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Abstract

The infinite expected value of the St. Petersburg Paradox has been a source of
contention within probability theory since its inception in the early 18th century. This
work has aimed to avoid supposition and instead has chosen to focus on empirical
evidence generated through simulation. Armed with sufficient evidence, this work
has modeled the sampling distribution of the St. Petersburg Paradox’s mean. This
model allows a prospective gambler or casino owner to know whether to partake in
the game at a given price. In addition, the resulting model has been discovered to be
highly adaptable to other similar distributions. Potential applications of this work to
earthquake magnitudes is also discussed.
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1 Introduction

Since its inception, probability theory has provided key insight for those interested in quan-
tifying risk. It has allowed statisticians, actuaries and others to collect statistics in the real
world and then make useful inferences regarding the underlying distribution being sampled.
However, there are cases in which a distribution may have such a ”heavy tail” that using
traditional statistics without caution to quantify the risks is highly unadvisable. Unlike cases
such as mortality or human height which have a very limited range of values they can take on,
some distributions outcomes can take on a wide range of values in which unlikely events can
have a substantial effect on the long-term average. The St. Petersburg Paradox is a famous
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probability paradox discussed originally in a series of letters in 1713 by Nicholas Bernoulli
[1], [2]. In it, the gambler flips a coin until he receives his first head. The distribution of
how many flips it will take follows a geometric distribution with probability of one half. The
paradox is created due to the fact that the person offering this game to the gambler will
have to pay out two dollars for the first flip and then twice as much for each successive
flip required. This is a clearly defined distribution, but when attempting to calculate the
expected value, the expectation does not converge to a finite value. By multiplying every
outcome by its corresponding probability, the expected value appears to be infinite.
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The paradox arises from the discrepancy between the expected value, often thought of as the
”fair” value for a game in probability theory and the one experienced in practice. Clearly
this game is not worth an infinite amount to the gambler since he is unlikely to receive more
than a modest gain and certainly a finite one. Much work has been done to demonstrate
the flawed conclusion of the St. Petersburg Paradox being worth an infinite amount. In
practice, the expected value can be used in almost all circumstances as a stand in for the
break even point of a distribution. However, by definition the expected value is only the
value the sample mean converges to as the sample size goes to infinity. Due to the Law of
Large Numbers, these two views of expected value rarely conflict as most of the time sample
means very quickly converge to their expected value. In the cases where large events play
a significant role, the Law of Large Numbers cannot be relied upon to converge the sample
mean to its expected value. In these situations, decision making must be done on the basis of
an individual’s comfort with risk and the sampling distribution of the mean over the number
of trials they are interested in attempting.

Since the origins of this paradox with Nicholas Bernoulli, [2], the St. Petersburg Paradox and
other probability distributions whose expectation is a diverging series have attracted atten-
tion from academia. Work done in the past mainly has focused on justifying the discrepancy
between the mathematical expected value and the real life value the game would have to a
prospective gambler, [1], [3], [7], [4]. Justification mainly follows two different paths. The first
is applying a utility transformation to recognize that there is a diminishing return to money,
which has the effect of making the adjusted expected value finite. The other approach is to
set some arbitrary high value as the cutoff point in which one disregards all values higher
than this as a possible outcome and then adjust the distribution accordingly.

There have been too many proposed utility models to mention them individually, but the
first began as a possible solution from Daniel Bernoulli, [1], who suggested that the ”moral
value” of log x to a gain of x.
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While this explanation does make the valid point that the marginal value of a dollar dimin-
ishes as one accumulates more of them in accordance with the law of diminishing returns,
it and other arguments made along similar lines do not answer why the absolute dollar ex-
pected value of the original problem is not infinite. Instead they answer the question ”Why
is the St. Petersburg Paradox not worth an infinite amount to a prospective gambler?”

