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Abstract

The modeling of fluid interactions around airfoils is difficult given the complicated,

often non-symmetric geometries involved. The complex variable technique of conformal

mapping is a useful intermediate step that allows for complicated airfoil flow problems

to be solved as problems with simpler geometry. In this paper, we use the conformal

mapping technique to model the fluid flow around the NACA 0012, 2215, and 4412

airfoils by using the Joukowsky transformation to link the flow solution for a cylinder to

that of an airfoil. The flow around a cylinder was derived with the superposition of ele-

mentary potential flows using an inviscid, incompressible fluid model. Lift calculations

as a function of angle of attack for each airfoil were obtained using the transformed flow

solutions and fundamental theories of aerodynamics. These calculations are compared

against lift calculations provided by the thin airfoil method. Lift calculations for the

NACA 0012 airfoil match well with expected results, while there is a discrepancy at

low angles of attack for the 2215 and 4412 airfoils.

Key Terms: NACA airfoil, conformal mapping, Joukowsky transforma-

tion, inviscid flow.
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1 Introduction

In the field of fluid dynamics, an area of significant practical importance is the study of

airfoils. An airfoil refers to the cross sectional shape of an object designed to generate lift

when moving through a fluid. Fundamentally, an airfoil generates lift by diverting the motion

of fluid flowing over its surface in a downward direction, resulting in an upward reaction force

by Newton’s third law [2]. While this is an acceptable qualitative way of looking at airfoils,

understanding the design of applicable systems such as airplanes, helicopters, and wind

turbines requires a quantitative method of analyzing fluid flow and lift.

Understanding lift at a higher level thus involves the physical modeling of the fluid

flowing over an airfoil. While this physical modeling is obviously an area of interest to

those studying introductory fluid dynamics, it is also a relevant field for students studying

advanced mathematics. In particular, one common method of modeling the fluid flow around

an airfoil requires an understanding of complex number mathematics. This method, known

as conformal mapping, will be the main focus of this paper. Our paper is therefore geared

towards students with an understanding of multivariable calculus who wish to develop their

understanding of complex variable mathematics.

Conformal mapping is a mathematical technique in which complicated geometries can

be transformed by a mapping function into simpler geometries which still preserve both

the angles and orientation of the original geometry [4]. Using this technique, the fluid flow

around the geometry of an airfoil can be analyzed as the flow around a cylinder whose

symmetry simplifies the needed computations. Because the functions that define the fluid

flow satisfy Laplace’s equation, the conformal mapping method allows for lift calculations

on the cylinder to be equated to those on the corresponding airfoil [5].

In this analysis, we focus on modeling the two-dimensional fluid flow around airfoils using

the conformal mapping technique. We will first briefly describe how airfoils are characterized
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geometrically. Next, we will describe the physical model we used to represent the inviscid,

incompressible fluid flow around an airfoil, and explain the theory behind conformal map-

ping. We will then use the Joukowsky transformation, a specific application of conformal

mapping, to link the solution for flow around a cylinder to the solution for flow around an

airfoil. We will show how we used computational tools to implement this conformal map-

ping transformation to compute the fluid flow and lift around three NACA airfoils we chose

to model. Finally, we will compare our lift calculations to similar calculations found using

thin airfoil theory, another method of modeling airfoil aerodynamics. These results will be

supplemented with a quantitative error analysis in an attempt to explain any discrepancies

in the two models.

2 Characterizing Airfoils

Before we develop a model for the fluid flow around airfoils, it is important to define air-

foils geometrically and to acquaint ourselves with the nomenclature with which they are

characterized.

Figure 1: Diagram of an airfoil with key parameters labeled.[15]

The above diagram labels the main parameters of an airfoil that play a key role in its

aerodynamic performance [15]. Specifically, we are interested in the angle of attack α, the

chord length, and the mean camber line. The chord is a straight line typically used to
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measure airfoil length, whereas the mean camber line is a curve halfway between the upper

and lower surfaces used to measure airfoil curvature.

Airfoil shapes are commonly characterized with a numbering system originally defined

by the National Advisory Committee for Aeronautics (NACA). This characterizing system

defines airfoil shapes with a series of digits corresponding to non-dimensionalized airfoil

properties. The number of digits used to describe an airfoil corresponds to the complexity

of the airfoil. For this paper, we will only model four digit (4-series) airfoils to simplify

the geometry of the airfoils we wish to analyze. In 4-series airfoils, the profile is defined as

follows [1]:

1. The first digit describes the maximum camber as a percentage of the chord length.

The maximum camber is the maximum distance between the chord and mean camber line

along the axis of the chord.

2. The second digit indicates the position of the maximum camber in tenths of the chord.

3. The last two digits provide the maximum thickness of the airfoil as a percent of the

chord length.

