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Abstract. Clustering is the act of partitioning a set of elements into subsets, or clusters, so
that elements in the same cluster are, in some sense, similar. Determining an appropriate number of
clusters in a particular data set is an important issue in data mining and cluster analysis. Another
important issue is visualizing the strength, or connectivity, of clusters.

We begin by creating a consensus matrix using multiple runs of the clustering algorithm k-means.
This consensus matrix can be interpreted as a graph, which we cluster using two spectral clustering
methods: the Fiedler Method and the MinMaxCut Method. To determine if increasing the number of
clusters from k to k + 1 is appropriate, we check whether an existing cluster can be split. Finally, we
visualize the strength of clusters by using the consensus matrix and the clustering obtained through
one of the aforementioned spectral clustering techniques.

Using these methods, we then investigate Fisher’s Iris data set. Our methods support the exis-
tence of four clusters, instead of the generally accepted three clusters in this data.
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1. Introduction. Clustering is the act of assigning a set of elements into subsets,
or clusters, so that elements in the same cluster are, in some sense, similar. For many,
the internet is a tool used to do everything from shopping to paying bills. One can
shop for clothes, groceries, movies, and more. A common theme throughout these
websites is the product suggestions that appear when you buy or view an item. These
product suggestions form one of the many applications of data mining and cluster
analysis. Companies such as Netflix use the concept of cluster analysis to create
product suggestions for their customers. The better the suggestions, the more likely
the customer is to buy products.

Cluster analysis can be applied to many areas including biology, medicine, and
market research. Each of these areas has the potential to amass large amounts of
data. There are dozens of different methods used to cluster data, each with its own
shortcomings and limitations. One significant problem is determining the appropriate
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number of clusters, which will be denoted throughout this document as k. The correct
choice of k is often ambiguous. If an appropriate value of k is not apparent from prior
knowledge of the properties of the data set, it must somehow be chosen. Another
important issue is visualizing the strength, or connectivity, of clusters. It is often
impossible to visualize the original data if it is high-dimensional, so the ability to
visualize the strength of a clustering would benefit the applications of data mining
and cluster analysis.

1.1. Contributions. Our paper addresses the issues of determining an appro-
priate number of clusters and of visualizing the strength of these clusters. We begin
by creating a consensus matrix (see Section 2.2) using multiple runs of the clustering
algorithm k-means (see Section 2.1). This consensus matrix can be interpreted as a
graph, which we cluster using two spectral clustering methods: the Fiedler Method
and the MinMaxCut Method. To determine if increasing the number of clusters from
k to k + 1 is appropriate, we check whether an existing cluster can be split. Finally,
we visualize the strength of clusters by using the consensus matrix and the clustering
obtained through one of the aforementioned spectral clustering techniques.

We then use our methods to investigate the Iris flower data set. Our results are
surprising; the Iris flower data set is generally accepted to have three clusters, but
our methods support the existence of four clusters. We determine that the cluster
corresponding the Iris setosa flowers can be split into two clusters. This clustering is
shown to be strong through the use of the visualization tool.

The remainder of the paper is organized as follows. Section 2 introduces the
concept of consensus clustering, Sections 3 and 4 discuss the Fiedler Method and the
MinMaxCut Method, respectively. We describe our method to determine k in Section
5 and how we visualize the strength of clusters in Section 6. In Section 7, we describe
our experimental results and in Section 8, our conclusions.

2. Consensus Clustering. Over time, dozens of different clustering methods
have been developed for data analysis. It is frequently unclear which clustering
method to use on a particular data set, since each method has shortcomings and
limitations [11]. Furthermore, it can be difficult to be confident in the accuracy of the
clusters provided by the clustering method since many clustering algorithms, such as
k-means, give non-unique answers. Consensus clustering has emerged as a potential
solution to these problems [14]. The goal of consensus clustering is to find a single
(consensus) clustering that is stronger than the existing clusterings. Specifically, the
goal is to find a clustering such that, for elements in a particular cluster, the frequency
with which these elements were placed together in previous clusterings is maximized.
In addition to representing the consensus over multiple runs of a clustering algorithm
such as k-means, this method changes the nature of the clustering problem from points
in Euclidean space to a graph (see Section 2.3).

