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Abstract

Grad-div stabilization has recently been found to be an important tool for finite element
method simulations of incompressible flow problems, acting to improve mass conservation in
solutions and reducing the effect of the pressure error on the velocity error. Typically, the
associated stabilization parameter is chosen globally, but herein we consider local choices. We
show that, both for an analytic test problem and for lift and drag calculations of flow around
a cylinder, local choices of the grad-div stabilization parameter can provide more accurate
solutions.

1 Introduction

The finite element method is a highly successful tool for approximating solutions to a large class

of partial differential equations. However, as with all numerical solution techniques, it is subject

to many sources of error. Our interest herein is how the weak enforcement of mass conversation

can cause catastrophic error in simulations of incompressible flow problems such as Stokes and

Navier-Stokes equations. This topic has recently become a subject of significant interest, leading

to studies of stabilization techniques [20, 21, 19, 1, 22, 4, 6, 2, 11, 8] and divergence free elements

[28, 5, 23, 26, 7, 17, 25, 27, 18, 24]. Although divergence free elements are interesting and even

ideal in some situations, our focus herein will be on grad-div stabilization, which acts to reduce the

negative effects that arise from the weak enforcement of mass conservation. While divergence free

elements provide pointwise mass conservation and eliminate the effect of pressure error on velocity

error, their stability relies on special mesh constructions and choices of approximating polynomial

degree. Grad-div stabilization, however, can be used with any element choice or mesh and can be
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easily added to an existing code.

Since grad-div stabilization is both a useful and relatively new method, there is much interest

in developing an understanding of it to maximize its effectiveness, in particular with the choice of

the associated stabilization parameter. Typically, this parameter is chosen to be a global constant,

and recent work in [12] gives guidance on how to choose it. However, we propose to instead choose

the parameter locally and will demonstrate that doing so can produce significantly more accurate

solutions.

For the commonly used Taylor-Hood elements, where the velocity approximating polynomials

will be one degree higher than for pressure, theoretical analysis and numerical simulations originally

performed in [20] and later in [15] indicate that γ = O(1) is often a good choice. However, in [9]

it was shown that in certain situations, an optimal γ can be much larger than O(1), depending

on the size of the pressure relative to the size of the velocity, i.e. the size of
|p|

Hk

|u|Hs
(where s − 1,

k are the finite element approximating polynomial degrees for velocity and pressure, and | · |Hk

denotes the Hk(Ω) seminorm, as well as kinematic viscosity and structure of the mesh. In [9], it

was shown both analytically and with numerical studies that γ = 104 can yield far better results

than γ = O(1) for a natural convection problem.

The next natural investigation regarding the grad-div stabilization parameter is determining

whether it should be chosen locally, and if so, by what criteria? This question has been posed

in [21], where the authors considered local polynomial expansion for a particular element choice.

While this is a good start to our knowledge, however, no conclusive investigation has yet been done

to determine whether choosing γ locally rather than globally can significantly improve solution

accuracy; this paper addresses that topic. It is the purpose of this paper to show test problems,

including physically relevant ones, where choosing the parameter locally produces a significantly

better solution than choosing it globally.
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This paper is arranged as follows. First, we will discuss some of the analysis behind grad-div

stabilization as well as a benchmark problem which clearly displays its effectiveness. Then, we will

present two test problems where a locally chosen γ provides more accurate results than any globally

chosen one. Finally, we will analyze our results and discuss possible future work.

2 Preliminaries

We consider a domain Ω ⊂ Rd (d = 2 or 3) to be a convex polygon. Define the natural velocity

and pressure spaces to be the Hilbert spaces X = H1
0 (Ω)d and Q = L2

0(Ω), which are defined by

X = {v : Ω→ Rd : v ∈ H1(Ω)d and v = 0 on ∂Ω},

Q = {q : Ω→ R :

∫
Ω
|q|2dx <∞,

∫
Ω
q dx = 0}.

We will denote the L2 inner product by (·, ·). Recall that this is defined by (u, v) =
∫

Ω uv dx. The

L2 norm, || · ||, is defined by ||u|| =
√

(u, u) for u ∈ L2(Ω).

A regular, conforming triangulation of the domain Ω will be denoted by τh(Ω). The finite

element spaces (Xh, Qh) ⊆ (X,Q) are defined by

Xh = Xh(τh(Ω)) = {vh ∈ X |vh ∈ C0(Ω) ∩ Pk(e) ∀e ∈ τh(Ω)},

Qh = Qh(τh(Ω)) = {qh ∈ Q | qh ∈ C0(Ω) ∩ Ps(e)∀e ∈ τh(Ω)},

where Pk(e) denotes polynomials of degree k on each element. The most common choice of velocity

pressure elements is the k = 2, s = 1 case, which is called Taylor-Hood. We will refer to these

types of elements by the notation (Pk, Ps).