For example, a NACA 2412 airfoil would have a maximum camber that is 2% of the chord

length, located 4/10 of the chord length away from the leading edge. This airfoil would have

a maximum thickness that is 12% of the chord length.

3 Overview of Theories Used in Mathematical Model-

ing

3.1 Modeling Fluid Interactions with Inviscid Flow Theory

The modeling of fluid interactions around an airfoil is often divided into two branches [3]. One

branch models the fluid around an airfoil as a real, viscous fluid. Since every fluid has some

73Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



viscosity, this branch is more accurate, but involves a degree of physical and mathematical

complexity that goes beyond the scope of this paper. Instead, we use the second branch, and

model the theoretical flow around an airfoil by treating the surrounding fluid as a “perfect

fluid.” These perfect fluids that we will model are considered inviscid, meaning they have no

viscosity, and are incompressible, meaning their density remains constant. In reality, such

perfect fluids do not exist, but considering the fluid flow as inviscid and incompressible still

allows for an accurate model provided certain conditions are met [3].

The first of these conditions is that the airfoil must be moving through the fluid at

subsonic speeds. This is important because at speeds approaching the speed of sound, shock

waves occur in which the fluid flow no longer becomes continuous, and the perfect fluid

idealization breaks down [7]. Specifically, our models will focus on airfoils moving through

flow regions between Mach 0.0 and 0.4, as this is the range where compressibility effects in

the fluid flow can be considered negligible.

The second assumption is that the flow over the airfoil satisfies the Kutta condition (see

Fig. 2). The Kutta condition states that the fluid flowing over the upper and lower surfaces

of the airfoil meets at the trailing edge of the airfoil [3]. This condition explains how an

inviscid fluid can generate lift. In reality, it is friction between the boundary of an airfoil

and the fluid that allows for the flow to meet smoothly at the trailing edge. Thus, the Kutta

condition accounts for the friction at the boundary of an airfoil that is necessary for lift to

be generated.

Figure 2: Inviscid flow over an airfoil with the Kutta condition applied. Note how the flow
meets smoothly at the trailing edge. [15]
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The Kutta condition forces two additional constraints on the flow around an airfoil.

Firstly, the condition imposes that the leading and trailing edges of the airfoil are stagnation

points where the fluid velocity vanishes [3]. Secondly, the angle of attack of the airfoil under

consideration must remain well below a critical angle known as the stall angle. As the

angle of attack increases beyond the stall angle, the Kutta condition is no longer physically

applicable because the flow around an airfoil is no longer smooth and continuous.

3.2 Governing Equations for Inviscid Flow Theory

Having established the simplifications we will use to model the fluid flow around an airfoil,

we now develop the governing equations that must be satisfied. Since we are considering our

fluid to be perfectly incompressible, the density ρ of the fluid is constant. This means that

for any fluid element with a given mass, the volume of that mass must remain constant. The

principle of the conservation of mass is expressed for an incompressible flow by the equation

∇ · ~V = 0 (1)

Eq. 1 shows that for an incompressible fluid, the divergence of the velocity field ~V at

every point must be 0. In addition, the lack of frictional shear forces acting on elements of an

inviscid fluid causes the motion of the fluid to be purely translational, allowing the flow over

an airfoil to be modeled as irrotational [3]. An irrotational flow is defined as a flow where

the vorticity ~ω is zero at every point. Since vorticity is defined as the curl of the velocity

field, this imposes the condition

~ω = ∇× ~V = ~0 (2)

If the velocity field ~V can be expressed as the gradient of a scalar potential function φ,

such that ~V = ∇φ, we have the relation
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∇× (∇φ) = ~0 (3)

Eq. 3 is true because by identity the curl of the gradient of a scalar function is 0. Eq.

3 demonstrates that for an irrotational flow, there exists a scalar function φ such that the

velocity field of the flow is given by ∇φ. We therefore refer to φ as the velocity potential,

and to flows that result from a velocity potential as potential flows.

Plugging in ∇φ into Eq. 1 thus yields the final critical mathematical condition

∇ · (∇φ) = ∇2φ = 0 (4)

Eq. 4, also known as Laplace’s equation, is extensively studied in mathematical physics.

Solutions to this equation are referred to as harmonic functions, which are used to model the

irrotational, incompressible fluid flow around airfoils. Since Laplace’s equation is a linear

second order partial differential equation, the sum of particular solutions to the differential

equation is also a solution [3].