2.1. The k-means Clustering Method. The k-means clustering method re-
quires the use of a distance metric. In our investigation of the Iris flower data set, we
use k-means clustering with the cosine metric. The cosine metric is defined as

cos θ =
〈x|y〉
||x|| ||y||

(2.1)
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Equation 2.1 measures the angle between nonzero vectors x, y in a real inner-
product space V . For more information about angles, inner products, and vector
norms, see [13].

The k-means clustering algorithm partitions n elements into k clusters. The first
step in the k-means clustering algorithm is to initialize k centroids. Centroids are
n-dimensional points in Euclidean space. The initial centroid locations are chosen
randomly among the coordinates of the data points themselves. The second step is
to measure the distance from every data point to each centroid. Each data point is
then clustered with the nearest centroid and the mean of the values of the elements in
each cluster becomes the new centroid. The previous two steps are repeated until the
clustering converges (i.e. the centroid locations do not change) [11]. Since the final
clustering depends on the choice of initial centroid locations, the clustering algorithm
does not give a unique answer.

2.2. Building the consensus matrix. In order to do consensus clustering, we
must first build a consensus matrix. In the consensus matrix, the (i, j) entry reflects
the proportion of clusterings in which element i was clustered with element j. For
example, consider two different clusterings of elements A, B, C, and D. In the first
clustering, elements A, B, and C cluster together and element D is a singleton cluster.
In the second clustering, elements B, C, and D cluster together and element A is a
singleton cluster. The square, symmetric matrix below is the consensus matrix for
these clusterings:


A B C D

A 0 0.5 0.5 0
B 0.5 0 1 0.5
C 0.5 1 0 0.5
D 0 0.5 0.5 0


Elements A and B cluster together in the first, but not the second, clustering.

Thus, there is a 0.5 in the (A,B) and (B,A) entries of the consensus matrix. A similar
process is used to obtain the remaining entries in the consensus matrix. There are
zeroes on the diagonal by convention.

2.3. Visualizing the consensus matrix. We can interpret the consensus ma-
trix as an undirected, weighted graph. For more information on graphs, see [3]. If we
consider A, B, C, and D to be vertices, we can interpret the consensus matrix from
Section 2.2 to be the weighted graph in Figure 2.1. The (i, j) entry of the consensus
matrix represents the weight of the edge connecting vertices i and j. The Fiedler
Method and the MinMaxCut Method are clustering algorithms that partition this
weighted graph to create clusters (see Sections 3 and 4).

3. Fiedler Method. The Fiedler Method partitions graphs to form clusters.
This method and the ideas behind it were developed over several decades, beginning
in 1968 with Anderson and Morely’s paper on the eigenvalues of the Laplacian matrix,
a special matrix in graph theory that will be defined in equation (3.1) [2]. In 1973
and 1975, M. Fiedler published papers on the properties of the eigensystems of the
Laplacian matrix [7, 8]. More recently, in 1990, Pothen, Simon, and Liou published
a paper applying Fiedler’s ideas to the field of clustering [15]. These papers are the
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Fig. 2.1. Graph corresponding to consensus matrix from Section 2.2

origins of spectral graph partitioning methods; methods that use the spectral, or
eigen, properties of a matrix to identify clusters.

3.1. Example of Fiedler Clustering. Consider the small graph in Figure 3.1
with 10 vertices along with its associated adjacency matrix. Note: each edge has
weight 1.

Fig. 3.1. Graph with 10 vertices and its adjacency matrix

The corresponding Laplacian matrix L is defined as

L = D−A,(3.1)

where A is the adjacency matrix, or matrix of weights, and D is a diagonal matrix
containing the row sums of A. Figure 3.2 shows the Laplacian matrix for the graph
in Figure 3.1.

Fig. 3.2. Finding Laplacian matrix for adjacency matrix in Figure 3.1
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It is generally known that the Laplacian Ln×n is a symmetric and positive semidef-
inite matrix whose rank is n − 1 if and only if the associated graph is connected.
Furthermore, Le = 0 when e is a column of ones. A complete discussion on the
Laplacian of a graph is contained in the text by Chung [5]. M. Fiedler proved that
the eigenvector corresponding to the second smallest eigenvalue of the Laplacian ma-
trix can be used to partition a graph into maximally intraconnected components and
minimally interconnected components. This eigenvector is referred to as the Fiedler
vector.

