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Abstract

Combining two existing rigorous computational methods, for verifying hyperbol-
icity (due to Arai) and for computing topological entropy bounds (due to Day et al.),
we prove lower bounds on topological entropy for 43 hyperbolic plateaus of the Hénon
map. We also examine the 16 area-preserving plateaus studied by Arai and compare
our results with related work. Along the way, we augment the algorithms of Day et
al. with routines to optimize the algorithmic parameters and simplify the resulting
semi-conjugate subshift.

1 Introduction

Dynamical systems theory has seen the emergence of many rigorous computational meth-
ods in recent years. Such tools often extend the realm of provable theorems well beyond
what is possible with chalk and blackboard. This is particularly true of the recent au-
tomated tools to compute topological entropy bounds [18, 6] and to prove hyperbolic-
ity [1, 13, 16].

Let us briefly recall the relevant characteristics of these methods. Both techniques for
proving entropy bounds first construct a subshift of finite type (SFT), whose topological
entropy is easily computed and is a lower bound of that of the original system. Newhouse
et al. compute rigorous approximations of stable and unstable manifolds of periodic orbits,
and then construct a SFT using pieces of these manifolds; in this regard, their technique
could be considered a rigorous version of the trellis method. Day, Frongillo, and Treviño
(DFT) [6] construct a discrete multivalued map from a discretization of the phase space,
and then apply discrete Conley index theory to prove a semi-conjugacy to a particular
SFT. In certain settings, such as the one we study here, the DFT method is completely
automated, meaning that after a simple initialization, no further manual input is required.
It is unclear whether the method of Newhouse et al. shares this automation property.

Hruska [13] developed one of the first automated methods for rigorously verifying
hyperbolicity, based on the computation of cone fields. In contrast, Arai [1] employs a
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more indirect technique using the notion of quasi-hyperbolicity. His approach allows for
more efficient computations than Hruska, but does not guarantee that the nonwandering
set is not just a finite collection of periodic orbits, or even that it is nonempty.

In [1], Arai identifies several hyperbolic regions of the Hénon map:

fa,b(x, y) = (a− x2 + by, x) (1)

These regions are dubbed hyperbolic plateaus because topological entropy is constant
across any such region. Arai’s technique does not reveal anything about these topological
entropy values, however, and it is therefore natural to combine his computations with an
automated method for proving topological entropy bounds.

In this paper we use the DFT method [6] to compute lower bounds for topological
entropy of the hyperbolic plateaus of Hénon computed by Arai in [1]. The constant
entropy on each plateau enables us to extend a lower bound computation from a single
setting of parameter values to an entire region of the parameter space. Additionally, the
full automation of the DFT method enables us to study a total of 58 parameter values
with essentially the same manual effort as studying one. We use the DFT method as a
black box, but we give a high-level overview of the approach in Section 4, including new
techniques for improving robustness and simplifying the resulting SFT.

Theorems 5.1 and 5.3 summarize our results. To the author’s knowledge, all of these
rigorous lower bounds are the largest known for their corresponding parameters. We
selected the parameter regions so that the bounds obtained might give a global picture
of the entropy of the Hénon map as a function of the parameters; see Figure 1 for such a
picture.

We also study several of the area-preserving Hénon maps in Section 5.1, which have
been well-studied in the Physics community [12, 23, 7]. Recently, some precise rigorous
results emerged as well [2]. We find that our rigorous lower bounds match or are very
close to estimates given in previous work, and match the rigorous results exactly when
applicable.

2 Background

We first review basic definitions related to symbolic dynamics, topological entropy, and
hyperbolicity, in Sections 2.1 and 2.2. The DFT approach relies heavily on a combinatorial
version of the discrete Conley index; in Section 2.3 we discuss the index at a high level,
and introduce the combinatorial structures that relate it to our computational setting.

2.1 Symbolic dynamics and topological entropy

Define a symbol space Xn = {0, . . . , n − 1}Z to be the set of all bi-infinite sequences on
n symbols. It is well-known that Xn is a complete metric space. Let the full n-shift
σ : Xn → Xn be the map acting on Xn by (σ(x))i = xi+1. Given a directed graph G on n
nodes with n×n transition matrix A with Ai,j ∈ {0, 1}, we can define an induced symbol
space XG ⊆ Xn, where x ∈ XG if and only if for x = (. . . , xi, xi+1, . . . ), Axi,xi+1 = 1 for
all i. That is, XG consists of all sequences in Xn with transitions of σ allowed by the
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Figure 1: Rigorous lower bounds for topological entropy for the hyperbolic plateaus in Figure 4.
The height of each plateau in the visualization is proportional to the entropy bound computed.
See Theorem 5.1 or Figure 5 for the actual bounds.

edges of G. Equipped with the corresponding shift map σG : XG → XG, we call (XG, σG)
a subshift of finite type.

We use topological entropy to measure the relative complexity of different dynamical
systems. If the topological entropy of a dynamical system f , denoted h(f), is positive, we
say that f is chaotic.