44



3 Grad-div Stabilization

To understand how grad-div stabilization works, consider the Stokes equations:


−ν∆u +∇p = f ,

∇ · u = 0,

u
∣∣
∂Ω

= 0,

(3.1)

which has variational formulation: find (u, p) ⊂ (X,Q) such that

ν(∇u,∇v)− (p,∇ · v) = (f ,v) ∀v ∈ X,

(∇ · u, q) = 0 ∀q ∈ Q.
(3.2)

Thus, the finite element formulation that arises is: find (uh, ph) ∈ (Xh, Qh) satisfying

ν(∇uh,∇vh)− (ph,∇ · vh) = −(f ,vh) ∀vh ∈ Xh,

(∇ · uh, qh) = 0 ∀qh ∈ Qh.
(3.3)

Note that (2.3.b) does not imply ∇ · uh = 0. However, since uh = 0 on ∂Ω,
∫
∂Ω uh · n ds = 0,

so by the divergence theorem,
∫

Ω∇ · uh = 0. Thus, mass is conserved in a global sense. Also, the

standard error estimate for (2.3) is given by [14]

ν||∇(u− uh)||2 ≤ C
(
ν inf
vh∈Xh

||∇(u− vh)||2 + ν−1 inf
qh∈Qh

||p− qh||2
)
, (3.4)

and thus for (P2, P1) Taylor-Hood elements,

ν||∇(u− uh)||2 ≤ Ch4(ν|u|2H3 + ν−1|p|2H2). (3.5)

Since ||∇ · uh|| ≤ ||∇ · (u − uh)|| ≤ ||∇(u − uh)||, it is true that the divergence error is optimal

for (Pk, Pk−1) Taylor-Hood elements, in the sense of divergence error converging to zero with rate

O(hk) as the mesh width tends to zero. However, for practical computations, there is a finest mesh
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on which one can compute, and so a small viscosity ν and large/complex pressure p can lead to large

divergence errors, despite it being optimal. Moreover, when ∇ · uh 6= 0, the pressure discretization

error can have a large input on the velocity error. Several examples of this phenomena are discussed

in [6].

Now consider the same Stokes problem, but include grad-div stabilization by adding the term

−γ∇(∇ · u) = 0 to the momentum equation. This leads to the finite element formulation

ν(∇uh,∇vh)− (ph,∇ · vh) + γ(∇ · uh,∇ · vh) = (f ,vh) ∀vh ∈ Xh,

(∇ · uh, qh) = 0 ∀qh ∈ Qh.
(3.6)

By penalizing the divergence, ||∇ ·u|| is decreased, and in turn decreases the error caused by weak

mass conservation. This can be seen by choosing vh = uh and qh = ph, which provides

ν||∇uh||2 + γ||∇ · uh||2 = (f ,uh) = ||∇uh||
(f ,uh)

||∇uh||
≤ ||∇uh||||f ||H−1 . (3.7)

Applying Young’s inequality to the right hand side and then dropping the ν
2 ||∇uh|| term gives

γ||∇ · uh||2 ≤
ν−1

2
||f ||2H−1 . (3.8)

Moreover, the error estimate becomes [22]:

ν||∇(u− uh)||2 ≤ C
(

inf
vh∈Xh

(ν + γ)||∇(u− vh)||2 + γ−1 inf
qh∈Qh

||p− qh||2
)
, (3.9)

and thus for (P2, P1) elements,

ν||∇(u− uh||2 ≤ Ch4
(
(ν + γ)|u|2H3 + γ−1|p|2H2

)
. (3.10)

Comparing to (2.5), observe that for complex pressure and small ν, the velocity error will be re-

duced if γ > ν, so long as the pressure error term in (2.7) is dominant.

To further illustrate the point that grad-div stabilization can increase accuracy, consider 2D
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channel flow past a forward-backward facing step. In this benchmark test problem, the channel

is given a length of 40 and height of 10. A square step of side length 1 is placed at the bottom

of the channel with the left-most side of the step at x = 5. As described in [16], the boundary

condition for the inflow and outflow is u = (y(10 − y)/25, 0)T . On the top and bottom walls, a

no-slip boundary condition is enforced. In a correct solution with f = 0 and ν = 1
600 , the flow

through the channel is smooth except for the occurrence of recirculating vortices that occur in the

immediate wake of the step [16].

