center magnitude. Step 3 modifies the optimal cluster 
centers so that they have a magnitude of 1 at the 
expense of increasing clustering error. However, 
Dhillon and Modha show [6] that if step 2 and step 3 
are considered together as one operation, this 
procedure finds the optimal center of magnitude 1 for 
each cluster.  The property that cluster centers have a 
magnitude of 1 is thus preserved from one iteration to 
the next, while the algorithm ensures that cluster error 
does not increase. Spherical K-means is therefore 
guaranteed to converge to a solution of locally optimal 
cluster centers, each with magnitude of 1. 

2.3 K-medians 

We now review the K-medians algorithm [4, 9], 
which is used when one wishes to minimize the total 1-
norm distance from each point to its nearest cluster 
center. K-medians is quite similar to K-means, and its 
differences from K-means are defined as follows: 

K-medians algorithm. Since we now work with 1-
norm distance instead of squared Euclidean distance, 
our objective is stated as: 
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We start with a partitioning of the data as in K-
means. Initialize t = 1. 
1. For each point, find the closest cluster center as 
measured via 1-norm distance. 

2. Compute the new set of cluster centers { }( )

1
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j j
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computing the median of the cluster. In other words, 
for each dimension compute the median value for that 
dimension over all points in the cluster. We use the 
median because the median is the point that minimizes 
the total 1-norm distance from all points to it [4]. 
3. Terminate if the stopping condition is met. 
Increment t and go to step 1 otherwise. 

In a similar fashion to K-means, steps 1 and 2 of K-
medians are guaranteed not to increase the objective Q. 

3. Normalized K-medians cluster centers  

There are a variety of tradeoffs in choosing between 
K-medians and K-means. We consider the discussion 
of the choice of K-medians vs. K-means  (K-medians 
is slower but more robust to outliers, etc.) outside the 
scope of this paper. Our purpose is to enable the 
appropriate use of K-medians on normalized data. 

We mentioned in Section 1 some simple changes to 
K-medians that might seem to appropriately adapt it 
for obtaining normalized cluster centers from 
normalized data. We discuss these ideas, point out 
their flaws, and then move on to discuss our solution. 

3.1 Simple Approaches 

Simple approach #1: normalize by scaling at 
each iteration. A straightforward adaptation of 
spherical K-means is problematic. The concept seems 
to be easy enough: during each iteration, after new 
cluster centers have been determined, normalize them 
via scaling using the appropriate distance metric. In 
other words, redefine cluster centers as follows: 
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There is a key problem with this approach. Unlike 
spherical K-means, scaled cluster centers are not the 
points of magnitude 1 that minimize total 1-norm 
distance from each point to its cluster center. 

Example: Consider the 1-norm normalized points 
x1 = (1/5, 1/5, 3/5), x2 = (1/5, 1/5, 3/5), x3 = (1/5, 3/5, 
1/5), x4 = (1/5, 3/5, 1/5), and x5 = (3/5,1/5,1/5). The 
median of these points is (1/5, 1/5, 1/5). If we simply 
proportionately scale this median to have a magnitude 
of 1, we end up with a cluster center of (1/3, 1/3, 1/3). 
If we measure 1-norm distance from each point to this 
center, each point is a distance of 8/15 from this center, 
resulting in a total distance of 40/15. Suppose that we 
instead choose the normalized point (1/5, 3/5, 1/5) to 
be our cluster center. This center yields a total 1-norm 
distance of only 36/15. The scaled median is therefore 
clearly not the center that minimizes total 1-norm 
distance from all points to it. 

Simple approach #2: normalize by (method of 
choice) when K-medians stabilizes. This approach is 
heuristic in nature, though it may yield positive results. 
If the normalization technique to be used is simple 
scaling, however, problems arise as discussed above. 
Like “Simple Approach #1,” “Simple Approach #2” 
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does not provide desirable theoretical guarantees that 
spherical K-means does. By performing regular K-
medians at each iteration, the objective does not 
increase but the centers found at each iteration do not 
satisfy desired constraints (magnitude of 1). After K-
medians stabilizes, when the cluster centers are 
normalized, the objective is likely to increase steeply.  

3.2 Our Solution: The MN Algorithm 

The structure of the spherical K-means algorithm is 
sound. In order to obtain cluster centers of magnitude 
1, one should produce normalized cluster centers 
iteratively throughout the algorithm such that the 
objective error metric continues to decrease. “Simple 
approach #1” tried to address this, but was flawed. The 
missing link needed here is an algorithm to solve the 
following task: given a set of points assigned to a 
cluster, find a center of magnitude 1 (in a 1-norm 
sense) that minimizes the total 1-norm distance from 
all points to this center. Here is our algorithm for doing 
so. 