Definition 2.1 ([15], adapted from [3]). Let f : X → X be a continuous map with respect
to a metric d. We say that a set W ⊆ X is (n, ε)-separated under f if for any distinct
x, y ∈ W we have d

(
f j(x), f j(y)

)
> ε for some 0 ≤ j < n. The topological entropy of f

is

h(f) := lim
ε→∞

lim sup
n→∞

log(sf (n, ε))

n
, (2)

where sf (n, ε) denotes the maximum cardinality of an (n, ε)-separated set under f .

While topological entropy can be difficult to calculate in general, there is a simple
formula for subshifts of finite type which is given in the following theorem. For a proof,
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see [15] or [21].

Theorem 2.2. Let G be a directed graph with transition matrix A, and let (XG, σG) be
the corresponding subshift of finite type. Then the topological entropy of σG is h(σG) =
log(sp(A)), where sp(A) denotes the spectral radius (maximum magnitude of an eigenvalue)
of A.

When studying a complex map f , it is sometimes useful to study a subsystem of f
which can be precisely related to f via a semi-conjugacy.

Definition 2.3. Let f : X → X and g : Y → Y be continuous maps for topological
spaces X,Y . A semi-conjugacy from f to g is a continuous surjection φ : X → Y with
φ ◦ f = g ◦ φ. We say that f is semi-conjugate to g if there exists a semi-conjugacy from
f to g. If additionally φ is a homeomorphism, then f and g are conjugate.

Particularly relevant to our setting is the following result.

Theorem 2.4 ([21]). Let f and g be continuous maps, and let φ be a semi-conjugacy from
f to g. Then h(f) ≥ h(g).

Note that if f and g are conjugate, Theorem 2.4 gives us h(f) = h(g). In other words,
topological entropy is invariant under conjugacy.

2.2 Hyperbolicity

To begin we define uniform hyperbolicity. Throughout the paper, we will refer to this
property simply as hyperbolicity. Let X be a manifold.

Definition 2.5 ([11]). A map f : X → X is said to be (uniformly) hyperbolic if for every
x ∈ X the tangent space TxX for f is a direct sum of stable and unstable subspaces; more
precisely, if we have TxX = Es(x)⊕ Eu(x), where Es(x) and Eu(x) satisfy the following
inequalities for some C > 0 and 0 < λ < 1, and for all n ∈ N:

1. ‖Dfn(v)‖ ≤ Cλn‖v‖ for all v ∈ Es(x).

2. ‖Df−n(v)‖ ≤ Cλn‖v‖ for all v ∈ Eu(x).

This structure can be thought of as a generalization of the structure of the Smale
horseshoe, namely that there are invariant directions, and there is uniform contraction
and expansion in the stable and unstable directions, respectively. Some useful properties
of hyperbolic systems are discussed below, but for more details see [21] and [11].

An important property of hyperbolic maps is that they are structurally stable [21],
which implies that all maps in the same hyperbolic region are conjugate. Thus, by Theo-
rem 2.4, the topological entropy is constant within such a region. For this reason, we will
henceforth call these regions hyperbolic plateaus.

Hyperbolicity often makes it easier to identify interesting dynamics, but it is important
to note that sometimes a system can be “vacuously” hyperbolic, in the sense that it is
hyperbolic but there is no recurrent behavior. A helpful concept in this context is the
nonwandering set.

Definition 2.6 ([21]). The nonwandering set of a map f is the set of points x for which
every neighborhood U of x has fn(U) ∩ U 6= ∅ for some n ≥ 1.
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2.3 Combinatorial structures and the discrete Conley index

As we will be performing rigorous computations, we will naturally be interested in finite
representations of the continuous map f : X → X in question. Our main tool in this regard
is a combinatorial enclosure, a discrete “outer-approximation” of f . We first discuss how
we discretize the phase space X, which we assume here to be a subset of Rn, though the
constructions that follow generalize to more complicated spaces as well.

We begin by setting up a grid G on X, composed of finitely many cubical complices
Bi. In practice, all elements of the grid are rectangles, which we call boxes, represented
as products of intervals (viewed in some nice coordinate chart); that is, for each Bi ∈ G,
we can write Bi =

∏n
k=1[x

i
k, y

i
k] for some xi, yi ∈ Rn. In the present paper, for each k the

interval widths yik − xik are constant for all i, meaning the shape of all boxes is the same.
For a collection of boxes K ⊆ G, we denote by |K| its topological realization, that is, its
corresponding subset of X.

In our setting, we create G by selecting one box B, called the initial box, which encloses
the entire area we wish to study. We then subdivide B evenly d times in each coordinate
direction, meaning we replace |B| with 2n boxes by splitting each coordinate in half, and
then we recurse on each of those boxes, with total recursion depth d. This gives a grid G
with 2dn boxes, each of size 2−d relative to the initial box B. The integer d will be refered
to as the resolution or depth.

After discretizing the phase space, we must discretize the map f itself. To do this we
introduce the combinatorial enclosure.

Definition 2.7. A multivalued map F : X ⇒ X is a map from X to its power set, so
that F (x) ⊆ X. If F is acyclic1 and we have f(x) ∈ F (x) ∀x ∈ X for some continuous
single-valued map f , then F is an enclosure of f .