The Navier-Stokes equations are used to solve this time-dependent problem with a Crank-

Nicolson temporal discretization and a (P2, P1) finite element spatial discretization. We note that

the analysis of error and effect of grad-div stabilization remains essentially the same in the Navier-

Stokes case as in the Stokes case discussed above. Results are shown in Figure 1 as the velocity

fields shown as streamlines over speed contours for the cases with (γ = 1) and without (γ = 0)

grad-div stabilization at t = 40. In each case, a time step of ∆t = 0.025 and a Delaunay mesh

with 4,800 total degrees of freedom were used. When grad-div stabilization was not used, the weak

mass conservation caused oscillations around the step. These oscillations compounded over time,

quickly destroying the solution’s accuracy. With the addition of the grad-div term, however, the

oscillations were greatly reduced, and the solution matched the resolved solutions found in [16].

We note these computations were done using the software freefem++ [10].

4 Choosing the stabilization parameter locally

As seen in the error estimate (2.5), grad-div stabilization can reduce the velocity error by re-

ducing the pressure discretization error term by scaling inf
qh∈Qh

||p− qh||2 by γ−1 instead of ν−1.

As γ is increased, the effect of this pressure term decreases, but the effect of the velocity term

inf
vh∈Xh

(ν + γ)||∇(u− vh)||2 increases, and hence γ gives control over which error term is dominant.

Thus, in cases where p is large or complex and ν and u are small, a large global γ is appropriate.

However, there are situations where p is small in some areas of a flow domain, but not others. In

these situations, it seems intuitive that γ should be large in some areas and small in others.
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Figure 1: Fluid flow around a step using (P2, P1) elements with ν = 1
600 at t = 40, with and without

grad-div stabilization. These plots depict velocity streamlines over filled speed contours.

Consider again the error equation (2.7) and expand it as

ν||∇(u− uh)||2 ≤ C

(
inf

vh∈Xh

((ν + γ)||∇(u− vh)||2) + γ−1 inf
qh∈Qh

||p− qh||2
)

≤ C

(
inf

vh∈Xh

∫
Ω

(ν + γ)|∇(u− vh)|2dx+ inf
qh∈Qh

∫
Ω
γ−1|p− qh|2dx

)
≤ C

(
inf

vh∈Xh

∑
e∈τh

∫
e
(ν + γ)|∇(u− vh)|2dx+ inf

qh∈Qh

∑
e∈τh

∫
e
γ−1|p− qh|2dx

)
.

Suppose now that γ is chosen element-wise: γ|e = γe. Then we have

ν||∇(u− uh)||2 ≤ C

(
inf

vh∈Xh

∑
e∈τh

∫
e
(ν + γe)|∇(u− vh)|2dx+ inf

qh∈Qh

∑
e∈τh

∫
e
γ−1
e |p− qh|2dx

)
. (4.1)

Since vh and qh are continuous, the infimums will not directly allow for an element-wise comparison

of velocity and pressure error. However, if we make the assumption that it can be well approximated
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by the discontinuous polynomial functions, then

ν||∇(u− uh)||2 ≤ C

(
inf

vh∈Xh

∑
e∈τh

∫
e
(ν + γe)|∇(u− vh)|2dx+ inf

qh∈Qh

∑
e∈τh

∫
e
γ−1
e |p− qh|2dx

)

≈ C

(∑
e∈τh

[
(ν + γe) inf

vh∈Pk(e)
||∇(u− vh)||L2(e) + γ−1 inf

qh∈Pk−1(e)
||p− qh||L2(e)

])
.

For (Pk, Pk−1) elements, standard approximation theory (see, e.g. [3]) then gives

ν||∇(u− uh)||2L2(Ω) . C
∑
e∈τh

(
(ν + γe)|u|2Hk+1(e) + γ−1

e |p|2Hk(e)

)
, (4.2)

which implies that when |p|2
Hk(e)

� |u|Hk+1(e) and ν is small, γe should be taken large, and vice

versa.

For equal order elements, the estimate changes to

ν||∇(u− uh)||2L2(Ω) . C
∑
e∈τh

(
(ν + γe)|u|2Hk+1(e) + γ−1

e h2|p|2Hk+1(e)

)
. (4.3)

Although here the pressure term is scaled by h2, the pressure seminorm is one degree higher. This

estimate implies γe should be taken large when h|p|Hk+1(e) � |u|Hk+1(e).

4.1 Analytic test problem with local grad-div stabilization

Our first test example is to consider (2.5) on Ω = (0, 1)2 with γ chosen locally. We choose an

analytical solution


utrue =

ut1
ut2

 =

cos(πy)

sin(πx)

 ,

ptrue = e4x.