For example, the Fiedler vector associated with the graph in Figure 3.1 is:

v2 =



0.38
0.19
0.09
−0.40
−0.40
−0.40
0.16
0.38
0.28
−0.29


Fiedler’s theory says to cluster the graph using the signs of this eigenvector. The

rows with the same sign are placed in the same cluster, i.e. rows with a positive sign
are placed in one cluster while rows with a negative sign are placed in another. Thus,
for the 10 vertex graph, vertices 4, 5, 6 and 10 are placed in one cluster while vertices
1, 2, 3, 7, 8, and 9 are placed in another cluster. The results can be seen in Figure
3.3.

Fig. 3.3. Signs of the Fiedler vector and the partition made by the first iteration of the Fiedler
Method

It is, however, possible to have zeros in the Fiedler vector. One method for
handling these zeros is to arbitrarily assign the corresponding vertices to the cluster
with either positive or negative entries. This has the drawback of turning the Fiedler
Method into a non-unique clustering technique. Unfortunately, there is no uniform
agreement on how to classify vertices corresponding to zeros in the Fiedler vector.
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The next step in the Fiedler Method is to take each subgraph and partition
it using its own Fiedler vector. For our example, this second iteration works well
on the right hand part of the graph (see Figure 3.4). For this small graph, two
iterations are sufficient to provide well connected clusters, but as graphs become
larger, more iterations become necessary. There are different ideas for when one
should stop partitioning the subgraphs. We created an algorithm that creates a
specified number of clusters, k.

Fig. 3.4. Partition made by the second iteration of the Fiedler Method

3.2. Limitations. The Fiedler Method has gained acceptance as a viable clus-
tering technique for simple graphs. There are, however, some disadvantages to this
method. First, the Fiedler Method is iterative, so if any questionable partitions are
made, the mistake could be magnified through further iterations. Second, new eigen-
decompositions must be found at every iteration; this can be expensive for large data
sets. Finally, this method was designed for undirected, weighted graphs. Unweighted
graphs can be considered by assigning each edge to have weight 1. Directed graphs
can be considered as well through utilization of additional eigenvectors of L, but we
will not make use of these techniques.

4. MinMaxCut Method. Like the Fiedler Method, the MinMaxCut Method is
a spectral clustering method that partitions a graph. Spectral clustering methods use
the spectral, or eigen, properties of a matrix to identify clusters. There are a number of
spectral clustering methods, several of which are given in detail in [12]. Although the
Fiedler Method and the MinMaxCut Method are both spectral clustering methods,
the MinMaxCut Method can create more than two clusters simultaneously while the
Fiedler Method creates two clusters with each iteration.

4.1. Background. Before explaining the MinMaxCut Method, we describe a
similar, more intuitive, algorithm: the Ratio Cut Method. The goal of this method is
to partition an undirected, weighted graph into k clusters through the minimization
of what is known as the ratio cut. Given a graph, such as a consensus matrix, broken
into k clusters X1, X2, . . . , Xk, the ratio cut is defined to be

k∑
i=1

w(Xi, Xi)
|Xi|

(4.1)

where |X| is the number of vertices in X, X is the complement of X and, given two
subgraphs X and Y , w(X,Y ) is the sum of the weights of edges between X and Y .

6Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



CLUSTER AND DATA ANALYSIS

Finding the minimum ratio cut of a graph by checking every possible collection
of clusters is computationally prohibitive, but an approximation of the minimum can
be found using linear algebra. Given a choice of k clusters in a graph with n vertices,
let H be the n × k matrix with entries hij = 1√

|Xj |
if the ith vertex is in the jth

cluster, and 0 otherwise. Minimizing the ratio cut is then equivalent to minimizing
Tr(HT LH) over the set of matrices H whose columns form an orthonormal basis [12],
where L is the Laplacian matrix defined in equation (3.1) and Tr indicates the trace
of a matrix.

The conditions on H being constructed with entries based on the clusters can be
relaxed to be HT H = I, i.e. the columns of H form an orthonormal set of vectors
(see [13]). With this new condition, it is known that the minimum of Tr(HT LH)
over the set of matrices H whose columns form an orthonormal basis occurs when the
columns of H are the eigenvectors of L corresponding to the k smallest eigenvalues
[12].