Definition 2.8. Given an enclosure F of f , a combinatorial enclosure of f is a multi-
valued map F : G ⇒ G defined by F(B) = {B′ ∈ G : |B′| ∩ F (|B|) 6= ∅}.

The reason multivalued maps and enclosures are used in our computations is that, if
constructed properly, they enable rigorous results. In particular, for each B ∈ G we use
the interval arithmetic library Intlab [22] to compute rigorous outer approximations YB of
f(|B|), and let F (x) = YB for all x ∈ |B|. Defining F as in Definition 2.8, this technique
keeps track of the error terms in the computations of the image of a box, ensuring that
the true image f(|B|) is contained in |F(B)|. Note that |F| is also an enclosure of f .

In this combinatorial setting, we can apply a version of the discrete Conley index
to gather rigorous information about the dynamics of the underlying map. We will not
define the Conley index formally here, giving instead a high-level overview of the concepts
immediately relevant to our study. For a full treatment of Conley index theory, see [20, 17];
for the definitions and algorithms needed in our discrete setting, see [6].

Given some compact set N ⊆ X, its maximal invariant set is the set of points x ∈ N
such that there exists a trajectory of f through x which stays entirely within N for all
forward and backward time.2 A central concept of Conley index theory is that of isolation:

1F is acyclic if for all x, F (x) has trivial homology on all levels (no “holes”).
2That is, there exists some {xn}n∈Z ⊆ N such that f(xn) = xn+1 for all n ∈ Z and x0 = x.
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we say that an invariant set S (that is, a set with f(S) = S) is isolated if there is a compact
set N , called the isolating neighborhood of S, such that S is contained in the interior of
N and S is the maximal invariant set of N . From this notion, a (combinatorial) index
pair for the enclosure F is a pair (P1,P0) of sets of boxes satisfying a two properties:
(a) letting Pi = |Pi|, the set P1 \ P0 must be an isolating neighborhood, and (b) if we
contract the set P0 to a point denoted [P0], the map f induces on the pointed quotient
space (P1/P0, [P0]) must be continuous.3 Finally, the Conley index of the index pair
(P1,P0) is a particular topological invariant of its maximal invariant set based on relative
homology; in our setting, the index can be represented as a finite sequence of matrices
describing the map that f induces on each level of homology.4

With the Conley index, we can make strong statements about the behavior of f .
For example, if the Conley index corresponding to index pair (P1,P0) is nontrivial,5 the
maximal invariant set of P1 \ P0 is nonempty. Along the same lines, but using a more
nuanced analysis, the DFT method is able to take the Conley index and compute a SFT
which is semi-conjugate to f . We describe the DFT method at a high level in Section 4.1.
Note however that computing the Conley index in the form of an induced map on homology
is a difficult task in and of itself. For a thorough treatment of computational homology,
dealing with this and other applications, see [14]. For our computations, we use the
homcubes package [19], part of the software package CHomP [4].

3 Simplifying Subshifts

Given a subshift of finite type (XG, σG) for a graphG, it is often of interest to know whether
there is a graph H on fewer vertices such that (XG, σG) and (XH , σH) are conjugate. To
this end, we recall the notion of strong shift equivalence.

Definition 3.1 (Strong shift equivalence). Let A and B be matrices. An elementary shift
equivalence between A and B is a pair (R,S) such that

A = RS and B = SR. (3)

In this case, we write (R,S) : A → B. If there is a sequence of such elementary shift
equivalences (Ri, Si) : Ai−1 → Ai, 1 ≤ i ≤ k, we say that A0 and Ak are strongly shift
equivalent.

This notion is useful because of the following result due to R. F. Williams.

Theorem 3.2 ([24]). For directed graphs G and H, the corresponding subshifts (XG, σG)
and (XH , σH) are conjugate if and only if the transition matrices of G and H are strongly
shift equivalent.

3We define the induced map g on this space as follows: define g([P0]) = [P0], and for x ∈ P1 \P0, define
g(x) = [P0] if f(x) ∈ P0 and g(x) = f(x) otherwise.

4Specifically, the index is the shift equivalence class of the induced map on relative homology groups of
the quotient space. Again, for the full details, see [20, 17, 6].

5The index is trivial if it is the shift equivalence class of the zero map.
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Theorem 3.2 allows us to prove that two subshifts are conjugate by a series of simple
matrix computations. Finding matrices that give a strong shift equivalence, however, can
be a very difficult problem. Two methods of finding such equivalences are given in [15]:
state splitting, where a single vertex is split into two, or state amalgamation, where two
vertices are combined into one. In graph-theoretic terms, amalgamating two vertices is
equivalent to contracting them together. In general obtaining the smallest element of a
strong shift equivalence class may involve both splittings and amalgamations. We instead
focus on the simpler problem of obtaining H only by amalgamating vertices in G. This
also has the advantage of producing a matrix that is more useful for our needs in this
paper (see Section 4).

Let A be the binary n × n transition matrix for G. The following two conditions,
adapted from [15], will allow us to amalgamate vertices i and j.