This means that, from a scalar velocity potential, we can also compute the stream function

Ψ of a flow solution. The streamlines of the flow are visualized by setting the stream function

Ψ equal to a constant. The relation between the velocity potential φ and the stream function

Ψ is given by the equations

−∂Ψ

∂x
=
∂φ

∂y
(5)

∂Ψ

∂y
= −∂φ

∂x
(6)

Eq’s. 5 and 6, known as the Cauchy-Riemann relations, show that the stream lines given

by the stream function and the equipotential curves given by the velocity potential are always

76Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



perpendicular. This is an important relation that makes conformal mapping a viable option

for transforming potential flows.

3.3 The Conformal Mapping Technique

As Section 2 indicates, airfoils have complicated, often non-symmetric geometries. This

makes it difficult to directly solve for the fluid flow around the airfoils using Laplace’s equa-

tion and potential flow theory. To simplify the problem, the conformal mapping technique

is used to extend the application of potential flow theory to practical aerodynamics [16].

A conformal map is the transformation of a complex valued function from one coordinate

system to another. This is accomplished by means of a transformation function that is

applied to the original complex function [4]. For example, consider a complex plane z shown

in Fig. 3(a). Coordinates in this plane are defined with the complex function z=x+iy. This

figure shows a simple uniform fluid flow with horizontal streamlines given by Ψ = iy and

equipotential curves given by φ = x.

Figure 3: A conformal mapping of a uniform flow with the transfer function w(z) =
√
z.

The vertical lines in (a) represent equipotential curves, the horizontal lines represent stream
lines. In (b), the conformal map maintains the perpendicular angle relationship between the
streamlines and equipotential curves.[10]

A conformal mapping can be used to transform this complex plane z into a new complex
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plane given by w = f(z), where in Fig. 3(b) f(z) is the transformation function w =
√
z.

The variables x and y in the z plane have been transformed to the new variables u and v.

Note that while this transformation has changed the relative shape of the streamlines and

equipotential curves, the set of curves remain perpendicular. This angle preserving feature

is the essential component of conformal mapping. Because the relative orientation of the

streamlines and potential curves remains the same, it can be proven that if a function is

harmonic in the z plane, it is also harmonic in the transformed w plane [4]. As we will show

in the next section, the flow around an airfoil shape can be developed by first solving for

the flow around a cylinder in the z plane, and then transforming this solution to an airfoil

in the w plane using a specific conformal mapping function.

4 Model of Fluid Flow around an Airfoil

4.1 Specific Solution to Fluid Flow around Cylinder

The first step to modeling the fluid flow around an airfoil is solving for the lifting flow around

a cylinder in the z plane. This lifting flow can be modeled with the superposition of three

basic, elementary flows. Because the solution for the flow around a cylinder has been studied

extensively and is a staple of many aerodynamic textbooks, we will not delve in the specifics

of the solutions in this paper.

4.1.1 Uniform Flow

The first incompressible flow that we will consider is the uniform flow. Consider a flow

with a uniform free-stream velocity V∞ that is oriented in the positive x direction, shown in

Fig.3(a). This uniform flow can be defined with the potential function [3]
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φ = V∞r cos (θ) (7)

Note that we are using a polar coordinate system, which will simplify calculations once

more complicated flows are superimposed. The resulting stream function for this flow is

Ψ = V∞r sin (θ) (8)

This simple flow satisfies the mathematical conditions for incompressible, irrotational

flow given by Laplace’s equation. Moreover, the streamlines and equipotential curves are

perpendicular, which can be confirmed by Eqs. 7 and 8. These conditions will apply to every

flow we consider.

4.1.2 Source and Sink Flow

Consider a flow where all the streamlines are straight lines converging or diverging from a

central point O. If the flow is converging to the central point, the flow is referred to as a

sink flow. Conversely, if the flow is diverging from the central point, the flow is referred to

as a source flow. The resulting velocity field for these flows only has a radial component Vr,

which is inversely proportional to the distance from O. With these boundary conditions in

place, the potential and stream functions for a source and sink are given as [3]

φ =
Λ

2π
ln (r) (9)

Ψ =
Λ

2π
θ (10)

Where Λ is the source strength, which is the rate of volume flow from the source, and

r is the distance from O. A positive Λ value refers to a source, whereas a negative Λ value
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refers to a sink. A source or sink flow satisfies Eq. 1 at every point except for the origin, at

which the divergence is infinite. The origin is thus considered a singular point. A diagram

of a source and sink flow is shown in Fig. 4(a).

