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Abstract

Ebola is known to evade detection by the immune system during infection. In this paper, we use mathe-
matical modeling as a tool to investigate and analyze the immune system dynamics in the presence of Ebola
virus infection. The resulting model is a system of non-linear ordinary differential equations derived from
known biological dynamics and a few biologically reasonable assumptions. In this paper, we prove existence
and uniqueness as well as positivity and boundedness of the solutions to the differential equations. In ad-
dition, we derive the viral and immune reproduction numbers, and analyze the local asymptotic stability
of the differential equation model. Furthermore, we run numerical simulations to illustrate the impact the
variation of the parameters has on the behavior of the system. The analysis we develop provides thresholds
for both determining the persistence and elimination of Ebola virus from the immune system, and represents
the known biological dynamics of Ebola virus infection.
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1 Introduction
A mathematical model is a platform for understanding the behavior of a dynamical system. The goal of

this paper is to use mathematical modeling as a tool to examine and analyze the viral dynamics of the Ebola
virus in vivo. We begin by providing a background of the necessary biology in order to understand the model
and results. In Section 2, we utilize the current understanding of the dynamics of Ebola virus infection and
apply biologically reasonable assumptions to motivate a system of non-linear ordinary differential equations and
describe the interactions between pertinent cellular and viral populations. In Section 3, we outline existence,
uniqueness, positivity, and boundedness of solutions to the initial value problem. Then, in Section 4, we analyze
the system of differential equations to gain insights into the local asymptotic stability of the system and allow
for predictions of behavior based on parameter variation. Furthermore, we conduct numerical simulations to
illustrate the behavior of the system under differing parameter values. Section 5 provides discussion of results
and conclusions based on our analysis. Our goal is to develop a better understanding of the behavior of the
Ebola virus to extract experimental results which are extremely difficult to obtain using a traditional biological
approach. In addition, we intend to contextualize viral infection in specific populations in order to further
our understanding of Ebola virus dynamics and their relationship to the effectiveness (or lack thereof) of the
immune response the virus elicits.

1.1 Biological Background

1.1.1 Ebola Virus

Ebola virus is one of the deadliest human pathogens currently known and is the cause of the 2013-2015
Ebola epidemic in West Africa which has resulted in at least 23,014 total cases and 9,840 total deaths as of
March 4, 2015 according to the Center for Disease Control [5]. Ebola virus produces one of the most lethal
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1 INTRODUCTION

forms of hemorrhagic fever. As a result, the virus maintains mortality rates between 40% and 90%, averaging
about 50% and can cause death in less than two days [18]. The rapid progression of Ebola virus infection has
further complicated the control of the disease, offering little opportunity to develop acquired immunity [18]. In
addition, deficiencies in specific and non-specific immune responses result in unrestricted viral replication and
dissemination in the host, causing death typically within 10 days after the appearance of symptoms [1, 3].

Ebola virus is a member of the filoviridae family of viruses. This family of viruses is comprised of single-
stranded negative-sense RNA viruses that also includes Marburg virus, a virus responsible for two deadly
outbreaks in the last 15 years. Of the five identified strains of Ebola virus, four – Zaire ebolavirus, Tai Forest
ebolavirus (Ivory Coast), Bundibugyo ebolavirus, and Sudan ebolavirus strains have been shown to cause in-
fection in humans [18]. Ebola virus can be contracted through abrasions and lesions in the skin after handling
fluids or tissues from an infected patient [1, 3]. However, there is also evidence that mucosal exposure via the
airborne route is possible in some susceptible animal species.

The Ebola virus cellular tropism consists largely of immune cells (monocytes, macrophages and dendritic
cells) which all serve as initial sites for viral infection and replication [1]. Each Ebola virus virion consists of
a nucleocapsid containing a negative ssRNA genome surrounded by the nucleoprotein, the polymerase cofactor
VP35, the virus specific transcription activator VP30, and the viral RNA polymerase L proteins [3]. In addition,
the matrix between the outer viral envelope and the nucleocapsid contains the VP40 and VP24 viral proteins
[3].