The other most common argument is one which sets a cutoff value for the payoff for various
reasons. One reason might be that there is a maximum that any casino or institution would
be willing or able to pay, so all payoffs above this amount must be discarded. The other
cause is one of chance. There are events so unlikely that we could live a million lifetimes
and still have a very small probability of having them occur. These types of events, as the
reasoning goes, should not be included in the decision making process of the prospective
gambler. To make this argument clear, let us assume that we do not suspect any institution
could afford a payout of 250 or about 1, 126 trillion dollars and that we are not likely to get
forty-nine tails before our first head in our lifetime. Ignoring the insignificant adjustment for
the possibilities we are removing from the distribution on the remaining probabilities, the
expectation is remarkably different.
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Both the arguments above, along with countless other arguments proposed in academia in
the past three centuries have ”solved” the St. Petersburg Paradox by demonstrating why it
is finite. Further, they provide what they believe to be a ”fair” value for the game. The
problem is that almost every one of the many solutions to the paradoxes proposed in the
past result in inconsistent values which they deem as a fair offering price for the game. This
work uses simulation to study the actual sampling distribution of gains. While some previ-
ous simulation studies have been done, these works have provided scattered conclusions with
many questions unanswered. The most sophisticated simulation study of the St. Petersburg
Paradox this author has read comes from Ricardo Rodriguez’s, [10]. In his abstract, he writes
”Even more surprising is the absence of an extensive simulation study of finite St. Petersburg
sequences from the literature.”

Other than the work described above, simulation studies on the St. Petersburg Paradox have
followed two paths. One approach has been to study a single sample size’s distribution, [6].
The other main approach has been to simulate time series of the sample average over a large
number of trials and observe the behavior of the sample mean, [4], [9]. These two approaches
have generated two useful observations regarding the St. Petersburg Paradox. The first is
that the mean one arrives at even after a large sample is not enough to predict with any
reasonable accuracy the mean one will get if one repeats the experiment again. The second
observation is that the sample mean tends to grow logarithmically.
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In Rodriguez’s simulation study, a more complete work is done. Rodriguez presents in his
work the distribution of the sample mean for several sample sizes, which provides a much
more complete picture of the St. Petersburg Paradox. The primary result he observes is that
increasing the sample size results in a horizontal shift of the distribution of the sample mean
and that this distribution seems to retain a similar shape, [10].

These past studies have significant limitations. No study it seems as of yet has tackled the
issue of modeling the actual distribution of sample means itself. Providing mainly qual-
itative observations, previous simulation work has done little to move the St. Petersburg
Paradox from being largely a philosophical question into a tangible one. Given the many
highly skewed distributions in the real world now studied predominantly through the lens of
fractal geometry rather than probability theory, being capable of mathematically modeling
the most prominent diverging probability distribution seems worthwhile and is the primary
focus of this work.

In section 2 the sampling distribution of the mean is modeled for any sample size. In
section 3 this model is tested and found to accurately model the underlying distribution.
In section 4, it is discovered that this model can be extended to other distributions with
similar characteristics through a simple transformation. Finally, in section 5 the potential
applicability to the real world is demonstrated through the successful modeling of earthquake
magnitudes. In all, this work manages to go above its original ambitions of modeling the
St. Petersburg Paradox and has managed to model an entire class of distributions, including
some which occur in practice.

2 Creating an Empirical Model
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Figure 01: Median of sample means

1

The dataset used in this work consisted
of a million sample means for sample
sizes of 2, 4, 8, 16, . . . , 215 of the St. Pe-
tersburg Paradox. For example, to
create the sampling distribution of the
mean for 8 trials, you generate 8 tri-
als of the St. Petersburg Paradox and
take their average. Then you repeat
this process a million times and use
the data generated to study the distri-
bution of the sample mean of 8 tri-
als.

As a start to studying the sampling distribution of means, it is first important to find some
measure of central tendency. Since the sampling distribution of the mean for the St. Peters-
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burg Paradox is extremely skewed, the median is used as the measure of central tendency in
this study.

The median of the distribution of sample mean for each sample size is calculated and plotted
in Figure 01, which shows the median of the sampling distribution of the mean grows linearly
as the sample size grows exponentially. The fact that the median grows as the sample size
increases is a result of the inclusion of more unlikely events occurring. This is only the fiftieth
percentile of the distribution. To have a useful model of the distribution, a model must be
developed for all other percentiles. Because the median growth is linear, the distribution can
be modeled in relation to the median, a potentially simpler task. Since standard deviation
and other traditional measures of central tendency are not useful in studying this distribu-
tion, some other measure is necessary to study the distribution. After experimentation the
relationship chosen to be used in this work is a logarithmic one. Transforming percentiles by
logmedian(mean gain) provides a way to model the percentiles of the distribution for different
sample sizes.
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Figure 02: Percentiles of the distribution of mean gain for 24 trials
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Figure 03: Percentiles of the distribution of mean gain for 215 trials
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Figure 04: Transformed version of Figure 02