4.1.3 Superposition of Doublet Flow

The source and sink flow can be superimposed to create an important flow known as the

doublet flow. Consider a source and sink flow of strength Λ separated by a distance 2d. As d

approaches 0, a doublet flow is formed, with a flow pattern shown in Fig. 4(b). The velocity

potential and stream function are given by the equations [3]

φ =
κ

2π

cos (θ)

r
(11)

Ψ = − κ

2π

sin (θ)

r
(12)

Figure 4: (a) A source/sink flow combination [4]. The source and sink are separated by a
distance 2d. (b) As d approaches zero, a doublet flow is formed. [3]

Where κ is the doublet strength. The superposition of the doublet and uniform flows

provides a model for the flow around a cylinder. Adding the potential functions given by

Eqs. 7 and 11 yields
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φ = V∞r cos (θ) +
κ

2π

cos (θ)

r
(13)

Note that this superposition of flows is justified by the linear nature of Laplace’s equation.

A plot of the resulting streamlines from the flow superposition is shown in Fig. 5(a). Note

that setting Ψ = 0 yields a circle of radius R, given by

R =

√
κ

2πV∞
(14)

The resulting flow external to R is a valid model of the incompressible, irrotational flow

around a cylinder. However, the entire flow field is symmetrical about the horizontal axis,

meaning that this flow generates no lift on the cylinder. To model a lifting flow, a vortex

flow must be superimposed.

4.1.4 Adding Circulation with Vortex Flow

The vortex flow is defined as a flow where all streamlines are concentric circles about a given

point O. The tangential velocity Vθ is inversely proportional to the distance from O. The

resulting velocity potential of the vortex flow is given by the equation [3]

φ = −Γθ

2π
(15)

Where Γ is the strength of the vortex flow, which is also referred to as the circulation.

The superposition of the doublet, uniform, and vortex flows yields a potential function and

a stream function by

φ = V∞r cos (θ)− Γ

2π
θ +

κ

2π

cos (θ)

r
(16)
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Ψ = V∞r sin (θ) +
Γ

2π
ln (r)− κ

2π

sin (θ)

r
(17)

The streamlines for this final superposition of three flows is shown in Fig. 5(b). Because

there is a vortex flow, the cylinder is now rotating with a finite angular velocity. This rotation

eliminates the symmetry along the horizontal axis, creating an uneven pressure distribution,

which generates lift. Eqs. 16 and 17 therefore are solutions to the lifting flow around a

rotating cylinder.

Figure 5: (a) Non-lifting flow over a cylinder formed by synthesis of doublet and uniform
flows. (b) Lifting flow over a cylinder formed by synthesis of doublet, uniform, and vortex
flows. [3]

4.2 The Lift Around a Rotating Cylinder

Once the flow around a rotating cylinder has been solved for, the lift can be computed by

means of the Kutta-Joukowski theorem. This fundamental theorem of aerodynamics relates

the lift per unit span on an airfoil to the speed V∞ of the airfoil through the fluid, the fluid

density ρ, and the circulation Γ. When Γ is known, the lift per unit span L′ becomes

L′ = ρV∞Γ (18)
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The definition of Γ as shown in Eq. 18 is the line integral of the velocity field over the

closed curve of the airfoil. Circulation is a conceptual tool that relates the lift on an object

to the nature of the fluid flow around it. Specifically, circulation is related to vorticity on

any open surface bounded by the airfoil curve using Stokes’ theorem

Γ =

∮
~V · d~s =

∫∫
(∇× ~V ) · d~S =

∫∫
~ω · d~S (19)

For the lifting flow around a cylinder, the only source of vorticity comes from the vortex

flow, which has an infinite vorticity at the origin but zero vorticity at every other point. This

point source of vorticity leads to the finite circulation Γ. However, recall that Γ is also the

strength of a vortex flow, as defined in Eq. 15. Therefore, for a flow given by Eq. 16, there

are an infinite number of arbitrary Γ values, each corresponding to a different flow solution

satisfying Eq. 4. The Γ value corresponding to the physically correct inviscid flow solution

for a specific cylinder must therefore be determined by applying the Kutta condition.

As mentioned earlier, the Kutta condition defines Γ as the value that creates stagnation

points at the x intercepts A and B of the cylinder in the z plane, as shown in Fig. 7(a) and

(b). At the cylinder’s boundary, there can only be a velocity component in the θ direction

because by definition, no flow can emerge from the cylinder. The velocity component in the

θ direction is given by [16]

Vθ = −(2V∞ sin (θ) +
Γ

2πR
) (20)

WhereR is the radius of the cylinder. The Kutta condition defines the velocity component

at an angle of β and -β to be 0, where β is the angle between the x axis and the line segment

from the x-intercept to the cylinder center, as shown in Fig. 7(b). Plugging β into Eq. 20,

setting Vθ=0, and solving for Γ yields
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Γ = 4πV∞R sin (β + α) (21)

Where α is the angle of the freestream velocity with respect to the x axis. Eq. 21 allows

for computation of the correct circulation value for a given cylinder in a given free stream.