With the original conditions for H, it is easy to determine which vertices are in
the same cluster: the ith and jth vertices are clustered together if and only if the ith
and jth rows of H are the same. The solution for H under the relaxed conditions
does not have equal rows, but one can use a clustering technique to group the rows
into k clusters. These clusters of rows correspond to clusters in the graph. Figure 4.1
shows the matrix H with both the original and relaxed conditions for the 10 vertex
graph in Figure 3.1 with k = 3. With the original conditions, we can see that vertices
1, 8, and 9 cluster together, vertices 2, 3, and 7 cluster together, and vertices 4, 5, 6,
and 10 cluster together. With the relaxed conditions, we cluster the rows of H using
k-means with k = 3 and find the same clusters as before. This is consistent with the
clustering found in Section 3.1, where the Fiedler Method was used to determine the
clusters.

Fig. 4.1. H with original conditions (left) and relaxed conditions (right)

4.2. Clustering with MinMaxCut Method. The algorithm we will use to
cluster data, the MinMaxCut Method, is a variation of the Ratio Cut Method. We
use the MinMaxCut Method because it creates clusters such that elements in the
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same cluster are similar and elements in different clusters are dissimilar, whereas
the Ratio Cut Method only creates clusters so that elements in the same cluster are
similar. The MinMaxCut Method was developed in 2003 by Ding, He, Zha, Gu, and
Simon [6]. Instead of minimizing the ratio cut, we minimize what is referred to as the
MinMaxCut, defined as:

k∑
i=1

w(Xi, Xi)
w(Xi, Xi)

(4.2)

where w(X,X) is the sum of the weights of edges within the cluster X.

Similar to the minimization problem described in Section 4.1, an approximate
solution can be found by creating a matrix H whose columns are the k eigenvectors
corresponding to the k smallest eigenvalues of D−1/2LD−1/2, where D is the diagonal
matrix used to create the Laplacian matrix. Consider the graph in Figure 3.1. In
Section 3, we clustered this graph using the Fiedler Method. To create clusters using
the MinMaxCut Method, the rows of H, and therefore the corresponding vertices on
the graph, are clustered using the k-means algorithm. When we cluster the rows of
H using k = 2 and k = 3, we end up with the same clustering found by the Fiedler
Method (see Figures 3.3 and 3.4).

4.3. Limitations. As with every clustering method, the MinMaxCut Method
has some disadvantages. First, the solution depends on the eigenvectors of D−1/2LD−1/2.
Some of the eigenvectors of L may not be continuous with respect to small changes in
its entries [13], so small changes in weights of edges may lead to significantly different
clusterings. Second, in the final step of this method, the rows of H must be clustered.
This means that any weaknesses in the clustering method used on H will become a
weakness of the MinMaxCut clustering. Finally, the MinMaxCut Method, like the
Fiedler Method, only works for square, symmetric matrices.

5. Determining k. For the clustering techniques that we have discussed it is
necessary to decide the value of k before running the algorithm. How do we know
what value of k should be chosen? This is an important question in cluster analysis,
one that is separate from the problem of actually clustering the data. The correct
choice of k is often ambiguous. If an appropriate value of k is not apparent from prior
knowledge of the properties of the data set, it must somehow be chosen.

5.1. The Algorithm. When applying spectral clustering methods to graphs,
one technique to determine the value of k is to use the eigengap, that is, to look
for where the jump from the kth to the (k + 1)th eigenvalue is relatively large. The
method we use to determine k is based on the MinMaxCut minimization method.
The MinMaxCut is generally monotonic in the number of clusters; that is, if you
make more clusters, the MinMaxCut will be larger. We compare the increase in the
MinMaxCut from k to (k+ 1) clusters to what one would expect the increase to be if
one split a perfectly clustered graph to achieve the (k + 1)th cluster.

For example, suppose the perfectly clustered graph G has been clustered into k
clusters X1, X2, . . . , Xk. Further, assume X1 is split into clusters B and C. The
MinMaxCut changes from∑k

i=1
w(Xi,Xi)
w(Xi,Xi)

to
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w(B,B)
w(B,B)

+
w(C,C)
w(C,C)

+
k∑

i=2

w(Xi, Xi)
w(Xi, Xi)