Manhattan Normalization (MN) algorithm. Let 
x1,x2,...,xn be a set of points where ||xi||1=1, i=1,...,n. We 
wish to find a point c, where ||c||1=1, that minimizes: 

 1
1 1 1

n n d

i ij j
i i j

x c x c
= = =

− = −∑ ∑∑  (8) 

where d is the number of dimensions, cj indicates the 
jth component of cluster center c, and xij represents the 
jth component of point xi. 
1. Initialize c to be the median of x1,x2,...,xn. c 
minimizes the objective above, but it is not necessarily 
true that ||c||1=1. (If ||c||1=1, we terminate the 
algorithm.) Note that examples can be easily generated 

to show that ||c||1 can in fact be less than or greater than 
1 (as was done in Section 3.1). 

We also assume through the remainder of this 
algorithm and in the theorem that follows that cj ≥ 0, 
j=1,...,d. This is true for many applications of 
normalized data. If 0jc <  for a particular j, transform 
this dimension by negating both cj and all values xij 
(i=1,...,n). On completion of the algorithm, negate cj 
again. This makes the rest of the algorithm easier to 
state (no special cases for negatives), yet has no effect 
on its correctness.  

The algorithm is symmetric with respect to whether 
1 1c <  or 1 1c > , so we describe the 1 1c <  case 

and indicate the 1 1c >  case in brackets.  

2. For each dimension j, count the number of values xij 
that are strictly greater than [less than] cj. Denote these 
counts as zj , j=1,...,d. 
3. Let m be the dimension for which zj is maximal. If 
more than one dimension zj has the same maximal 
value, choose one arbitrarily. 
4. Redefine cm to be the smallest [largest] value xim 
(i=1,...,n) greater than [less than] cm. If cm < 0, set cm = 
0. 
5. If 1 1c = , terminate the algorithm. If 1 1c <  

1 1c⎡ > ⎤⎣ ⎦ , go to step 2. Otherwise, redefine cm as 

( )1
1mc c− −  ( )1

1mc c⎡ ⎤+ −
⎣ ⎦

 and terminate.  

The idea behind the algorithm can be clarified via 
Figure 1. At each iteration, the dimension that we 
change is the one that has a maximal number of values 
in the direction that we want the center to move. To 
see this, consider sliding any of the circles in Figure 1 
upward a small distance ε , which would have the 
effect of increasing ||c||1 by ε . Furthermore, the 
objective error metric (sum of 1-norm distances from 
all points to the cluster center) is increased by ε  for 
each tick on or below the circle moved, and decreased 
by ε  for each tick above the circle. Therefore, we 
slide the circle with the most ticks above it in order to 
increase ||c||1 while incurring as little error as possible. 
We repeat this entire process until ||c||1 = 1. With this 
intuition in mind, we prove the following theorem. 

Theorem: Given a set of points x1,x2,...,xn  where 
||xi||1=1, i=1,...,n, the MN algorithm finds a point c 
(||c||1=1) that minimizes the total 1-norm error from all 
points to it. Formally, c is the solution to the following 
optimization problem: 

Figure 1: Graphical representation of our MN 
algorithm.  Vertical lines are dimensions, 
horizontal lines are values (thick horizontal 
lines are the same value occurring twice), 
and circles are current cluster center 
locations. Sliding the second circle upward 
incurs less error than sliding any other circle 
would since more values are above it. 
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Proof: We know that the initial value of c as chosen 
in Step 1 of the algorithm minimizes the following 
alternative problem [4]: 

 1
1

arg min
n

ic i

x c
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−∑  (10) 

If ||c||1=1, then the theorem is trivially true. 
Suppose that 1c < . Steps 2 and 3 choose a 

dimension m of c to modify. Suppose that 0mc ≥ . Step 
4 redefines the mth component of c. We denote here 
the new value of c as ĉ . We then observe that ĉ  must 
be a solution for the following optimization problem: 

 1
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To see this, recall that ĉ  was obtained by adding 
ˆm mc c−  to the thm  component of c . This adds to the 

objective an additional error of ˆm mc c−  times the 
number of values xim, i=1,...,n less than or equal to cm. 
Likewise, it subtracts from the objective an error of 
ˆm mc c−  times the number of values xim, i=1,...,n  

greater than cm. Since m was chosen to be the 
dimension with maximal values greater  than cm, and 
since the total number of values in each dimension is 
the same, any increase at all in any other dimension of 
value less than or equal to ˆm mc c−  cannot result in a 
lesser increase of the objective. 