(4.4)

For the finite element problem, the boundary condition is enforced nodally as a Dirichlet condi-

tion using the true solution. The right hand side f is calculated using Stokes equations with ν = 1
4

49



and the true solution. For this analytical test problem, error can be computed to give an exact

measurement of a solution’s accuracy. We measured the Xh error, which is equivalent to the H1(Ω)

error in this setting due to Poincaré’s inequality [14]. We thus define error by E = ||∇(utrue−u)||.

For this experiment, we calculated solutions using the scheme (2.6) with non-homogeneous

Dirichlet boundary conditions, using the (P b1 , P1) mini element (see, e.g. [14] for a detailed descrip-

tion of the mini element). A Delaunay mesh with h = 1
64 was used, which provided 29,600 velocity

degrees of freedom and 5,000 pressure degrees of freedom. First, we computed solutions using γ

chosen locally to be

γ|e = 4e4x.

This choice of γ was made because the size of |u|Hk+1 is roughly constant across Ω, but |p|Hk+1

grows exponentially with x. Thus, this choice of γ seems a reasonable first attempt at a local choice

to reduce error over a constant choice. For comparison, we also calculated solutions using many

choices of global γ’s, ranging from 0 to 104, and recorded the error.

Results of these tests are shown in Figure 2 and Table 1. The optimal error when using a

constant γ was found to be ||∇(u − uh)|| = 0.146 when γ = 100. When the local γ was used,

the error was ||∇(u − uh)|| = 0.100. Observe that this local choice is about 33% better than the

optimal global choice, and much better than when γ = 1 or γ = ν.

Table 1: H1 error for varying values of γ

γ H1
error

0 9.69
1 3.15
10 0.53
100 0.15
200 0.17
1000 0.32
4e4x 0.10
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Figure 2: Shown above is the H1 error of solutions generated from locally chosen and constant γ.
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4.2 Flow around a cylinder

Our next test compares locally and globally chosen γ in finite element computations for the bench-

mark problem of channel flow around a cylinder. The length and width of the channel are 2.2

and 0.41, respectively, and the center of the 0.1-diameter cylinder lies at the point (0.2, 0.2). The

boundary conditions for the inflow and outflow are set to be


u1(0, y, t) = u1(2.2, y, t) = 1

0.412
sin(3πt

4 y(0.41− y))

u2(0, y, t) = u2(2.2, y, t) = 0.

(4.5)

In addition, no-slip boundary conditions were enforced along the top and bottom walls, and the

initial condition is u(x, y, 0) = 0. The viscosity is chosen to be ν = 1
1,000 and the external force

f = 0.

When a fluid flows past a surface such as a cylinder, it exerts a force on the surface. Lift is defined

to be the component of that force that is exerted perpendicular to the oncoming flow direction,

while drag is defined to be the parallel component of the force. This problem was chosen because

it is of physical interest and the lift and drag around the cylinder can be computed, providing a

quantitative measure of solution accuracy even though the problem seemingly has no analytical

solution. As given in [13], lift (cl(t)) and drag (cd(t)) for this test problem are defined as follows:

cd(t) =
20

U2
max

∫
S

(
ρν
∂utS (t)

∂n
ny − pnx

)
dS, (4.6)

cl(t) = − 20

U2
max

∫
S

(
ρν
∂utS (t)

∂n
nx + pny

)
dS. (4.7)

For a description of the parameters of this definition and reference values for cd,max and cl,max,

see [13].

A barycenter-refined mesh with (P2, P1) elements was used, which gave 9,900 velocity degrees

of freedom and 1,270 pressure degrees of freedom. The scheme used to compute the solution u is
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given by

1
∆t(u

n+1
h − unh,vh) + (u

n+ 1
2

h · ∇un+ 1
2

h ,vh)− (p
n+ 1

2
h ,∇ · vh) + ν(∇un+ 1

2
h ,∇vh) = 0 ∀vh ∈ Xh,

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh.

(4.8)

We computed solutions using many constant γ’s, calculated the lift and drag coefficients from

each solution, and compared their maximum values to the reference values from [13]. Next, we

repeated this process using several different choices of γ chosen element-wise. Each choice consisted

of choosing a disk of a certain thickness (indicated by ρ in the results below) around the cylinder in

which to apply stabilization with γ = 1. The optimal choice γg, in which γ was chosen to provide

stabilization only in the immediate wake of the cylinder, as well as another local choice, where

γ = 1 only in a radius around the cylinder, are shown below in Figure 3.