4.3 Mapping from a Cylinder to an Airfoil with the Joukowsky

Transformation

Having solved for the flow around a cylinder with the superposition of three elementary flows,

we need to relate this solution to an airfoil shape. To accomplish this, we use a conformal

mapping function called the Joukowsky transformation. The Joukowsky transformation is

used because it has the property of transforming circles in the z plane into shapes that

resemble airfoils in the w plane [5]. Figure 6(a) shows a circle in the z plane defined by the

equation

z = beiθ (22)

Where b is the radius of the circle and θ ranges from 0 to 2π. The Joukowsky transfor-

mation is given by the function [16]

w(z) = z +
λ2

z
(23)

Where w is the function in the transformed plane, and λ is the transformation parameter

that determines the resulting shape of the transformed function. For λ = b, the circle is

mapped into a flat plate going from -2b to 2b, as shown in Fig. 6(b). On the other hand,

setting the transformation parameter λ larger than b causes the circle to be mapped into an

ellipse, as shown in Fig. 6(c).
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Figure 6: (a)A circle in the z plane with radius b=1 and center at the origin is transformed
to the w plane using the Joukowsky Transform. (b) For λ=1, the circle is transformed into
a flat plate of length 4b. (c) For λ > 1, the circle is transformed into an ellipse.

.

However, neither of the shapes in Fig. 6 resemble an airfoil. The airfoil shape is realized

by creating a circle in the z plane with a center that is offset from the origin, as shown in

Fig. 7(a). If the circle in the z plane is offset slightly, the desired transformation parameter

is given as [16]

λ = b− |s| (24)

Where s is the coordinates of the center of the circle. The transformation in the w plane

resembles the shape of an uncambered airfoil symmetric about the x axis, as shown in Fig.

7(c). The x coordinate of the circle origin therefore determines the thickness distribution of

the transformed airfoil.

If the center of the circle in the z plane is also offset on the y axis, the Joukowsky

transformation yields an unsymmetrical, cambered airfoil as shown in Fig. 7(d). This shows
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that the y coordinate of the circle center determines the curvature of the transformed airfoil.

The airfoil shapes created from the Joukowsky transformation are known as Joukowsky

airfoils. The x intercepts of the circle in the z plane become the leading and trailing edges

of the mapped airfoil in the w plane [5]. Fig. 7 also shows that the Joukowsky airfoil has a

cusp at the trailing edge, which is a mathematical property that is not present in real airfoil

shapes [12].

Figure 7: (a) Cylinder in z plane with center offset on the x axis. (b) Cylinder in z plane with
center offset on x and y axis. (c) Joukowsky Transform of cylinder in (a) with λ = b− |s|.
The transform results in a noncambered airfoil in w. (d) Joukowsky Transform of cylinder
in (b) with λ = b − |s|. Transform results in a cambered airfoil. In both (c) and (d) A and
B are stagnation points corresponding to the x-intercepts of the cylinders in (a) and (b).

.

In addition to the circle in the z plane being transformed, the flow around the circle
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can also be transformed because of the previously mentioned angle preserving feature of

conformal mapping functions. This requires that the velocity potential and stream function

given in Eqs. 16 and 17 be expressed as a complex function, just as the airfoil shape must

also be defined using complex variables. This is accomplished by expressing the velocity

potential and stream function in a complex potential, given by [4]

w(z) = φ+ iΨ (25)

Thus, the flow past a cylinder can be written with the complex potential [16]

w(z) = V∞(z +
R2

z
) + i(

Γ

2π
ln (z)) (26)

Because the flow solution can be transformed in the w plane, the circulation Γ derived

in Eq. 21 for a cylinder is the same as the circulation for the transformed airfoil. Because

of this, L′ calculated in Eq. 18 for a circle in the z plane is the same L′ for the transformed

airfoil in the w plane.

5 Simulation Results and Analysis

With the solution for the lifting flow around a cylinder and a method for converting this

solution into the flow around a Joukowsky airfoil, computational tools can be used to visualize

this flow and develop lift calculations for several real airfoils.

5.1 Computing the Streamlines around an Airfoil

The Joukowsky airfoil can be visualized by having a computational graphing program apply

the Joukowsky transform to an offset circle. The flow about this airfoil can be plotted by

generating a contour plot of the imaginary component of the complex potential given in Eq.
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26, which corresponds to the stream function of the flow. Fig. 8(a) shows the streamlines

of flow around a cylinder. Fig. 8(b) shows streamlines of flow about the corresponding

transformed Joukowsky airfoil at an angle of attack of 0 degrees.