(5.1)

where B and C are complements with respect to all vertices. In the case of an even
number of vertices in X1, half of the vertices are in B and half are in C. In the
case of an odd number of vertices, nearly half of the vertices are in both B and
C. Since B and C each constitute approximately half the vertices of X1, half of
the edges between X1 and X1 will be edges between B and B. In addition, half of
the edges contained entirely in X1 will be edges between B and C, so w(B,B) =
1
2 (w(X1, X1) +w(X1, X1)). One quarter of the edges contained in X1 will be entirely
contained in B, so we conclude that

w(B,B)
w(B,B)

=
1
2 (w(X1, X1) + w(X1, X1))

1
4w(X1, X1)

= 2
w(X1, X1)
w(X1, X1)

+ 2(5.2)

The same analysis can be applied to C. Combining equations 5.1 and 5.2, we see
that MinMaxCut changes from

∑k
i=1

w(Xi,Xi)
w(Xi,Xi)

to

3
(
w(X1, X1)
w(X1, X1)

)
+ 4 +

k∑
i=1

(
w(Xi, Xi)
w(Xi, Xi)

)
.(5.3)

Therefore, equation 5.3 gives the expected change in the MinMaxCut by assuming
we split a perfectly clustered graph to achieve the (k + 1)th cluster. We define the
weight ratio to be the ratio of the actual change in the MinMaxCut to the expected
change in the MinMaxCut. If the weight ratio is high, then the cut made to create
the (k + 1)th cluster is not ideal. If the weight ratio is low, then the cluster may be
split further. While we do not have a specific cutoff value to determine whether or
not a cluster should be split, high values are numbers greater than 0.5 and low values
are numbers between 0 and 0.5.

To determine if increasing the number of clusters from k to k + 1 is appropriate,
we check whether an existing cluster can be split by looking at the weight ratio value
for each cluster. For example, if there are two clusters, we examine the weight ratio
value for splitting the first cluster and the value for splitting the second cluster. We
illustrate this method on the well known Leukemia data set.

5.2. Leukemia Data Set. The Leukemia data set first appeared in a 1999 arti-
cle in Science [10]; it is well known in the DNA microarray cluster analysis literature.
The data set contains bone marrow samples of 38 cancer patients. For each sample,
the gene expression levels for 5000 genes are given [4]. The samples in the Leukemia
data set can be broken into three groups, corresponding to three different types of
leukemia. Patients 1-19 were diagnosed with acute lymphoblastic leukemia, B-cell
subtype (ALL-B), patients 20-27 were diagnosed with acute lymphoblastic leukemia,
T-cell subtype (ALL-T), and patients 28-38 were diagnosed with acute myelogenous
leukemia (AML). Since we know how each patient was diagnosed, this data set is
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frequently used to evaluate the accuracy of a clustering method using either k = 2
(ALL/AML) or k = 3 (ALL-B/ALL-T/AML).

Since there are 38 patients and gene expression levels for 5000 genes, the Leukemia
data set can be expressed as a 5000 × 38 matrix. We created a 38 × 38 consensus
matrix from 1000 runs of k-means with k = 2 using the cosine metric. We first applied
the MinMaxCut Method to the consensus matrix with k = 2. One cluster contained
the AML patients, with the exception of patient 29, and the other cluster contained
the ALL patients with the exception of patients 6 and 17. Next, we found the weight
ratio values of the two clusters. The ALL cluster had a weight ratio value of 0.2892
and the AML cluster had a weight ratio value of 1.4872. This indicates that we could
split the ALL cluster but we should not split the AML cluster.

Next, we applied the MinMaxCut Method to the consensus matrix with k = 3.
The first cluster contained the ALL-B patients, with the exception of patients 6 and
17. These patients clustered with the AML patients. The second cluster contained the
ALL-T patients and the third cluster contained the AML patients, with the exception
of patient 29. This patient clustered with the ALL-B patients. We then found the
weight ratio values of each cluster. The ALL-B cluster had a weight ratio value of
4.5638, the ALL-T cluster had a weight ratio value of 0.7270, and the AML cluster
had a weight ratio value of 1.4872. These values indicate that none of the clusters
should be split.

These results agree with the experimental data. It is known that there are three
types of leukemia: ALL-B, ALL-T, and AML, and it is known how the 38 patients
should cluster. Our algorithm indicated that there should be three clusters and our
clustering is consistent with the diagnoses of the patients with only three exceptions
[10].

6. Visualizing the Clusters. Data visualization is an important area because
visuals frequently help us see patterns or trends that we might have missed otherwise.
The goal of the tool we developed is to help us visualize the strength of the clusters
found through the consensus clustering.