0 0.5 1 1.5 2
0

0.2

0.4

 

 

γ = γ(ρ
g
)

0 0.5 1 1.5 2
0

0.2

0.4

γ = γ(ρ = 0.3)

Figure 3: This figure depicts how γ was chosen locally to obtain the results shown in Table 2. γ = 1
in the shaded areas and γ = 0 elsewhere.

The results of the tests are shown in Figures 4 and 5 and Table 2. It is evident from the

plots of the solution that using no grad-div stabilization produces an incorrect result while using

a constant or local γ for stabilization yields solutions that look visually similar. When the more

precise measure of solution accuracy, cd,max(t) and cl,max(t) are computed, however, we see that

many choices for a local γ yielded good or slightly better results than a constant γ. γg, on the
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other hand, produced a solution that was significantly more accurate than any constant γ.

0 0.5 1 1.5 2
0

0.2

0.4

γ = 0, t = 5

0 0.5 1 1.5 2
0

0.2

0.4

γ = 1, t = 5

0 0.5 1 1.5 2
0

0.2

0.4

γ = γ
g
, t = 5

54



0 0.5 1 1.5 2
0

0.2

0.4

γ = 0, t = 6

0 0.5 1 1.5 2
0

0.2

0.4

γ = 1, t = 6

0 0.5 1 1.5 2
0

0.2

0.4

γ = γ
g
, t = 6

0 0.5 1 1.5 2
0

0.2

0.4

γ = 0, t = 7

0 0.5 1 1.5 2
0

0.2

0.4

γ = 1, t = 7

0 0.5 1 1.5 2
0

0.2

0.4

γ = γ
g
, t = 7

Figure 4: These plots depict the velocity u given by using γ = 0, 1, γg at t = 5, 6, 7.
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Table 2: Lift and drag for varying values of γ. 2.94 and 0.48 are the reference values for drag and
lift, respectively.

γ drag lift

0 3.87 0.00
1 2.85 0.42

γ(ρ = 0.02) 2.95 0.03
γ(ρ = 0.2) 2.84 0.04
γ(ρ = 0.3) 2.85 0.42
γ(ρ = ρg) 2.98 0.44

5 Conclusion

We have shown that in certain cases, choosing the stabilization parameter γ locally instead of

globally can significantly improve results in solution accuracy for finite element computation of

Stokes and Navier-Stokes equations. In particular, when pressure is large or complex only in parts

of the domain, such as in our analytic test problem, choosing γ to be large only in the area of large

pressure can improve upon the solution produced by choosing a constant γ. In other cases, such

as the cylinder test problem, providing stabilization only in critical areas can significantly improve

results.
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6 Appendix

6.1 Freefem++ Code for the Analytic Test Problem

// defining the boundary

// the triangulated domain Th is on the left side of its boundary

verbosity = 0;

int it;

int nt = 10; //number of iterations

//variables

real theta = 0;

real L = 1;

border A1(t=0,1){x=t; y=0; label=1;};

border A2(t=0,1){x=1; y=t; label=2;};

border A3(t=0,1){x=1-t; y=1; label=3;};

border A4(t=0,1){x=0; y=1-t; label=4;};

real mshsize = 80;

mesh Th = buildmesh(A1(mshsize)+A2(mshsize)+A3(mshsize)+A4(mshsize));

plot(Th, wait=1);

fespace Xh(Th,P1b);
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fespace Qh(Th, P1);

// FEM variables

Xh u1, u2, v1, v2, gamma;

Qh p, q;

real nu = .25;

real pi = 3.14159265359;

real H1err;

func f1 = nu*pi^2*cos(pi*y) + 12*exp(12*x);

func f2 = nu*pi^2*sin(pi*x);

func utrue1 = cos(pi*y);

func utrue2 = sin(pi*x);

func utrue1x = 0.0;

func utrue1y = -pi*sin(pi*y);

func utrue2x = pi*cos(pi*x);

func utrue2y = 0.0;

Xh ptrue = exp(12*x);

real gammaval;

func gammafun = 500;//.02*exp(12*x);//100*sqrt(dx(ptrue)^2 + dy(ptrue)^2);

//create vectors to use in giving output later

int n=75,m=75;

real[int] xvec(n);

real[int] yvec(m);
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for (int ix = 0; ix < n ; ix++){

for (int iy = 0; iy < m ; iy++){

xvec[ix]=1.0*ix/(n-1);

yvec[iy]=1.0*iy/(m-1);

}

}

/* Solve Stokes: -nu Laplacian(u) + grad(p)=f, div u=0 */

problem Stokes([u1, u2, p], [v1, v2, q], solver = UMFPACK) =

int2d(Th)

(

// (grad u,grad v)

nu*(dx(u1)*dx(v1) + dy(u1)*dy(v1) + dx(u2)*dx(v2) + dy(u2)*dy(v2))