Ebola virus initiates infection via interactions with cell-surface receptors which are typically Ca+2-dependent
(“C-type”) lectins. Upon fusion of the viral envelope and the host cell plasma membrane, Ebola virus virions
are trafficked to acidic lysosomal and endosomal compartments where cleavage of the viral envelope glycoprotein
(GP) is carried out. This cleavage facilitates viral fusion to intracellular membranes and causes the subsequent
release of the viral nucleocapsid containing the viral ssRNA. The virally-encoded VP35 polymerase partially
un-coats the capsid allowing the polymerase to transcribe the negative-strand ssRNA into positive-stranded
mRNAs suitable for translation into the viral proteins required for self-assembly. This same polymerase can
then replicate the viral genome many times. Viral genomes and proteins subsequently self-assemble in the
infected cell producing substantial numbers of Ebola virus. The virally encoded VP40 protein promotes both
the localization of Ebola virus to and budding from the plasma membrane releasing viral particles capable of
continuing the infectious cycle.

1.1.2 Host Immune Response

Prior to the development of the mathematical model, it is crucial to understand how the immune system
responds to infection. This is because survival from Ebola virus infection depends on the host’s ability to
develop and manifest a robust immune system response early after the introduction of the virus.

A primary component of the immune system is the T-cell which is a lymphocyte that matures in the thymus.
T-cell activation is one of the central events in the initiation of an adaptive immune response. T-cells exist in
two distinct populations within the immune system, Helper T-cells and Cytotoxic T-lymphocytes (CTLs, also
known as Cytolytic T-cells, Cytotoxic T-cells, or Killer T-cells). The two T-cell classes are distinguished by a
specific cell-surface protein - CD4 on the helper T-cell and CD8 on the CTL.

The interaction between a näıve T-cell and an antigen presenting cell (APC), such as a dendritic cell or
macrophage, initiates the immune response. Upon recognition of a pathogen, APCs process and present peptides
from the pathogen on their surface using either Major Histocompatibility Complex (MHC) Class I or Class II
molecules. Both Helper T-cells and CTLs contain specialized antibody-like receptors that recognize these
molecules; the CD4 protein of the Helper T-cell recognizes and binds to the peptide presented by MHC Class
II molecules whereas the CD8 protein expressed by the CTL recognizes and binds to the peptide presented by
MHC Class I molecules. Upon these binding events, the CTL become activated.

Activated Helper T-cells serve as the alarm system of the immune system. Their activation causes them to
secrete cytokines and proliferate. Cytokines are a chemical mediator that serve as the communication network
for the immune system. In addition, cytokines secreted by Helper T-cells play a large role in the activation
and proliferation of CTLs. When a CTL is exposed to the cytokines released by the activated Helper T-cell,
the CTL itself becomes activated [20]. Upon activation, T-cells exhibiting the CD8 protein are referred to as
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2 EBOLA VIRUS DYNAMICS MODEL

CTLs. Once activated, CTLs maintain the ability to kill the infected cell that the Helper T-cells discriminate
as harmful. This occurs when the CTL binds to the target cell and releases a potent chemical called perforin.
Perforin perforates the cell membrane of the infected cells and causes the cells to lyse and die [20].

CTL activation is the central event in the initiation of the adaptive immune response [21] and it is crucial
to examine the stimulation and effects of CTLs when analyzing the course of infection. Furthermore, the CTL
response is a primary component of host survival and recovery during a viral infection. This is due to the
CTL’s ability to kill compromised cells on contact. In addition, there is evidence that a robust, specific adaptive
immune response is required for survival from Ebola virus infections [1]. Comparison of immune responses
of survivors during two outbreaks in Gabon in 1996 revealed that survivors and asymptomatic patients have
increased number of T-cells and an early CTL mediated response [1]. However, recent characterization of
immune responses to Ebola virus infections has revealed that Ebola virus has developed several methods to
effectively subvert and counter both the innate and adaptive immune responses[1, 12, 3]. In this paper, we will
expand current analysis by considering a CTL response to the introduction of the virus as well as the ability of
Ebola virus to evade detection by the host immune system.

1.2 Motivation

Ebola virus is a class A bioterrorism and level four biosafety agent [3]. Thus, research using Ebola viruses
requires facilities with the utmost levels of containment, strict controls on access, and highly trained personnel.
Due to the most recent outbreak of Ebola in Western Africa and the threat it poses to the rest of the world,
research into how Ebola interacts with the host, and more specifically the immune system, has significantly
increased. This research has led to the development of new insights into how the virus functions and effects
immune system behavior [1]. In this paper, we will apply mathematical analysis of a model for Ebola viral
dynamics to gain further insights and understanding of viral dynamics during the course of infection.