This argument is easily adapted for the 1c >  and 
0mc <  cases through appropriate reversals (positive / 

negative, less than / greater than, etc.). We omit these 
other cases for space saving purposes. 

 
Now that we have established the MN algorithm, 

we can integrate it with K-medians: 
MN iterative K-medians algorithm. We start with 

a partitioning of the data. Initialize t = 1. 
1. For each point, find the cluster center with closest 
1-norm distance. 

2. Compute the new set of cluster centers { }( )

1

Kt
j j

c
=

 by 

computing the median of the cluster. 
3. Normalize each cluster so that it has a 1-norm 
magnitude of 1 by using the MN algorithm. 
4. Terminate if the stopping condition is met. 
Increment t and go to step 1 otherwise. 

If one wishes to use K-medians on normalized data 
and yield normalized cluster centers, MN iterative K-
medians will find cluster centers at each iteration with 
error no greater than that from the previous iteration. 

3.3 MN Algorithm Performance Issues 

K-medians is clearly not as fast as K-means due to 
its median computations. Since our MN algorithm 
occurs after a median is calculated, any pre-existing 
algorithm for calculating medians quickly can be used. 
The MN algorithm itself, in its worst case, could 
require an iteration for each value above the median in 
each dimension. This is yields an upper bound of nd 
iterations. At the beginning of the algorithm, there is 
an initial step where the number of values greater than 
or less than the initial center must be counted for each 
dimension. This also requires nd calculations (d 
dimensions, n points for each), but this is only 
necessary once. Each successive iteration then requires 
determination of which dimension has the greatest 
number of values above the current center. This could 
be handled via a priority queue where the priority is 
the number of values above the current center. With d 
entries in the priority queue, this would result in 

2log d  calculations per iteration to update it. This 
yields a complexity of ( log )O nd d  each time that MN 
is used, i.e. at each major K-medians iteration. 

For a sizeable dataset, then, MN forms a relatively 
negligible portion of calculation time. While there are 
many optimized approaches for calculating medians 
under certain circumstances, a straightforward 
modified quicksort algorithm has a complexity of 

( log )O n n on average. Since each major iteration of 
the K-medians algorithm requires that a median be 
calculated in each dimension within each cluster, this 
has a complexity of ( log )O nd n . (In the case where 
the n points are distributed evenly among the K 
clusters, we can refine this complexity to 

logn nO dK
K K

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Since K is the number of clusters 

and is not expected to be dramatically large, this 
complexity can again be simplified to ( log )O nd n .) 
Therefore, for a large dataset where n d� , these 

( log )O nd n  calculations required by the median 
algorithm will completely dominate the 

( log )O nd d calculations required by the MN 
algorithm. 

It should also be pointed out that when the data is 
all non-negative, as our atmospheric data is, equation 
(8) can be formulated as a linear program (LP). An LP 
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solver could therefore be used as an alternative to our 
MN algorithm. To test this, we used CLP [7], a high 
quality open-source LP solver. Because the MN 
algorithm is designed to attack this problem directly 
and CLP is a generic LP solver, CLP took dramatically 
longer than MN. 

Finally, we point out that our algorithm does not 
claim to have competitive running time with K-means. 
It is well known that K-means is considerably faster 
than K-medians. The purpose of this paper is to 
demonstrate that if one wishes to use K-medians 
because of its outlier-resistant properties, it can be so 
adapted by using the MN algorithm. 

4. Experiments 

In order to test the effectiveness of the MN 
algorithm in improving traditional K-medians, we 
compare four different versions of K-medians: 
1. “MN at each iteration.” This is our MN iterative K-
medians algorithm as described in Section 3.2. 
2. “MN only at the end.” This is Simple Approach #2 
(Section 3.1) with MN used as the normalization 
algorithm at the end. 
3. “Scaling at each iteration.” This is Simple 
Approach #1 (Section 3.1): at each iteration of the K-
medians algorithm, 1-norm scaling is used to 
normalize the median. 
4. “Scaling only at the end.” This is “Simple 
Approach #2” with 1-norm scaling (Section 3.1) used 
as the normalization algorithm at the end. 

We also compare these four algorithms with K-
means as a sanity check. For all five techniques, we 
choose initial centers via the heuristic technique of 
choosing the first point as the first center, then 
choosing each successive center to be the point in the 
dataset whose distance to its closest center is greatest. 
We terminate iteration of the algorithm when the error 
metric changes by no more than 0.01. For the two 
approaches that normalize only at the end, note that the 
error undergoes a sudden increase after the last 
iteration. 