Forward Condition: A~ei = A~ej and (~e>i A) · (~e>j A) = 0 (4)

Backward Condition: ~e>i A = ~e>j A and (A~ei) · (A~ej) = 0 (5)

Here ~ei denotes the column vector with a 1 in position i and zeros elsewhere. From a
graph-theoretic or dynamical systems point of view, the forward condition says that i and
j have the same image but disjoint preimages, and the backward condition says they have
the same preimage but disjoint images. See Figure 2 for an example.

a

b c

⇒ b ac

Figure 2: A forward amalgamation

Note that the backward condition for A is the same as the forward condition for A>.
The following result allows us to reduce A to a smaller n− 1 by n− 1 matrix B if either
of these conditions are satisfied for some pair of vertices. See e.g. [15, §2] for a proof.

Theorem 3.3. If i and j satisfy the forward condition (4) or backward condition (5) for
a transition matrix A, then there is an elementary shift equivalence from A to the matrix
obtained by amalgamating i and j.

By applying Theorem 3.3 repeatedly, as long as there exist i, j satisfying either the
forward or backward condition, one can reduce A to a much smaller representative of
its strong shift equivalence class. The resulting matrix B at the end of this process
corresponds to a subshift (XH , σH) which is therefore conjugate to (XG, σG).

For small enough matrices it is feasible to perform a simple brute-force search to find
the smallest B which can be obtained from A via amalgamations, but we would like a
more efficient algorithm for larger matrices. Unfortunately, it is shown in [10] that it is
NP-hard (computationally intractable) to find an ordering of amalgamations which yields
the smallest representative. In light of this hardness, we use the procedure outlined in

148



Algorithm 1 simplify subshift: Amalgamating a subshift of finite type

Input: subshift T ∈ {0, 1}n×n, number of trials K
Tmin ← T
for k from 1 to K do
π ← random permutation(n)
Tπ ← T (π, π) {relabel vertices}
repeat
amalgamated ← false

for (i, j) ∈ E(Tπ) ordered lexographically do
if conditions (4) or (5) hold for A = Tπ then
Tπ ← amalgamate(Tπ, i, j)
amalgamated ← true

break for
end if

end for
until not amalgamated {no further amalgamations}
if size(Tπ) < size(Tmin) then
Tmin ← Tπ

end if
end for
Output: Tmin

Algorithm 1, which is a essentially a randomized greedy algorithm performed many times.
Taking the number of trials k to be about n2 will typically give a reasonable approximation
factor, meaning that if m amalgamations are possible, the algorithm will perform roughly
m/3 or m/2 amalgamations. It remains an open question whether an algorithm exists
which has a provable approximation guarantee.

4 Techniques

Given a continuous map f : X → X, we will apply discrete Conley index theory to
compute subshifts of finite type to which f is semi-conjugate. This is the approach of
the DFT method [6], which we describe first in Section 4.1. We also add some new tools
which we present in Sections 4.2 and 4.3. Finally, we discuss implementation and efficiency
details in Section 4.4.

4.1 The DFT method

To obtain lower bounds on topological entropy, we compute a semi-conjugate symbolic
dynamical system using the DFT method, which is based on the discrete Conley index.
We use this method largely as a black box, and hence give only a rough sketch of the
technique here and refer the reader to Day et al. [6] for the full details. At a high level,
the method consists of three main steps:
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I. Discretize a compact subset of the phase space by constructing a grid G of boxes,
and compute a rigorous enclosure for the dynamics on these boxes as described in
Section 2.3.

II. Find a combinatorial index pair from these boxes and determine the Conley index
for this pair using [19].

III. From the index, compute a subshift to which the original system is semi-conjugate.

This approach is very general, and in principle could be applied to systems of arbitrary
dimension. A major benefit to using this method here, however, is that in our setting
it is completely automated. As long as one knows roughly where in the phase space the
invariant objects of interest are, one can simply plug in the parameters and compute. See
Section 4.4 for more details on the implementation.

An advantage to studying hyperbolic parameters of Hénon map (1) for |b| ≤ 1 is
that the nonwandering set is disconnected. This follows from Plykin theory, as discussed
in [21, §7.9], from which we know that any connected trapping region (a region N with
f(N) ⊆ int(N)) of the attractor has at least three holes. Considering a disc covering such
a hole, we see that since the image each hole must strictly cover another hole, an iterate of
this disk must eventually expand, which contradicts the area-preserving or area-shrinking
of the maps we are considering. Thus, all such trapping regions must be disconnected.

Since the nonwandering set is disconnected, we can bypass much of the complication
in the second step of the DFT method, that of finding an index pair. This is because the
invariant set will be naturally isolated; at a fine enough resolution, the collection of boxes
that cover the invariant set will already be separated into disjoint regions.

4.2 Reducing large subshifts

When applying the DFT method to complex systems, the resulting semi-conjugate sub-
shift (step III above) is often very large. In fact, the main result in [6] is shown via a
subshift with 247 symbols. While such large subshifts provide a topological entropy bound
and information about the number of orbits of a given period, they often carry little in-
tuition about the underlying structure of the dynamics. The question then becomes, how
can we distill more useful information from these large subshifts to get a more intuitive
understanding of the system?