// -(p, div v)

- p*(dx(v1) + dy(v2))

// + (div u,q)

+ (dx(u1) + dy(u2))*q

// + eps*(p,q)

+ p*q*0.0000000001

// (div u,div v)

+ gammafun*(dx(u1)+dy(u2))*( dx(v1)+dy(v2) )

)

- int2d(Th)

(

// (f,v)

f1*v1 + f2*v2

)
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/* bc for test problem */

+ on(1,2,3,4, u1 = utrue1, u2 = utrue2);

//algorithm starts here

Stokes;

H1err = sqrt(int2d(Th)( (utrue1x-dx(u1))^2 + (utrue2x-dx(u2))^2 +

(utrue1y-dy(u1))^2 + (utrue2y-dy(u2))^2));

cout << "H1err" << H1err << endl;

plot(u1, wait = 1);

plot(u2, wait = 1);

plot(p,wait=1);

plot([u1, u2], value=true, coef=0.1, wait = 1);

6.2 Freefem++ Code for the Flow Around a Cylinder Problem

/**************************************************/

/***** domain/mesh for cylinder problem **************/

int nNS1=14,nNS=50,mNS=10,mNS1=20,nCNS=15; // Mesh 1 - 7600

//int nNS1=24,nNS=90,mNS=18,mNS1=28,nCNS=60; // Mesh 2 - 33000

//int nNS1=32,nNS=120,mNS=24,mNS1=32,nCNS=80; // Mesh 3 - 56000

//int nNS1=64,nNS=240,mNS=48,mNS1=64,nCNS=160; // Mesh 4 - 230000

border floorC(t=0,0.41){x=t;y=0;label=1;};

border floor(t=0.41,2.2){x=t;y=0;label=11;};
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border right(t=0,0.41){x=2.2;y=t;label=4;};

border ceilingC(t=0.41,0){x=t;y=0.41;label=5;};

border ceiling(t=2.2,0.41){x=t;y=0.41;label=111;};

border left(t=0.41,0){x=0;y=t;label=8;};

border C(t=0,2*pi){ x = 0.2+0.05*cos(t); y = 0.2+0.05*sin(t); label=99;}

mesh Th = readmesh("Cylinder_mesh1_BC.msh");

plot(Th);

real dt = 0.001;

real nbiter = 6500;

real uval = 0,pval=0;

real vval = 0;

real divval = 0;

real pxval = 0, pyval = 0;

real u1xval = 0, u1yval = 0, u2xval = 0, u2yval = 0;

real deltap;

real cd, cdVisc, cdConvec, cdPressure;

real cl, clVisc, clConvec, clPressure;

real maxcd, timemaxcd, maxcl, timemaxcl;

//func gammafun = bool( (((Th[Th(x,y).nuTriangle][0].x+Th[Th(x,y).nuTriangle][1].x+

Th[Th(x,y).nuTriangle][2].x) / 3 <= sqrt(0.05^2 - ((Th[Th(x,y).nuTriangle][0].y+

Th[Th(x,y).nuTriangle][1].y+Th[Th(x,y).nuTriangle][2].y)/3 - 0.2)^2) + 0.2)

&& ((Th[Th(x,y).nuTriangle][0].x+Th[Th(x,y).nuTriangle][1].x+

Th[Th(x,y).nuTriangle][2].x) / 3) >= 0.2) || (((Th[Th(x,y).nuTriangle][0].x+
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Th[Th(x,y).nuTriangle][1].x+Th[Th(x,y).nuTriangle][2].x) / 3

>= -sqrt(0.08^2 - ((Th[Th(x,y).nuTriangle][0].y+Th[Th(x,y).nuTriangle][1].y+

Th[Th(x,y).nuTriangle][2].y)/3 - 0.2)^2) + 0.2)

&& ((Th[Th(x,y).nuTriangle][0].x+Th[Th(x,y).nuTriangle][1].x+

Th[Th(x,y).nuTriangle][2].x) / 3) <= 0.2) );

real gammaval = 0.0;

// Define the finite element spaces.

fespace Xh(Th,P2);

fespace Qh(Th,P1);

// Velocity variables

Xh u2,v2,un2,unn2,e2,wbar1,wbar2,wn1,wn2,w1,w2,

wb1,wb2,temp1,temp2,v3,v4,vv1,vv2,phiTest1,phiTest2,gamma;

Xh u1,v1,un1,unn1,e1,phi1,phi2;

Qh pm=0, p=0, q, lambda;