We test our clustering algorithms against three 
different data sets. We first discuss results from text 
documents that are clustered by word frequency.  We 
then move on to two mass spectral datasets, both 
representing aerosol particle data.  The first of these 
two datasets consists of a synthetic dataset generated 
by adding noise to seven actual particle mass spectra. 
The second dataset corresponds to actual aerosol data 
taken from St. Louis in February of 2004. 

For each of these three datasets, we report our 
experiments using a single value for K (number of 

clusters) for brevity. Our goal is to examine 
differences in clustering error and convergence 
properties, and we point out that the theoretical 
discussion above on the merits of these algorithms is 
independent of number of clusters. We typically 
choose K to be our best estimate as to the number of 
clusters actually in the data, since this enables an easy 
scan of the resulting clusters for correctness. 
Clustering error in these experiments is defined as the 
average Manhattan distance from each point to its 
closest center. 

4.1 Text Documents 

Our text dataset was generated from a set of 505 
sonnets from 5 different authors (Rossetti, Spenser, 
Browning, Sidney, and Shakespeare), where each 
sonnet was represented as a single point by counting 
word frequencies within that text [2]. We pre-
processed our data with the Porter stemming algorithm 
[10].  We clustered with K = 5 for all algorithms. 

We compare the clustering error from our four K-
medians variants in Figure 2. Both of the iterative 
normalization methods have the same general curve, 
but MN iterative normalization has lower error than 
scaled iterative normalization. The scaled iterative 
normalization error increases and decreases slightly as 
it stabilizes, while MN iterative always decreases as 
explained in Section 3.2. For the two cases where 
normalization is performed only at the end, the errors 
are identical until the very end of the algorithm 
because these two clustering methods are exactly the 
same until the last pass. Notice, however, that after 
normalization scaling gives a higher error than MN. 

Figure 2 also shows that for this dataset, 
normalizing with either technique at the end yields 
only slightly worse errors than normalization at each 
iteration. This suggests that one can use this shortcut of 
normalizing only at the end if a slight degradation in 
cluster accuracy and a rapid increase in clustering error 
at the end are acceptable. 

Figures 5-9 (grouped together at the end of the 
paper) represent the breakdown of each cluster by 
author for the four K-medians algorithms and the 
spherical K-means algorithm. Since we know the 
author of each sonnet, we can then measure how 
homogenous each cluster is with respect to the five 
authors.  

Figures 7 and 8, which represent the clusters 
generated from the two algorithms that use scaled 
normalization, show fairly poor results. Cluster 2 in 
Figure 7 and cluster 1 in Figure 8 each contain the bulk 
of the sonnets by all authors. MN iterative (Figure 5), 
on the other hand, does a much better job clustering by 

170



author: clusters 1, 3, 4, and 5 are mostly homogenous. 
These results are considerably better than scaled 
normalization.  Additionally, though MN at the end 
has worse clusters than iterative MN (Figure 6 only 
has three decent clusters; 3, 4, and 5), it still performs 
better than scaled normalization. 

 Finally, when comparing iterative MN with 
spherical K-means (Figure 9), we see that it performs 
at least as well. Note that we are unable to directly 
compare the clustering error from spherical K-means 
to the error from the K-medians algorithms in Figure 2 
because the distance metrics are different. 

4.2 Synthetic Particles 

We generated a synthetic dataset of mass spectra by 
starting with spectra from seven actual aerosol 
particles. Based on these seven particles, we created 
2000 artificial particles by adding noise to the spectra 
of the seven particles [1]. Since there are seven known 
particles, we clustered using K = 7. 

Looking at the error versus the number of passes, 
we see the same trends as in the text data (Figure 3).  
MN outperforms scaled normalization when performed 
either iteratively or at the end.   

There is one important difference to note between 
Figures 2 and 3.  The final errors for iterative MN and 
MN at the end are identical in Figure 3. (Technically, 
iterative MN is 2.46 x 10-4 higher than MN at the end, 
but this is negligible due to possible rounding errors.) 
In Figure 2, however, iterative MN has visibly lower 
error. This again shows that our MN algorithm is a 
considerably better normalization technique than 
simple scaling, and the user can choose between using 

it at each iteration or at the end depending on needs. 
The improvement that MN shows over simple 

scaling is not as dramatic in Figure 3 as it is in Figure 
2. Note that we have chosen a scale for the vertical 
axis to render the results as clearly as possible. 
Although we have shown theoretically that MN will 
always perform better than (or equal to) simple scaling, 
how much better MN performs depends on the 
particular dataset. It is apparently the case that for this 
synthetic dataset, simple scaling is less error-prone 
than it is for our sonnets dataset. Nonetheless, in both 
examples, MN performs better. This is to be expected, 
since MN has been proven to be locally optimal. 