The answer we propose here is to simplify the resulting subshift using amalgamations,
as described in Section 3. Specifically, we add a final step to the DFT method, where we
run the semi-conjugate subshift obtained through Algorithm 1. As we will see in Section 5,
in practice this procedure can greatly reduce the number of symbols required to describe
the system. In some cases this simplification reveals a simple underlying structure, such
as connections between a handful of low-period orbits, which would otherwise be difficult
to glean from the 200+ symbols of the original subshift. This simplification is also useful
in comparing our results to previous work and conjectures; using Algorithm 1, one can
attempt to amalgamate our computed subshift A to yield a target subshift B. We apply
this technique in Section 5.1 to partially confirm a conjecture of Davis et al. [5]; see
Figure 8 in particular.
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Figure 3: Sensitivity of the entropy bound with respect to the aspect ratio (a) and the area (b)
of the boxes. The map used was Hénon (1) with parameters (5.685974, -1), or plateau 14 from
Section 5.1.

As a final note, recall that the subshift generated by the DFT method has a useful
geometric interpretation: from [6] we know that we can associate a region Ni of the phase
space to each symbol si of the subshift A, such that any trajectory (. . . , s−1, s0, s1, . . .)
in A corresponds to a trajectory in the original system through the regions (. . . , N−1, N0,
N1, . . .).

6 Fortunately, amalgamation (and thus Algorithm 1) preserves this property in
the following sense. If A′ is derived from A by a sequence of amalgamations, each symbol
s′i of A′ can be expressed as an amalgamation of symbols of A. Taking N ′i to be the union
of the regions corresponding to these symbols, it is easy to see that the same trajectory
property holds for A′.

4.3 Robustness and scaling

A natural concern for any approach which involves discretizing the phase space is the
robustness of the method with respect to the choice of discretization. In our setting,
this discretization is determined by the resolution (depth), aspect ratio,7 and the precise
placement of the grid G.

Ideally, slight changes in these scaling parameters would have at most minor effects
on the resulting subshift or entropy bound, but there are several reasons why this is
unreasonable to expect. Perhaps most obvious is that a subshift of finite type, and even
the Conley index itself, is a discrete object, and one cannot expect any sort of continuity
in the scaling parameters when the output itself is discrete. Moreover, the combinatorial
isolation of the index pair depends on the topological properties of rigorous numerical
bounds on the images of boxes, which can be very sensitive to the precise grid parameters.
A simple example is in achieving disjoint regions; when trying to separate regions A and B

6In fact, these regions are connected components of the maximal invariant set of the index pair.
7We will use this term to refer to the shape of the boxes in higher dimensions as well.
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of the phase space with dist(A,B) = d, using a grid whose boxes Bi have width yik−xik = 4d
in each dimension k, great care must be taken in placing the grid, or the entire index pair
could degenerate. More subtle is a situation where the combinatorial image of A does
not overlap B, but does after a slight shift or rescaling of the grid. These issues raise
the question of the practical robustness of the DFT method with respect to these scaling
parameters.

To measure this robustness, we plot the computed entropy lower bound for a particular
Hénon map against the area and the aspect ratio of the boxes in Figure 3. There we define
w1 = yi1−xi1 and w2 = yi2−xi2 to be the width of a box Bi in dimensions 1 and 2, respectively
(recall that in our setting these are independent of i). The grid resolution may be defined
as −1

2 log2w1w2, or more generally as − 1
n log2 V (Bi), where V denotes the n-dimensional

volume. We choose the this formula so that after normalizing by the volume of the initial
box B, the notions of resolution and depth align.

Of course, the DFT method may behave very differently on other maps, but the
behavior shown is quite typical: the entropy lower bound is roughly monotone increasing
with respect to the resolution, and (very) roughly unimodal with respect to the aspect
ratio. This behavior is not surprising; the error from discretization decreases with the box
area, and both extremes of the aspect ratio (i.e. w1 >> w2 and w2 >> w1) should result
in essentially 1-dimensional information and hence a trivial entropy lower bound for most
maps.

While the DFT method appears to be relatively robust with respect to the grid reso-
lution, Figure 3(a) clearly shows a high sensitivity to the aspect ratio. Specifically, small
changes in the aspect ratio at depth 9 resulted in large jumps in the entropy lower bound,
even when close to the optimal ratio. While the behavior at depth 10 is somewhat more
typical, this sensitivity is still something to keep in mind. In particular, for the sake of
replication, care should be taken when altering and storing the aspect ratio.8,9

As mentioned above, the DFT method gives an entropy bound which is roughly mono-
tone increasing with the resolution. Similar plots shown in [6] suggested monotonicity,
but had very few data points; it is likely that a continuous resolution scaling would fill in
these plots to reveal a rough monotonicity in that case as well. This monotonicity is of
course beneficial behavior, as one would like the precision of the bound to increase with
the precision of the box covering, but it is especially useful in hyperbolic settings. By [21,
Theorem 9.6.1], hyperbolic systems admit a finite Markov partition of the invariant set,
and since the nonwandering set is disconnected (see Section 4.1), in theory this partition
is obtainable when the boxes are small enough. Thus we expect to obtain the true entropy
value at a high enough resolution, and by seeing where the entropy levels off we can be
confident, though not certain, that our lower bound is the actual value. We will apply
this intuition in Section 5.