6.1. The Algorithm. The algorithm to visualize the consensus matrix is simple.
It looks at every nonzero entry in the consensus matrix C and creates a colored point
on what we refer to as the heat map. Recall that the (i, j) entry of the consensus
matrix reflects the proportion of clusterings in which element i was clustered with
element j. The color of a particular point depends on the value of the corresponding
entry in the consensus matrix. The colors are chosen as follows:

• Blue if 0.05 < C(i, j) < 0.1
• Cyan if 0.1 ≤ C(i, j) < 0.2
• Green if 0.2 ≤ C(i, j) < 0.3
• Yellow if 0.3 ≤ C(i, j) < 0.7
• Magenta if 0.7 ≤ C(i, j) < 0.8
• Red if 0.8 ≤ C(i, j) < 0.9
• Black if 0.9 ≤ C(i, j) ≤ 1

We obtain a clustering of the consensus matrix either through the use of the
Fiedler Method or the MinMaxCut Method. The heat map is then arranged so that
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elements belonging to the same cluster are adjacent to each other; the same element
order is used to index both the x and y axes of the heat map. The heat map is
characterized by colored blocks on the diagonal that correspond to clusters. This
idea was also developed in Monti, Tamayo, Mesirov, and Golub’s paper on consensus
clustering [14].

6.2. Heat Map of Leukemia Data. In Section 5.2 we clustered the Leukemia
data set into three clusters. Figure 6.1 shows the heat map for this clustering.

1 10 20 30
1

5

10

15

20

25

30

35

Heat Map of Leukemia Data with k=3

Fig. 6.1. Heat Map of Leukemia Data Set

On the x and y axes are the patient numbers (1-38). Each point in the heat map
shows the proportion of clusterings in which the corresponding patients on the x and
y axes were clustered together. Observe the first block on the diagonal. Most of the
points in this block are black, indicating that these points clustered together many
times. The second block on the diagonal is composed of all black points and the third
block on the diagonal contains some red points. These three blocks correspond to the
three clusters ALL-B, ALL-T, and AML. Because the points within these clusters are
mostly black, we can see that these clusters are strong. The yellow and blue points
outside of the blocks indicate that, occasionally, some unusual clusterings took place.
One such point in the top right corner of the heat map is yellow, indicating that
patients 1 and 38 were occasionally clustered together.

7. Experimental Results with Fisher’s Iris Data. Fisher’s Iris data set is
a multivariate data set introduced by R. Fisher in his 1936 paper about discriminant
analysis [9]. It is sometimes called Anderson’s Iris data set because E. Anderson
collected the data [1]. The data consists of 150 samples from three different types
of iris flower. Samples 1-50 are Iris setosa, samples 51-100 are Iris versicolor, and
samples 101-150 are Iris virginica. In each sample, four features were measured: the
length and width of the sepal and petal, in centimeters. Because this data clusters
fairly well into three clusters, it has become a standard measure of the strength of a
clustering algorithm.

7.1. Iris Data with k=3. We first constructed a consensus matrix using 1000
runs of k-means with k = 3. After creating the consensus matrix, we applied the
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Fiedler Method and the MinMaxCut Method to the consensus matrix using k = 3.
The resulting clusters correspond, for the most part, to the known species of each
flower. The exceptions were Iris versicolor flowers 67, 71, 73, 84, and 85, which clus-
tered with the Iris virginica flowers. These five misclassifications occurred with both
the Fielder clustering and the MinMaxCut clustering. Despite these misclassifica-
tions, the resulting clusters were fairly strong, as indicated by the heat map of the
consensus clustering (see Figure 7.1).

1 50 100 150
1
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100

150

Heat Map of Iris Data with k=3

Fig. 7.1. Heat Map of Iris Data Set with k = 3

In Figure 7.1, the x and y axes are the flower numbers (1-150). The first block on
the diagonal corresponds to the setosa cluster, the second to the versicolor cluster, and
the third to the virginica cluster. The versicolor and virginica blocks are entirely black,
indicating that these clusters are very strong. The green points between these two
blocks indicate that the flowers in these clusters were occasionally clustered together.
The setosa cluster, however, has many magenta points. This indicates that this cluster
is not as strong as the versicolor and virginica clusters (see Section 6.1).