Xh u1f,u2f,v1f,v2f,Ggw1,Ggw2, v1lift,v2lift,v1drag,v2drag;

Qh qf,pf;

func gammafun = 0.03;//abs(p / (dx(u1) + dy(u2) + .000001)) * (1/10000);

real Re=1000.0;

real nu=1.0/Re;

real PI = 3.141592653589793;

real t=0;
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func g = (1./(0.41*0.41))*sin(pi*t/8.)*6.*y*(0.41-y);

u1 = 0; u2 = 0;

un1=u1; un2=u2; // u^n

w1=0;

w2=0;

u1f=0;

u2f=0;

phi1=0;

phi2=0;

int itnl=0,iter=0,MaxNlIt=30;

int n=100,m=50;

real[int] xvec(n);

real[int] yvec(m);

for (int ix = 0; ix < n ; ix++){

for (int iy = 0; iy < m ; iy++){

xvec[ix]=2.2*ix/(n-1);

yvec[iy]=0.41*iy/(m-1);

}

}

problem cnle([u1,u2,p],[v1,v2,q],solver=UMFPACK) =

// use w1 and w2 as the filtered extrapolated term

int2d(Th)(

1.0/dt * ( u1*v1 + u2*v2 )

- p * ( dx(v1) + dy(v2) )
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+ 0.5* nu * ( dx(u1)*dx(v1) + dy(u1)*dy(v1)

+ dx(u2)*dx(v2) + dy(u2)*dy(v2) )

+ q * (dx(u1) + dy(u2))

+ gammafun*(dx(u1)*dx(v1) + dx(u1)*dy(v2) + dy(u2)*dy(v2) + dy(u2)*dx(v1))

+ p*q*(0.00000001)

// + 0.5*(v1 * (w1 * dx(u1) + w2 * dy(u1)) + v2 * (w1 * dx(u2) + w2 * dy(u2)))

+ 0.25*(v1 * (w1 * dx(u1) + w2 * dy(u1)) + v2 * (w1 * dx(u2) + w2 * dy(u2)))

- 0.25*(u1 * (w1 * dx(v1) + w2 * dy(v1)) + u2 * (w1 * dx(v2) + w2 * dy(v2)))

)

+ int2d(Th)(

-1.0 / dt * (un1 * v1 + un2*v2)

+ 0.5 * nu * ( dx(un1)*dx(v1) + dy(un1)*dy(v1) + dx(un2)*dx(v2) + dy(un2)*dy(v2) )

// + 0.5*(v1 * (w1 * dx(un1) + w2 * dy(un1)) + v2 * (w1 * dx(un2) + w2 * dy(un2)))

+ 0.25*(v1 * (w1 * dx(un1) + w2 * dy(un1)) + v2 * (w1 * dx(un2) + w2 * dy(un2)))

- 0.25*(un1 * (w1 * dx(v1) + w2 * dy(v1)) + un2 * (w1 * dx(v2) + w2 * dy(v2)))

)

+ on(4,8, u1 = g, u2 = 0)

+ on(1,11,5,111,99, u1=0, u2=0);

problem getPhi1([vv1,vv2,lambda], [phiTest1,phiTest2,q], solver = UMFPACK) =

//get Phi1 such that phi1 = 1 on 99 & 0 on others

int2d(Th)(

dx(vv1)*dx(phiTest1) + dy(vv1)*dy(phiTest1) +

dx(vv2)*dx(phiTest2) + dy(vv2)*dy(phiTest2)

+ lambda * (dx(phiTest1) + dy(phiTest2) )
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+ ( dx(vv1) + dy(vv2) ) * q

+ 0.000001 * lambda * q

)

+ on(99, vv1 = 1, vv2 = 0) //phi2 = 0 on all borders

+ on(4, 8, 1, 11, 5, 111, vv1 = 0, vv2 = 0);

problem getPhi2([vv1,vv2,lambda], [phiTest1,phiTest2,q], solver = UMFPACK) =

//get Phi1 such that phi1 = 1 on 99 & 0 on others

int2d(Th)(

dx(vv1)*dx(phiTest1) + dy(vv1)*dy(phiTest1)

+ dx(vv2)*dx(phiTest2) + dy(vv2)*dy(phiTest2)

+ lambda * (dx(phiTest1) + dy(phiTest2) )

+ ( dx(vv1) + dy(vv2) ) * q

+ 0.000001 * lambda * q

)

+ on(99, vv1 = 0, vv2 = 1) //phi2 = 0 on all borders

+ on(4, 8, 1, 11, 5, 111, vv1 = 0, vv2 = 0);

vv1=0;

vv2=0;

getPhi1;

v1drag=vv1;

v2drag=vv2;

getPhi2;

v1lift=vv1;
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v2lift=vv2;

u1=0;

u2=0;

un1=0;

un2=0;

for (iter=1;iter<=nbiter;iter++)