8To find an appropriate aspect ratio for a given map, one can perform a scaling parameter exploration
at a lower depth, similar to the one in Figure 3(a).

9Note also that one can scale a map in a non-constant fashion to better align it with the grid. Consider
the map f(x, y) =

(
(a − (αyx)2 + by)α−α

yx, αyx
)
, which is just the Hénon map (1) conjugated by

g(x, y) = (αyx, y), and thus for large enough α would be more aptly analyzed by first conjugating by g−1.
More generally, such non-constant scaling may be used to focus on areas af the phase space where isolation
is more difficult.
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4.4 Implementation and efficiency

The computations in this paper were performed in Matlab, using Intlab [22], GAIO [8],
and CHomP [4]. The machines used had memory between 1 and 2 gigabytes and clock
speeds between 1 and 2.2 gigahertz. The runtimes varied, as we will describe below, but
ranged from a few seconds at low grid resolutions to several hours for high resolutions.

As mentioned above, it is useful to observe how the entropy bound changes as we
increase the grid resolution, but of course this procedure is not without cost. One would
expect the runtime of the bound computation to increase, perhaps dramatically, with the
resolution of the discretization. Empirically, the running time seems to grow very roughly
as nr where n is the dimension of the invariant set, and r is the resolution of the grid, as
defined above.

Fortunately, as we have mentioned several times, the DFT method and the new tech-
niques we add here are all completely automated. By this we mean that one needs only to
specify the map and the parameters to be studied (and the discretization parameters dis-
cussed above), and the rest of the computation, all the way to the semi-conjugate subshift,
is done without any further human action or input. Thus, although the computations may
be time-consuming for high resolutions, it is computation time, not human time.

This lack of manual intervention enables vast explorations of map and discretization
parameters. For this paper, a total of 58 parameter values of the Hénon map were studied:
43 in Section 5 and 15 in Section 5.1. For each of the 58 parameter values, we computed
entropy bounds at 64 or 72 different resolutions, yielding a total of over 3900 separate
computations. This exploration would have been infeasible without complete automation
(or a large team of researchers).

5 Hyperbolic plateaus of Hénon

We now apply the methods outlined in Section 4 to the real-valued Hénon map

fa,b(x, y) = (a− x2 + by, x)

for parameter values (a, b) such that fa,b is (uniformly) hyperbolic. Note that this excludes
the classical parameters (1.4, 0.3); for rigorous topological lower bounds in the classical
case, see [6] and [18].

Using the hyperbolic plateaus of Arai, we select representative parameter values to
study for each plateau, as shown in Figure 4. For each plateau, we use the continuous
resolution scaling approach mentioned in Section 4.3, to get a sense of how close our
bounds might be to the actual values. The entropy bounds we compute constitute our
main result, summarized in Theorem 5.1.
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Figure 4: Hyperbolic plateaus for Hénon from [1], with a on the horizontal axis and b on the
vertical axis. The label for each plateau is centered over the parameter values used to represent
the plateau.
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Figure 5: Rigorous lower bounds for topological entropy for the hyperbolic plateaus labeled 1
through 43 in Figure 4.
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Figure 6: Entropy versus resolution. The red horizontal line in each represents the maximum
lower bound computed (also printed below each plot). Plots are omitted for 0-entropy plateaus (2,
3, 4, 19, 25, 27, 32, 35, 38).

Theorem 5.1. Let Fi = {fa,b | (a, b) ∈ Ri}, where Ri is the ith plateau in Figure 4. Then
for all i and all f ∈ Fi we have h(f) ≥ hi, where the hi are defined below:

h1 = 0.6931 h5 = 0.6291 h6 = 0.4639 h7 = 0.5403 h8 = 0.5277
h9 = 0.5270 h10 = 0.4333 h11 = 0.6774 h12 = 0.5967 h13 = 0.5134
h14 = 0.5549 h15 = 0.4189 h16 = 0.5723 h17 = 0.5904 h18 = 0.5193
h20 = 0.6578 h21 = 0.4295 h22 = 0.4496 h23 = 0.5808 h24 = 0.6469
h26 = 0.6076 h28 = 0.4295 h29 = 0.6087 h30 = 0.3693 h31 = 0.3503
h33 = 0.5403 h34 = 0.4035 h36 = 0.4890 h37 = 0.4295 h39 = 0.6347
h40 = 0.5546 h41 = 0.6544 h42 = 0.6289 h43 = 0.6653.

Proof. For each Ri we selected (ai, bi) ∈ Ri as a representative (these choices are shown in
Figure 4). We then computed a combinatorial enclosure via interval arithmetic for fai,bi
at different resolutions, and for each resolution we computed a rigorous lower bound for
topological entropy using the DFT method (see Section 4.1). These bounds are summa-
rized in Figure 6. Finally, by [1] we know each Ri is (uniformly) hyperbolic and so for
each i we can apply the maximum lower bound achieved for (ai, bi) to all of Ri.