1

We observe in Figure 02 and Figure
03 that there is a strong similarity be-
tween the plots of the sampling distri-
bution of the mean gain for different
sample sizes. The first observation is
that with apparent asymptotes at 0 and
1, the percentiles seem to be a ver-
sion of the logit function, the inverse
of the famous logistic function. With

the percentiles transformed by log
(

p
1−p

)
,

where p is the percentile, the func-
tion becomes much more clear (Figure
04).
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Figure 05: Growth in parameter a
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Figure 06: Growth in parameter b

1

The same observations made for the distribution of sample means for 24 trials can be made
for all other sample sizes studied. Therefore, every sample size can be modeled using nonlin-
ear regression with an exponential function in the form aebx + c. Further, we observed that
the coefficient c was very close to 1 − a for every sample size tested. Thus, the model was
conveniently simplified to only having two parameters in a(ebx − 1) + 1.
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Figure 07: Linearize parameter a

1

Next, we created a model for a and b with re-
spect to the sample size. Above in Figure 05
and Figure 06 are the parameters a and b in
a(ebx−1)+1 for each sampling distribution.
As can be seen, the plot of the b parameter
is much more volatile than a. However, it
does have a strong linear relationship with
the sample size. After performing linear re-
gression on the b parameter, it allows for a
more precise relationship for a by repeating
the nonlinear regression with b fixed in the
form a(eb̂x − 1) + 1, where b̂ represents the
predicted value of b for each respective sam-
ple size. Through observation, it is discov-
ered that a can be modeled linearly after re-
placing a by the reciprocal of the square root of a, (Figure 07).

At this point we have an acceptable model for the sampling distribution of the means for
any sample size. The function for the sampling distribution of the means is below, where n
is the log2(sample size) and p is the percentile between 0 and 1.
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f(n, p) = (2.53 + n)

[
1

(.65+0.115n)2
( p
1−p)

0.2+0.01n
+1− 1

(.65+0.115n)2

]

For example, we can take a look at the famous case of 2048 trials by Compte de Buffon
in which he arrived at $9.82 as the mean gain from his experiment,[3]. According to the
model that we have found, that value would be only the 14th percentile of the distribution.
If a casino had done a similar experiment to Compte de Buffon and set the entry fee at
$9.82 then there would be an 86% chance of loss. The 86th percentile, an event of similar
likelihood on the higher end of the distribution, would be $28.83.

For a more meaningful case, let us think of a gambler who plans on playing the St. Petersburg
Paradox 1024 times and wants to be 95% sure of not losing money. The highest price this
gambler would accept as entry fee would be f(10, 0.05) = $7.93.

3 Determining Goodness-of-fit

Comparing the actual percentile values to the ones predicted is not particularly useful for
determining goodness of fit because it would result in inevitable illusory increases in the
error for higher percentiles, which grow in magnitude very quickly, and for larger sample
sizes which tend to also have larger values being studied. Since the model is built to fit
the power one must raise the median to get the percentile, comparing the power one must
exponentiate median to in order to get the percentile to the one predicted by the model would
be a better test of how well the model performs. The following table shows the difference
between the predicted log transformed mean gain and those observed in simulation of 10, 000
trials of each sample size independently of the data used to create the model itself. For testing
purposes, generating sample sizes of 10, 000 have seemed to consistently to represent a pretty
precise picture of the underlying distribution itself, and is assumed to be large enough to
test the quality of fit of the model to the data.