2 Ebola Virus Dynamics Model

In 2010 Banton, Roth, and Pavlovic proposed that the Herz model for viral reproduction could serve as a
basis for investigations into the behavior of Ebola virus dynamics in vivo [2]. Furthermore, they suggested that
in a basic immune response, infected cells can be assumed to be killed by CTLs [2]. Truckwell modified the
Herz system by introducing an additional compartment to account for the CTL response in basic viral infection
[24]. In this paper, we implement this modification of the Herz model to explore the immune response to Ebola
virus infection via CTL response.
The model considers four distinct populations which are denoted:

X(t): density of uninfected cells at time t,
I(t): density of infected cells at time t,
V (t): density of virus at time t,
T (t): density of cytotoxic T-lymphocytes at time t.

Thus, we consider the mathematical model of Ebola virus infection with an immune response given by the
following four-dimensional non-linear system of ordinary differential equations.

(1a)
dX

dt
= λ− µX(t)− βV (t)X(t)

(1b)
dI

dt
= βV (t)X(t)− ρI(t)T (t)− αI(t)

(1c)
dV

dt
= cI(t)− γV (t)

(1d)
dT

dt
= ρI(t)T (t)− δT (t)

With initial conditions X(0) = X0, I(0) = I0, V (0) = V0, T (0) = T0.
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Parameter Units Relevant Biological Description Estimated Value Range Source

λ cells
ml×days

Growth Rate (Uninfected cells) 0.1 - 10 [21, 20, 24, 22]
µ 1

days
Death Rate (Uninfected cells) 0.02 - 0.03 [20, 7]

β ml
cells×days

Interaction Rate (Virus and Uninfected cells) 0.001 - 0.02 [20, 7, 22]
ρ ml

cells×days
Interaction Rate (Infected cells and CTLs) 0.1 [2]

α 1
days

Death Rate (Infected Cells) 0.2 - 0.7 [15, 16, 20, 7]
c 1

days
Growth Rate (Virus) 20 - 50 [15, 20, 24, 7]

γ 1
days

Death Rate (Virus) 2.4 - 3.8 [15, 22, 7, 20]
δ 1

days
Death Rate (CTLs) 0.3 - 0.5 [16, 20, 22]

Table 1: A table denoting the individual parameter, units, biologically relevant description, as well as estimated value
range.

Figure 1: A visual representation of the dynam-
ics that governs the interactions between popula-
tions in the model. The circles illustrate the in-
dividual populations, while the arrows represent
the rates of change of the populations. Any arrow
which is pointing towards a circle represents an
addition to, or growth of, the population, while
an arrow pointing away indicates a subtraction,
or death, of the population.

A schematic of the biological mechanism of Ebola virus
infection in vivo which illustrates the dynamics of the model is
shown in Figure 1. In addition, Table 1 provides a biological
interpretation of the parameters located within the model as
well as estimated values based on previous work. Now we will
motivate each equation within the system.

2.1 Model Development

Equation 1a models the dynamics of the uninfected cellular
population. The equation can be represented by production
rate, infection rate, and death rate. The equation is determined
to be:

Rate of change of uninfected

cell population = (Production rate) - (Infection rate) - (Death rate)

Production rate: We assume that uninfected cells are pro-
duced at a constant rate, the uninfected cell growth rate, λ
[15, 16, 21].

Infection rate: Uninfected cells can be eliminated by becom-
ing infected by the virus. The interaction between the virus and
the uninfected cells is widely known as the mass action principle
[16]. This principle describes, from a mathematical perspective,
the rate at which the virus infects uninfected cells. The mass
action principle results in a term which suggests that the rate of
interaction between the virus and uninfected cells, β, is directly
proportional to the product of the participating populations [15, 16].

Death rate: The uninfected cell death rate term is determined by the elimination of uninfected cells not due
to infection as a result of the virus. The death rate, µ, can be assumed to be proportional to the uninfected cell
population [15].