Figures 1 and 5 show an overview of our results. Note that the entropy values shown
are merely lower bounds, and not necessarily the true values. Since we are computing
these bounds for hyperbolic parameter values, however, we know from Section 4.3 that if
our entropy lower bound levels off as the grid resolution increases, we have strong evidence
that we have obtained the correct value. Typical index pairs from these computations are
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Figure 7: Two index pairs from the computations. The black is the set P0 while the colors
correspond to the amalgamated regions after applying Algorithm 1.

shown in Figure 7, with colored regions corresponding to symbols in the resulting subshift
after amalgamation using Algorithm 1.

In Figure 6, we show plots of entropy bounds computed versus the resolution, for each
of the 43 parameter values with a nonzero bound. Using the above heuristic, it seems
that for most of the plateaus, the bounds we computed should be exact or very close. A
few notable exceptions are plateaus 9, 10, 21, 28, 30, and 31, since the plots do not seem
to have leveled off, and we would expect many of these bounds to improve with further
computations. For plateaus 33, 34, 36, 37, and 39, it is unclear whether the plot has
leveled off. As we saw in Section 4.3, the DFT method is fairly robust with respect to the
grid resolution, and the entropy lower bound is roughly monotonic in the resolution. The
plots in Figure 6 reaffirm this, with very few exceptions.

While we have computed a large array of lower bounds, covering a vast portion of the
parameter space of the Hénon map, a recent result of Arai gives a method of rigorously
computing exact entropy values for (uniformly) hyperbolic Hénon [2]. In fact, in that
work he computes values for plateaus numbered 5, 7, 11, and 12 in Figure 4, which match
our lower bounds precisely. In that it computes exact entropy values, Arai’s method is
certainly superior to the DFT method in the case we study here, and indeed it would be
very interesting to use his method to test the accuracy of our other lower bounds. However,
it is important to note that since Arai’s method in [2] relies heavily on hyperbolicity, it
is not as generally applicable as the DFT method; in particular, it could not be directly
applied to the Hénon map for the classical parameter values, studied in [6], as the map is
not uniformly hyperbolic for those parameters.

While much of the parameter space in Figure 5 is covered by our lower bounds, there
is still much of the parameter space which is not hyperbolic, or has not yet been proven
to be hyperbolic. Thus, it remains in future work to lower-bound the entropy in the
remaining white regions. At first this seems like a daunting or impossible task, since in
the nonhyperbolic regions, we no longer have plateaus of topological entropy, and thus
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(a) The matrix TDFT



1 1 0 0 0 0 0 0
0 0 0 1 1 0 1 0
0 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 0 0 1 0 1
0 0 0 1 0 1 0 1


(b) The matrix TDMS from [5]

Figure 8: Amalgamation of the 42×42 symbol matrix obtained using the DFT method. The black
squares in (a) denote the nonzero entries of TDFT while the gray regions represent the amalgamated
symbols, which one can easily see match TDMS exactly.

cannot extend a bound from a single set of parameters to an entire region. Fortunately,
the DFT method can be applied to intervals of parameter values [a1, a2]× [b1, b2], yielding
a single lower bound which applied to the entire interval, as demonstrated in [6] and [9].
Thus, it would be of great interest to compute lower bounds on an interval tiling of
the Hénon parameter space, and then compare these bounds to those computed here; as
mentioned in Section 4.4, the automation of the DFT method would enable such parameter
explorations.

5.1 Area-preserving Hénon maps

When b = −1, the Hénon maps are area-preserving and orientation-preserving. This
case has been well studied, especially in the Physics literature. Starting in 1991, Davis,
MacKay, and Sannami (DMS) [5] conjectured that Hénon was hyperbolic for three values
of a (5.4, 5.59, 5.65) and conjectured conjugacies to symbolic dynamics for these three
values as well. In 2002, de Carvalho and Hall in [7] replicated the results for a = 5.4
using a pruning approach. In 2004, Hagiwara and Shudo in [12] used a different pruning
method to replicate all three of the values that DMS studied, and two more. They also
give estimates of the topological entropy for 4 ≤ a ≤ 5.7, which are displayed in Figure 10.
Finally in 2007 some rigorous results appeared by Arai in [1], where he proved that there
are 16 hyperbolic regions for b = −1, covering the parameters studied by DMS and the
two others studied by Hagiwara and Shudo. Arai goes on in [2] to prove that the subshift
conjectured by DMS for a = 5.4 is actually conjugate.

While our method cannot prove exact topological entropy values or conjugacies, we
can attempt to verify that the entropy of the subshifts given in [5] are lower bounds,
and perhaps show that the subshifts themselves are semi-conjugate. We focus first on
the a = 5.4 case, where Davis et al. conjectured that fa is conjugate to the subshift
corresponding to the transition matrix TDMS in Figure 8(b), which has topological entropy
h(TDMS) ≈ 0.6774. Note that this is the same plateau as plateau 11 from the previous
section.
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Figure 9: Index pair for a = 5.4 and b = −1, with collections of regions labeled to indicate the
symbols for the smaller, shift-equivalent symbol system.