To investigate this further, we found the weight ratio value of each cluster. The
setosa cluster had a weight ratio value of 0.3755 while the versicolor and virginica
clusters had weight ratio values of 0.6037 and 0.5881, respectively. These values
indicate that the setosa cluster may be split further while the versicolor and virginica
clusters should not be split further.

7.2. Iris Data with k=4. When we found the weight ratio values of the three
Iris clusters, there was an indication that there could be a fourth cluster by splitting
the setosa cluster. We then applied the Fiedler Method and MinMaxCut Method to
the consensus matrix using k = 4. Both clustering methods returned the same result:
the versicolor and virginica clusters remained as they were when k = 3, while the
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setosa cluster was split in two. These two clusters, referred to as setosa1 and setosa2,
are as follows:

• setosa1: 2, 4, 8, 9, 10, 13, 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 35, 36, 37,
39, 40, 42, 46, 50
• setosa2: 1, 3, 5, 6, 7, 11, 12, 14, 15, 16, 17, 18, 20, 22, 23, 33, 34, 38, 41, 43,

44, 45, 47, 48, 49
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Heat Map of Iris Data with k=4

Fig. 7.2. Heat Map of Iris Data Set with k = 4

Figure 7.2 shows the heat map of the consensus clustering with k = 4. The first
block corresponds to the setosa1 cluster, the second to the setosa2 cluster, the third
to the versicolor cluster, and the fourth to the virginica cluster. Consider the first two
blocks in Figure 7.2. This portion of the heat map is distinctly different from the first
block in Figure 7.1. While there were magenta and black points interspersed within
the block in Figure 7.1, the blocks in Figure 7.2 are solid black, with magenta points
in the surrounding area. These clusters appear to be quite strong. We confirm this
by finding the weight ratio values of these clusters. The setosa1 cluster had a weight
ratio value of 3.3177, the setosa2 cluster had a weight ratio value of 1.6209, and the
weight ratio values for the versicolor and virginica clusters were 0.6037 and 0.5881,
respectively. These values indicate that none of the clusters should be split further.

7.3. Splitting the setosa flowers. In the previous section, we found evidence
that the cluster containing the setosa flowers can be split further. To verify these
results, we clustered the setosa flowers themselves, without the versicolor and virginica
flowers. We first constructed a consensus matrix for the 50 Iris setosa flowers by
running k-means 1000 times using k = 2. We then applied the Fiedler Method
and the MinMaxCut Method to the consensus matrix. We found the same clusters,
setosa1 and setosa2, that we found in Section 7.2. Figure 7.3 shows the heat map
for this consensus clustering. This figure shows two strong clusters, the first of which
corresponds to the setosa1 cluster, the second of which corresponds to the setosa2
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cluster.
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Fig. 7.3. Heat Map of Iris setosa Data with k = 2

According to the USDA’s PLANTS database, there is only one subspecies of the
Iris setosa flower growing in the area in which the samples were collected [16]. Why,
then, do the Iris setosa flowers split into two clusters so well? Consider the comparison
of the sepal length and sepal width of the 50 Iris setosa flowers given as a scatter plot
in Figure 7.4. The red points (+) correspond to flowers in the setosa1 cluster while
the blue points (·) correspond to flowers in the setosa2 cluster.
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Fig. 7.4. Scatter Plot of Iris setosa clusters

Figure 7.4 shows that, despite the slight overlap between the red and blue points,
there is a noticeable separation between the setosa1 cluster and the setosa2 cluster.
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Flowers in the setosa2 cluster have a greater sepal width to sepal length ratio than
flowers in the setosa1 cluster. Although we will not make any definitive conclusions
on this matter, one possible explanation for this data is the existence of a different
subspecies of iris flower.

8. Conclusion. In clustering, there are several issues, including determining the
appropriate number of clusters for a particular dataset and visualizing the strength
of these clusters. We have described methods to deal with these problems, and we
have made a practical application of the proposed method studying what is known as
Fisher’s Iris Data Set. Through the use of our methods for determining the appropri-
ate number of clusters and for visualizing the strength of these clusters, we concluded
that there could be four clusters, instead of the generally accepted three clusters, by
splitting the Iris setosa cluster in two. These two sub-clusters differ significantly in
their sepal width to sepal length ratio, perhaps indicating the existence of another
subspecies of iris flower.
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