Figure 8: Computer generated plot of (a) streamlines around cylinder in z plane and (b) cor-
responding Joukowsky airfoil. The plot was generated with V∞=100 m/s, α=0, and ρ=1.225
kg/m3. No lift is generated on the cylinder or the airfoil because of the symmetric fluid flow.
The figure shows streamlines meeting at the trailing edge of the airfoil, indicating the Kutta
condition is satisfied. The cylinder parameters used were x = .1 m, y = 0 m, r = 1.13 m.
Solution plotting algorithm was derived with help from [6]

.

The flow around the cylinder and the airfoil can be validated qualitatively. Since α is

zero, we expect there to be a symmetric distribution of streamlines about the x axis. This

appears in both the flows for the airfoil and the circle. We also expect the streamlines to

flow around the leading edge of the cylinder and airfoil and meet smoothly at the trailing

edge.
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5.2 Computation of Lift around NACA Airfoils

One of the potential applications of Joukowsky airfoils is that we can use them to model

the lift around NACA airfoils. However, this requires a method of matching transformed

Joukowsky airfoils to the NACA airfoils we wish to model. This method is needed because

the Joukowsky transform only maps a circle into an airfoil. Ideally, an inverse Joukowsky

transform could be used to map a desired airfoil shape into a simpler circular geometry, but

this method requires the use of branch cuts [4], a complex variables concept that is beyond

the scope of this paper.

Instead, we used a simpler “trial and error” method to determine the circles that would

produce airfoils most identical to the NACA airfoils we wished to model. We analyzed three

NACA airfoils: the NACA 0012, the NACA 2215, and the NACA 4412. These airfoils were

chosen because they are commonly used in airplane applications and have been well studied.

We first plotted each of these NACA airfoils, and then made an initial guess for a circle that

would transform into an airfoil that would resemble each NACA cross-section. We obtained

this initial guess from a similar Joukowsky transformation program offered by NASA [11].

We then modified the radius and center of the circle until the corresponding Joukowsky

airfoil visually matched the NACA airfoil. The final circle properties we arrived at for each

NACA airfoil are displayed in Table 1.

Table 1: Cylinder parameters used to generate Joukowsky airfoils

Airfoil Height X Value (m) Y value(m) Radius(m)
NACA 0012 -.107 0 1.027
NACA 2215 -.130 .01 1.110
NACA 4412 -.100 .06 1.130

In order to first plot the NACA airfoils, we used a set of quartic equations that plot

the upper and lower surfaces of the airfoil from the 3 properties given in a NACA 4-series
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airfoil. Analysis of these equations is not presented in this paper, but for these equations

the reader is referred to an external resource [1]. Plots of these NACA airfoils and the

Joukowsky airfoils we used to model them are shown in Fig 9. To confirm the validity of

these Joukowsky airfoils beyond a visual estimate, we performed a quantitative analysis to

determine the relative error in our model. This will be presented in the next section.

Figure 9: Comparisons between: (a) actual NACA 0012 Airfoil and Joukowsky model of
NACA 0012 airfoil (b) actual NACA 2215 Airfoil and Joukowsky model of NACA 2215
airfoil (c) actual NACA 4412 Airfoil and Joukowsky model of NACA 4412 airfoil

.

As Fig. 9 shows, the shapes of the Joukowsky airfoils do not match the shapes of

the NACA airfoils perfectly. We found that it was difficult to develop Joukowsky airfoils

that exactly match the NACA airfoils. The biggest reason for this is that Joukowsky air-

foils are an idealized mathematical shape, as mentioned earlier. The trailing edge of every

Joukowsky airfoil must end in a cusp because of the nature of the Joukowsky transformation,

whereas NACA airfoils have finite trailing edge angles. This cusp requirement means that

the Joukowsky airfoil will converge at the trailing edge more rapidly than the corresponding

NACA airfoil.

Once we found Joukowsky airfoils that closely matched the NACA airfoils, we computed

the lift coefficient Lc on each airfoil as a function of the angle of attack α using the Kutta-

Joukowsky theorem from Eq. 18 and the circulation equation from Eq. 21. We found lift

coefficients at angles of attack ranging from 0 degrees to 12 degrees. The lift coefficient is a

nondimensional coefficient that relates the lift generated by an airfoil, the dynamic pressure
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of the fluid flow around the airfoil, and the area of the airfoil. The lift coefficient is given by

the equation [16]

Lc =
Γ

2V 2
∞b

(27)

Because the lift coefficient factors in the dynamic pressure and the size of the airfoil, Lc

thus depends only on the shape of the airfoil and the angle of attack. Figs. 10 to 13 show

plots of the lift coefficient for each airfoil as a function of α. The data from our simulation is

plotted against a curve showing lift coefficients found using thin airfoil theory, an alternate

method of modeling lift on an airfoil. Thin airfoil theory models the flow around an airfoil

by treating the airfoil as a distribution of vortices along the mean camber line. This method

still relies on potential flow theory and thus utilizes the same incompressible, inviscid fluid

assumptions as our Joukowsky airfoil model. Therefore, as long as the thickness of the

airfoil is small compared to its chord length, lift coefficients found using the the thin airfoil

method provide a valid comparison point to lift coefficients found from Joukowsky airfoils.