Using our technique, we prove that f5.4 is semi-conjugate to a 42× 42 symbol matrix
TDFT, depicted in Figure 8(a). The topological entropy of this matrix is the same value,
h(TDFT) ≈ 0.6774. The fact that h(TDMS) = h(TDFT) suggests that the subshifts given
by TDMS and TDFT might be conjugate, and indeed we prove this in Theorem 5.2.

Theorem 5.2. The map f5.4 is semi-conjugate to the subshift TDMS given in Figure 8(b).
Moreover the symbols of TDMS correspond to the regions labeled in Figure 9, which are the
same regions conjectured by DMS.

Proof. Applying Algorithm 1 to TDFT, we obtain a strong shift equivalence between TDMS

and TDFT, which shows that the corresponding subshifts are indeed conjugate. Moreover,
the amalgamated vertices can be chosen so that we obtain the same partition that was
used by Davis et al., which is shown in Figure 9, with the regions labeled so as to match
the symbols (row indices) of TDMS.

Our method also gives lower bounds which match the values conjectured by Davis et
al. for a = 5.59 and a = 5.65, as well as the value conjectured by Hagiwara and Shudo
for a = 4.58. In addition to the these values, we also focus on 11 other values, which all
together correspond to the first 15 area-preserving plateaus computed by Arai (the 16th
is the maximal entropy plateau, which is plateau 1 in the previous section). Our results
are summarized in the following theorem.
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Theorem 5.3. The following entropy bounds hold for the Hénon maps fa = fa,−1. Here
we write h(f[a0,a1]) ≥ v to mean ∀a ∈ [a0, a1], h(fa) ≥ v.

1. h
(
f[4.5383, 4.5386]

)
≥ 0.6373 2. h

(
f[4.5388, 4.5430]

)
≥ 0.6373

3. h
(
f[4.5624, 4.5931]

)
≥ 0.6391 4. h

(
f[4.6189, 4.6458]

)
≥ 0.6404

5. h
(
f[4.6694, 4.6881]

)
≥ 0.6429 6. h

(
f[4.7682, 4.7993]

)
≥ 0.6459

7. h
(
f[4.8530, 4.8604]

)
≥ 0.6466 8. h

(
f[4.9666, 4.9692]

)
≥ 0.6527

9. h
(
f[5.1470, 5.1497]

)
≥ 0.6718 10. h

(
f[5.1904, 5.5366]

)
≥ 0.6774

11. h
(
f[5.5659, 5.6078]

)
≥ 0.6814 12. h

(
f[5.6343, 5.6769]

)
≥ 0.6893

13. h
(
f[5.6821, 5.6858]

)
≥ 0.6893 14. h

(
f[5.6859, 5.6860]

)
≥ 0.6893

15. h
(
f[5.6917, 5.6952]

)
≥ 0.6893

Proof. Using the DFT method (see Section 4.1), we computed rigorous lower bounds
on topological entropy for a single a value for each plateau; the representatives chosen
were the following: 4.5385, 4.5409, 4.5800, 4.6323, 4.6788, 4.7838, 4.8600, 4.9679, 5.1483,
5.4000, 5.5900, 5.6500, 5.6839, 5.6859, 5.6934. Combining these bounds with the hyper-
bolic plateaus computed in [1], and using Theorem 2.4, we can extend each bound to its
corresponding plateau.

Figure 10 shows a plot of the lower bounds from Theorem 5.3, shown against the esti-
mates computed by Shudo and Hagiwara in [12]. The 4 cases discussed above correspond
to plateaus 3, 10, 11, and 12. For these plateaus, our lower bounds match the estimates
exactly, and our bounds for plateaus 4, 5, and 6 are very close. This is roughly what
one would expect given the resolution plots shown in Figure 11. An interesting trend we
see in these data is that the algorithm performed better on the larger plateaus. This is
perhaps because the stable and unstable manifolds seem to be more transverse the farther
the parameters are from a bifurcation, making it easier to isolate the important regions
of the phase space.
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Figure 11: Entropy against resolution, as in Figure 6.
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[7] André de Carvalho and Toby Hall. How to prune a horseshoe. Nonlinearity, 15(3):R19–R68,
2002.

[8] Michael Dellnitz, Gary Froyland, and Oliver Junge. The algorithms behind GAIO-set oriented
numerical methods for dynamical systems. In Ergodic theory, analysis, and efficient simulation
of dynamical systems, pages 145–174, 805–807. Springer, Berlin, 2001.

[9] Rafael Frongillo and Rodrigo Treviño. Efficient automation of index pairs in computational
conley index theory. SIAM Journal on Applied Dynamical Systems, 11:82, 2012.

160

http://chomp.rutgers.edu/


[10] Rafael M. Frongillo. On the hardness of state amalgamation. Preprint, 2014.

[11] John Guckenheimer and Philip Holmes. Nonlinear oscillations, dynamical systems, and bi-
furcations of vector fields, volume 42 of Applied Mathematical Sciences. Springer-Verlag, New
York, 1990. Revised and corrected reprint of the 1983 original.

[12] Ryouichi Hagiwara and Akira Shudo. An algorithm to prune the area-preserving Hénon map.
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