Figures 10-13 (grouped together at the end of the 
paper) show the cluster distributions from these four 
algorithms. All four graphs show that each cluster is 
mostly homogeneous. Figure 14 shows the results from 
spherical K-means clustering on this data. Three of the 
clusters in this graph (clusters 1, 3, and 5) show 
considerably less homogeneity.  

4.3 St. Louis Dataset 

We finally present results from clustering a dataset 
of mass spectra corresponding to 2966 particles 
collected during February 2004 in East St. Louis, 
Illinois at the EPA SuperSite location. We used K=9 
which seemed to provide easily interpretable results. 
Figure 4 shows error versus the number of passes for 
the four K-medians algorithms, indicating behavior 
consistent with the previous datasets. 

We have no knowledge of what the “correct” 
clusters are for this dataset. We did, however, examine 
the cluster centers that resulted from these four K-
medians algorithms (author Prof. Gross is an 
atmospheric scientist accustomed to examining such 
plots). We observed that the MN iterative K-medians 
algorithm picked up more peaks due to negative ions 
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Figure 2: Error per iteration for the four K-
medians algorithms on the text data. Note that 
the algorithms involving scaling consistently 
perform worse than the algorithms using MN. 
The scale for the vertical axis has been chosen 
to render the results as clearly as possible. 
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Figure 3: Error per iteration for the four K-
medians algorithms on the synthetic 
particles. 
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than any of the other three K-medians algorithms did. 
This set of cluster centers is therefore more likely to be 
correct than the other three sets. The MN iterative K-
medians algorithm also showed considerably more 
peaks at locations with high m/z values (mass-to-
charge ratios) than any of the other algorithms did, 
which also added to its credibility. Interestingly, the 
only other one of these four algorithms to show a 
cluster center with peaks at high m/z values was the 
scaled iterative algorithm. We present two sample 
cluster centers to illustrate these findings (Figure 15). 

5. Conclusions and Future Work 

We have presented the MN algorithm, which allows 
successful use of K-medians on normalized data when 
normalized cluster centers are desired. This algorithm 
can be used during each iteration of K-medians or 
simply at the end of the algorithm, depending on 
whether one wants to emphasize non-increasing 
clustering error or speed. We provided theoretical and 
experimental evidence that our algorithm is correct. 
Finally, to demonstrate experimentally the viability of 
our technique, we provided some brief comparisons  
with spherical K-means. On our datasets, K-medians 
combined with MN yields clusters that are comparable 
to or better than those produced by spherical K-means. 

Most of the scalability issues for our algorithm are 
limited by the state of the art in scaling traditional K-
medians. There is nonetheless room for future work in 
considering how to scale our algorithm, particularly 
when the number of dimensions is high. 
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Figure 4: Error per iteration for the four K-
medians algorithms on the St. Louis data. 
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Figure 5: K-medians with MN at each iteration 
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Figure 6: K-medians with MN only at the end 
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Figure 7: K-medians scaled at each iteration 

0

20

40

60

80

100

120

140

1 2 3 4 5
Cluster #

# 
of

 D
oc

um
en

ts

 
Figure 8: K-medians scaled only at the end 
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Figure 9: Spherical K-means 
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Figure 10: K-medians with MN at each iteration 

0
50

100
150
200
250
300
350
400
450

1 2 3 4 5 6 7
Cluster #

# 
of

 P
ar

tic
le

s

700

 
Figure 11: K-medians with MN only at the end 
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Figure 12: K-medians scaled at each iteration 
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Figure 13: K-medians scaled only at the end 
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Figure 14: Spherical K-means 

II. Synthetic Particles 
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Figure 15: St. Louis cluster samples. Corresponding aerosol particle mass spectra cluster centers 
from K-medians with MN at each iteration (a) and K-medians scaled at each iteration (b). Of the 
four K-medians algorithms, only these two produced cluster centers such as these with peaks in 
the high m/z range. K-medians with MN at each iteration shows more of these peaks. Additionally, 
K-medians with MN at each iteration produces more cluster centers with peaks in negative 
spectra. These characteristics are more representative of this data. 
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III. St. Louis Data 
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