The results obtained from thin airfoil theory can be assumed to reasonably predict the

linear portion of the relationship between the angle of attack of a real airfoil and the lift it

generates in a low speed flow [14]. Thin airfoil lift coefficients were determined by means of

an externally developed computational simulation [9]. For further information on thin airfoil

theory, the reader is referred to an external resource [8].

Fig. 10 shows the predicted lift curve for the NACA 0012 airfoil. The lift curve shows

that there is no lift generated at an angle of attack of 0 degrees. This is expected because the

NACA 0012 is an uncambered airfoil and is thus symmetric about the chord. When α = 0,

the flow about the airfoil is symmetric, and no lift is generated. Secondly, Fig. 10 also

shows that the lift increases proportionally with the angle of attack. This linear relationship

between lift coefficient and angle of attack is an important aerodynamic characteristic of
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Figure 10: Dependence of lift coefficient
on angle of attack for NACA 0012 air-
foil at V∞ = 100 m/s, ρ = 1.225 kg/m3.
The airfoil generates no lift at a zero an-
gle of attack due to the symmetry of the
NACA 0012 design. The lift data from
the Joukowsky airfoil matches the lift data
obtained from the thin airfoil method very
precisely.

Figure 11: Absolute value of difference in
lift coefficients for Joukowsky Airfoil and
actual NACA 0012 airfoil. Differences
are shown on a log scale. The results indi-
cate the lift coefficients are in agreement
to within 2-4 decimal places.

airfoils. The lift curve predicted from our Joukowsky airfoil matches the lift curve predicted

using the thin airfoil method very well. Fig. 11 shows the absolute value of the error in lift

curve data on a log scale as a function of α. The plot indicates that the two lift curves are

generally equivalent to within 2-4 decimal places.

Figures 12 and 13 show the aerodynamic performance of the NACA 2215 and 4412

airfoils, respectively. Since both airfoils are nonsymmetric about the x axis due to their

cambered shape, we would expect them both to have nonzero lift coefficients at a zero angle

of attack. Both airfoils satisfy this requirement, and furthermore, both airfoils have the

same linear response that was observed for the NACA 0012 airfoil. Unfortunately, the lift

curves predicted using our Joukowsky airfoil model do not match up as well with the results

from the thin airfoil method. Both airfoils seem to under-approximate the lift coefficient,
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Figure 12: Dependence of lift coefficient on angle of attack for NACA 2215 airfoil at V∞
= 100 m/s, ρ = 1.225 kg/m3. The lift data from the Joukowsky airfoil has a significant
discrepancy with the lift data obtained from the thin airfoil method at lower angles of attack,
although the data from the two models matches up better as the angle of attack increases.

especially at lower values of α. As α increases, the results from our model match up better

with the results from the thin airfoil method.

It is important to keep in mind that the linear response of Lc with increasing α is only

realistically valid over a certain range. As the angle of attack increases towards the stall

angle, the lift coefficient suddenly reaches a peak and then drops off rapidly. As mentioned

earlier, this occurs because the fluid flow around an airfoil no longer meets smoothly at the

trailing edge [3]. Mathematically, we interpret this to mean that the Kutta condition is no

longer applicable, and neither our model nor the thin airfoil method can be used to predict

the lift coefficient. While the exact value of the stall angle depends on a number of factors,

we are modeling the lift coefficient at angles of attack well below the stall angle for all three

airfoils.
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Figure 13: Dependence of lift coefficient on angle of attack for NACA 4412 airfoil at V∞ =
100 m/s, ρ = 1.225 kg/m3. The lift data from the Joukowsky airfoil has a small discrepancy
with the lift data obtained from the thin airfoil method at lower angles of attack, but this
discrepancy decreases as the angle of attack increases.

6 Error Analysis

6.1 Overview

Given that we initially used a visual trial and error method to compare our transformed

Joukowsky airfoils to the NACA airfoils, it is important to perform a quantitative error

analysis to analyze discrepancies in our model. However, there is an important observation

we can make without a specific quantitative analysis. The lift curves from the Joukowsky

airfoil matched up better with the lift curves obtained from thin airfoil calculations when an

uncambered airfoil was analyzed compared to the two cambered airfoils. This indicates that

discrepancies are larger when the airfoil has a non-symmetric geometry, and that inaccuracies

associated with our method are more apparent when modeling airfoils with a curved shape.
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6.2 Method of Error Analysis

Our primary form of error analysis was to compare properties of the NACA airfoils with

those of the Joukowsky airfoils. We determined that the two most important properties

to compare would be the area and perimeter of each airfoil. The area of each airfoil was

found using a trapezoidal approximation of the absolute value of the area enclosed by each

airfoil. To determine the perimeters of the NACA airfoils, we computed the arc length of the

upper and lower airfoil surfaces using the arc length formula for a single valued function [13].