Table 01: Difference between observed and predicted percentiles of mean gain

Percentile
.20 .40 .50 .60 .65 .70 .75 .80 .85 .90 .95

23 0.0228 0.0087 0.0016 0.0198 0.0041 0.0153 0.0530 0.0435 0.0399 0.0684 0.0949
25 0.0171 0.0012 0.0031 0.0024 0.0017 0.0045 0.0159 0.0096 0.0265 0.0354 0.0699
27 0.0135 0.0044 0.0001 0.0051 0.0065 0.0013 0.0035 0.0008 0.0111 0.0202 0.0594
29 0.0141 0.0045 0.0003 0.0037 0.0043 0.0027 0.0007 0.0005 0.0049 0.0169 0.0473
211 0.0141 0.0037 0.0008 0.0039 0.0052 0.0001 0.0016 0.0002 0.0110 0.0096 0.0368
213 0.0135 0.0031 0.0003 0.0024 0.0040 0.0018 0.0005 0.0015 0.0036 0.0092 0.0416
215 0.0123 0.0034 0.0002 0.0032 0.0037 0.0018 0.0034 0.0048 0.0007 0.0014 0.0298

Based on the results in Table 01, the model seems to be a good match of the actual percentiles
observed in simulation. This model seems to be by far the most accurate predictor of results
of the St. Petersburg Paradox created to date.
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4 Generalizing Model to Other Similar Distributions

For applications beyond the St. Petersburg Paradox, one would ideally be able to handle
other distributions in which the median of their sampling distribution of the mean grows
linearly as their sample size grows exponentially. Through experimentation it can be shown
that any geometric or exponential random variable where every outcome is raised to power so
that the expectation can be written as

∑∞
i=1 c or

∫∞
0

cdx , where c is any constant, will have
its median grow linearly as its sample size increases exponentially. For example, if you take
an exponential variable with mean E(x) = 1 and then transform that variable by ex, then
the expectation is

∫∞
0

exe−xdx =
∫∞
0

dx = ∞ . A case with a different geometric variable
would be one with mean E(y) = 3 that is transformed by 3y which creates the expectation∑∞

i=1
2
3
× 3i × 3−i =

∑∞
i=1

2
3
= ∞.

Using various continuous and discrete cases of distributions similar to the St. Petersburg
Paradox with different median lines, it was observed that any two distributions with the
same median growth will have very similar sampling distributions of their means. This
allows for the modeling of any distribution with a linear median growth as the sample size
increases exponentially to be modeled by the St. Petersburg Paradox to change its median
line of y = x + 2.53 (the base) to match the distribution you are interested in. Below
are the errors similar to the previous error table the discrete and continuous versions of
the St. Petersburg Paradox described above. The error tables are generated by comparing
the actual percentiles of 10, 000 trials of each sample size and the St. Petersburg Paradox
adjusted to match the other’s median line.

Table 02: Difference between observed and predicted percentiles for geometric distribution

Percentile
.20 .40 .50 .60 .65 .70 .75 .80 .85 .90 .95

23 0.0157 0.0008 0.0199 0.0044 0.0092 0.0142 0.0783 0.0270 0.0008 0.0568 0.0099
25 0.0094 0.0028 0.0086 0.0005 0.0136 0.0169 0.0090 0.0019 0.0327 0.0672 0.0133
27 0.0117 0.0020 0.0029 0.0022 0.0000 0.0054 0.0082 0.0064 0.0426 0.0113 0.1114
29 0.0141 0.0054 0.0023 0.0037 0.0068 0.0061 0.0046 0.0162 0.0044 0.0002 0.0452
211 0.0141 0.0044 0.0015 0.0028 0.0007 0.0035 0.0011 0.0037 0.0086 0.0575 0.0012
213 0.0110 0.0011 0.0026 0.0026 0.0019 0.0055 0.0088 0.0120 0.0046 0.0163 0.0234
215 0.0105 0.0046 0.0021 0.0005 0.0031 0.0051 0.0060 0.0020 0.0106 0.0053 0.0621

The errors are calculated identically to how they were before with the St. Petersburg error
table. The values are the difference between the observed exponents from the median and
those predicted by the model created for the St. Petersburg Paradox after adjusting it to have
an identical median line. As can be seen, the errors generated are competitive with the errors
seen before with the St. Petersburg Paradox itself, which indicates that the St. Petersburg
Paradox can be used to model other distributions with a similar growth in the median of
their sampling distribution of the mean.
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Table 03: Difference between observed and predicted percentiles for exponential distribution