{

cout<< "********************************************************"<<endl;

cout<< "Timestep = " << iter << " " << u1[].n << " " << p[].n <<endl;

t = dt*iter;

// extrapolate, and set previous=current

w1 = 1.5*u1 - 0.5*un1;

w2 = 1.5*u2 - 0.5*un2;

un1 = u1;

un2 = u2;

cnle;

// calculate lift/drag, errors, save data
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cdVisc = int2d(Th)(nu * ( dx(u1)*dx(v1drag) + dy(u1)*dy(v1drag)

+ dx(u2)*dx(v2drag) + dy(u2)*dy(v2drag) ));

cdConvec = int2d(Th)( u1*dx(u1)*v1drag + u2*dy(u1)*v1drag +

u1*dx(u2)*v2drag + u2*dy(u2)*v2drag );

cdPressure = int2d(Th)(p*dx(v1drag) + p*dy(v2drag));

cd = -20.*(int2d(Th)((u1 - un1)*v1drag/dt + (u2 - un2)*v2drag/dt +

0.5*dx(u1)*dx(v1drag) + 0.5*dy(u2)*dy(v2drag) + dx(u1)*dy(v2drag) )

+cdVisc+cdConvec-cdPressure);

clVisc = int2d(Th)(nu * ( dx(u1)*dx(v1lift) + dy(u1)*dy(v1lift)

+ dx(u2)*dx(v2lift) + dy(u2)*dy(v2lift) ));

clConvec = int2d(Th)( u1*dx(u1)*v1lift + u2*dy(u1)*v1lift

+ u1*dx(u2)*v2lift + u2*dy(u2)*v2lift );

clPressure = int2d(Th)(p*dx(v1lift) + p*dy(v2lift));

cl = -20.*(int2d(Th)((u1 - un1)*v1lift/dt + (u2 - un2)*v2lift/dt

+ 0.5*dx(u1)*dx(v1lift) + 0.5*dy(u2)*dy(v2lift) + dx(u1)*dy(v2lift)

)+clVisc+clConvec-clPressure);

deltap = p(0.15,0.2)-p(0.25,0.2)+ 0.5 * ( dx(u1)(0.15,0.2) - dx(u1)(0.25,0.2) );

cout << t << " " << cd << " " << cl << " " << deltap << " "
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<< int2d(Th) (u1*u1 + u2*u2) << endl;

if (cd > maxcd){

maxcd = cd;

timemaxcd = t;

}

if (cl > maxcl) {

maxcl = cl;

timemaxcl = t;

}

cout<< maxcd << " " <<timemaxcd << " " <<maxcl << " " <<timemaxcl<<endl;

if (iter==1000 || iter==2000 || iter==3000 || iter==4000

|| iter==5000 || iter==6000 || iter==7000 || iter==8000 ){

ofstream myn("cyl_th_gdfn_gamma0.5_"+iter) ;

for (int ix = 0; ix < xvec.n ; ix++){

for (int iy = 0; iy < yvec.n ; iy++){

gamma = gammafun;

if ( (xvec[ix]-0.2)*(xvec[ix]-0.2)+(yvec[iy]-0.2)*(yvec[iy]-0.2)<0.05*0.05 ){

uval = 0.0 ;

vval = 0.0 ;

pval = 0.0 ;
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divval=0.0;

gammaval = 0.0;

}

else{

uval = u1(xvec[ix],yvec[iy]) ;

vval = u2(xvec[ix],yvec[iy]) ;

pval = p(xvec[ix],yvec[iy]) ;

divval = dx(u1)(xvec[ix],yvec[iy]) + dy(u2)(xvec[ix],yvec[iy]);

pxval = dx(p)(xvec[ix],yvec[iy]);

pyval = dy(p)(xvec[ix],yvec[iy]);

u1xval = dx(u1)(xvec[ix],yvec[iy]);

u1yval = dy(u1)(xvec[ix],yvec[iy]);

u2xval = dx(u2)(xvec[ix],yvec[iy]);

u2yval = dy(u2)(xvec[ix],yvec[iy]);

gammaval = gamma(xvec[ix],yvec[iy]);

}

myn << xvec[ix] << " " << yvec[iy] << " " << uval <<

" " << vval << " " << divval << " " << pval << " " <<

gammaval << " " << pxval << " " << pyval << " " <<

u1xval << " " << u1yval << " " << u2xval << " " <<

u2yval << endl;

}

}

}

}
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