The perimeters of the Joukowsky airfoils were computed by using the arc length formula for

a parametric equation [13]. The integration in the arc length formula was also evaluated

numerically using a trapezoidal approximation.

6.3 Error Analysis Results

Table 2 shows the results obtained from the perimeter and area calculations. The table

shows that the Joukowsky airfoils and the NACA airfoils have areas that are similar, but

perimeters that are different. Interestingly, the relative error between the actual NACA

airfoil perimeter and the Joukowsky airfoil perimeter is similar for each airfoil, around 20-

30%. This discrepancy in perimeter is due to the cusp in the Joukowsky airfoil, which causes

a more curved airfoil shape that increases the perimeter without increasing the enclosed area

significantly.

Unfortunately, the results in Table 2 do not provide a clear explanation for the discrep-

ancy in some of the lift curves. The NACA 0012 airfoil has a discrepancy in perimeter

between the actual airfoil and the Joukowsky airfoil, yet the lift curve for the Joukowsky

airfoil matches the results seen using thin airfoil theory. On the other hand, the Joukowsky

airfoils for the NACA 2215 and 4412 have both a discrepancy in the airfoil perimeter and

a discrepancy in the lift curve results. Thus, the effect of perimeter on the aerodynamic
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Table 2: Discrepancies between Joukowsky airfoil shapes and actual NACA airfoil shapes

Airfoil Type Property Joukowsky Airfoil Actual Airfoil Relative Error
(%)

Perimeter(m) 11.7914 9.1521 28.8
NACA 0012 Area (m2) 1.7184 1.6944 1.40

Perimeter/Area 6.8618 5.4014 27.0

Perimeter(m) 11.9729 9.7215 23.2
NACA 2215 Area (m2) 2.3242 2.3665 1.80

Perimeter/Area 5.1514 4.1079 25.4

Perimeter(m) 12.0025 9.9500 20.6
NACA 4412 Area (m2) 1.7608 1.9944 11.7

Perimeter/Area 6.8165 4.9890 36.6

performance is also unclear. It would appear that an airfoil with a larger perimeter would

maximize the circulation line integral seen in Eq. 19, and thus increase the lift. However,

the Joukowsky airfoils have a larger perimeter, but lower lift coefficients.

The error analysis shows that a comparison of the perimeter and area of the airfoils does

not shed light on the lift discrepancies seen in the last section. However, we can use the

results from Table 2 to develop an estimate of how much relative error to expect in our

model. To determine this relative error boundary, we divided the airfoil perimeter by the

area to obtain a final comparison parameter. We then computed the error in this parameter

for each Joukowsky airfoil. From this we concluded that the expected relative error in the

NACA 0012 airfoil is 27%, while the relative errors in the NACA 2215 and 4412 airfoils are

25% and 37%, respectively. Looking at the lift coefficient values in Figs. 10 and 13, our

results for the NACA 0012 and 4412 airfoils fall within this error boundary. However, the

maximum error in the lift coefficient values for the NACA 2215 airfoil exceeds the predicted

relative error calculated in Table 2.
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7 Conclusion

The overall goal of our analysis was to effectively model the fluid flow around airfoils using

the conformal mapping technique. We were able to successfully map the solution for the

inviscid flow around a cylinder to the flow around an airfoil shape using the Joukowsky

transformation. However, we had more varied results with our attempt to model the lift

around NACA airfoils. This variation was likely the result of differences in the shapes be-

tween the NACA airfoils and the Joukowsky airfoils, particularly at the trailing edge. While

the NACA 0012 was modeled successfully with our Joukowsky airfoil model, there were dis-

crepancies between our data and the thin airfoil data for the NACA 2215 and 4412 airfoils,

particularly at low angles of attack.

Further analysis in this field should focus on determining the exact cause of this error.

An analysis of the airfoil perimeter and area for both airfoil types demonstrated that nei-

ther of these properties were directly responsible for the error observed in the lift modeling.

However, an analysis of other geometric differences, such as the cusp in Joukowsky airfoils,

could uncover the reason behind the error. Another potential area of analysis is confor-

mal mapping with a more complicated transformation function, such as the Karman-Trefftz

transform, which accounts for the finite angle at the trailing edge of NACA airfoils.
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