Percentile
.20 .40 .50 .60 .65 .70 .75 .80 .85 .90 .95

23 0.0207 0.0028 0.0030 0.0182 0.0215 0.0354 0.0459 0.0532 0.0839 0.1117 0.1826
25 0.0179 0.0072 0.0032 0.0007 0.0020 0.0061 0.0083 0.0134 0.0225 0.0423 0.0735
27 0.0155 0.0043 0.0010 0.0014 0.0001 0.0036 0.0101 0.0111 0.0181 0.0324 0.0596
29 0.0145 0.0030 0.0000 0.0011 0.0021 0.0020 0.0032 0.0004 0.0114 0.0164 0.0354
211 0.0134 0.0039 0.0004 0.0033 0.0052 0.0040 0.0014 0.0004 0.0076 0.0202 0.0598
213 0.0145 0.0046 0.0005 0.0051 0.0067 0.0067 0.0067 0.0035 0.0009 0.0061 0.0461
215 0.0131 0.0035 0.0018 0.0024 0.0039 0.0051 0.0043 0.0028 0.0016 0.0034 0.0249

5 Applying Model to Earthquake Data

Earthquake magnitudes seemed an ideal candidate for applying the new St. Petersburg
Paradox model to the real world. Extensive and accurate seismological records allow for a
meaningful look at the distribution of larger sampling distributions. As can be seen below
in Figure 08, the median of average magnitude grows in a linear way as the sample size
increases exponentially. The data used in this analysis come from the University of St. Louis
seismological data which is available on their website. Also, it is important to note that the
data below is not on the Richter scale, but rather on an absolute scale of magnitude where
an earthquake of magnitude 1 is the base unit.
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Figure 08: Growth in median of earthquake magnitude
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Figure 09: Percentiles of the distribution of mean magnitude for 23 sample size

1

As can be seen above in Figure 09, the percentiles of the earthquake magnitudes follow a
similar shape to the percentiles of the St. Petersburg Paradox when transformed by taking
the log base median in the same way as the St. Petersburg Paradox, which supports there
being a connection to the St. Petersburg Paradox. Below are the actual percentiles observed
in the earthquake data for the average magnitudes and those predicted by the St. Petersburg
Paradox model by adjusting the model to have the median line match those observed in the
earthquake data.
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Table 04: Observed and predicted percentiles for earthquake data

Percentile
10% 20% 30% 40% 50% 60% 70% 80% 90%

23 observed 1.49 1.58 1.68 1.73 1.83 1.91 2.02 2.13 2.37
predicted 1.67 1.73 1.78 1.83 1.88 1.94 2.02 2.12 2.31

24 observed 1.59 1.68 1.76 1.81 1.87 1.95 2.06 2.18 2.34
predicted 1.72 1.78 1.83 1.88 1.93 1.98 2.04 2.14 2.28

25 observed 1.64 1.77 1.83 1.88 1.99 2.06 2.09 2.18 2.34
predicted 1.78 1.84 1.88 1.93 1.97 2.02 2.08 2.17 2.30

26 observed 1.68 1.80 1.93 1.98 2.00 2.02 2.11 2.16 2.52
predicted 1.83 1.89 1.93 1.97 2.01 2.06 2.12 2.20 2.32

6 Conclusion

The St. Petersburg Paradox has been studied for hundreds of years under a qualitative lens.
The aim of this research has been to put discussion of this topic on a more firm footing based
on the actual distribution that occurs in simulation. This work has produced a mathemat-
ical model for the distribution of the sample mean for any sample size which is a unique
achievement among all previous work involving the St. Petersburg Paradox. Also, the appli-
cability of this model has been demonstrated far beyond the St. Petersburg Paradox itself,
which of course one is very unlikely to observe in the real world. Through only a simple
transformation, this distribution can be applied to any distribution of sample means from
a power series distribution similar to the St. Petersburg Paradox. The extension of this
model to other distributions with a similar median growth in simulation and with earth-
quakes in real life provides a means of finally providing probability theory a way to handle
distributions with extremely heavy tails in which the past average may be unrepresentative
of the true expected value. While this model only applies to a class of extremely heavy
tailed distributions whose median lines grow in a linear fashion as the sample size increases
exponentially, this research could be continued to expand other types of scaling distributions
whose median growth is not the same. With this approach fully explored, decision makers
faced with distributions with extremely heavy tails may for the first time be able quantify
the uncertainty they face.
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