Equation 1b represents the dynamics of infected cells. The equation for the rate of change of the infected
cell population is dictated by both the rate of infection and death rate. The equation can be represented as:

Rate of change of infected cell population = (Infection rate) - (Interaction rate) - (Death rate)

Infection rate: This term is the same as the infection rate term in the uninfected cell differential equation
with a reversal in sign. This is a result of the fact that the only way that infected cells can be created is by
infecting previously uninfected cells [16]. The human immune system does not naturally produce infected cells;
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thus, the term remains the same as previously determined.
Interaction rate: CTLs are activated when contact between a CTL and an infected cell is made within the

infected host. This interaction causes the infected cell to be removed from the infected cell population since
it no longer maintains the ability to infect previously uninfected cells. The interaction rate for the activated
CTLs, ρ, can be assumed to be proportional to the product of the CTL and infected cell populations.

Death rate: Similar to uninfected cell death, infected cells are cleared by the immune system at a rate, α,
proportional to the uninfected cell population [16].

Equation 1c mathematically describes the dynamics of the virus cell population. This equation consists of
the virus production rate and viral clearance rate and is:

Rate of change of virus population = (Growth rate) - (Clearance rate)

Production rate: While the virus production rate varies from cell to cell and individual to individual, when
considering the aggregate population this model assumes the rate of proliferation is constant and that new
viruses are produced at a rate, c, proportional to the infected cell population [16].

Clearance rate: There are two manners in which the virus-infected cells are eliminated, viral cytopathic
effects and immune-mediated cellular destruction [11]. Viral cytopathic effects occur as a result of the virus
infecting healthy uninfected cells. When a viral particle infects a previously uninfected cell, the viral particle is
removed from the population of virus that maintains the ability to infect additional uninfected cells. However,
viral cytopathic effects are insignificant when assessing the overall elimination of viral particles and thus, are
not illustrated in the model [2]. Immune-mediated cellular destruction is the immune system’s ability to clear,
or eliminate, the virus from the body. This method typically eliminates a majority of the virus population [4].
The model assumes that the virus is then killed off at a clearance rate, γ, proportional to the virus population
[16].

Equation 1d highlights the dynamics of CTLs. The CTL population is composed of production rate and
death rate. The overall equation is:

Rate of change of CTL population = (Production rate) - (Death rate)

Production rate: CTLs are activated when contact between the CTL and an infected cell is made within the
infected host. Thus, the production rate, ρ, can be assumed to be proportional to the product of the CTL and
infected cell populations.

Death rate: Similar to uninfected cell death, CTLs are cleared by the immune system at a rate, δ, propor-
tional to the CTL population.

It is important to note that all of the model parameters are presumed to be positive. In addition, there are
two biologically reasonable assumptions we are able to make with regard to the values of parameters in relation
to one another. Notably, it is biologically reasonable to assume that infected cells have a higher death rate than
uninfected cells, namely α ≥ µ. Furthermore, we are also able to assume that the death rate of infected cells is
greater than the natural death rate of CTLs, and thus α ≥ δ.

3 Analysis of the Model

3.1 Existence and Uniqueness of Solutions

Prior to conducting an in–depth analysis of the model, it is crucial to show that the solutions to the initial-value
problem exist and are unique.

3.2 Positivity and Boundedness

In order to retain the biological validity of the model, we must prove that solutions to the system of
differential equations are positive and bounded for all values of time. For example, concluding that a population
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is negative is not biologically feasible. Furthermore, the populations must remain finite since the human body
can only be composed of a finite number of cells. In addition, boundedness and positivity illustrate that once
infected, it is possible that the population of the virus will continue to exist beneath the detectable threshold
without doing significant damage [21]. The next step in analyzing our model will be to prove positivity and
boundedness for the system of differential equations. We will do so by proving the following theorems.

Lemma (Positivity). Let t0 > 0. In the model, if the initial conditions satisfy X(0) > 0, I(0) > 0, V (0) > 0,
T (0) > 0 then for all t ∈ [0, t0], X(t), I(t), V (t), T (t) will remain positive in R4

+.

Proof: Positivity. We must prove that for all t ∈ [0, t0], X(t), I(t), V (t), T (t) will be positive in R4
+. We know

that all of the parameters used in the system are positive. Thus, we can place lower bounds on each of the
equations given in the model. Thus,

dX

dt
= λ− µX(t)− βV (t)X(t) ≥ −µX(t)− βV (t)X(t)

dI

dt
= βV (t)X(t)− αI(t)− ρI(t)T (t) ≥ −αI(t)− ρI(t)T (t)

dV

dt
= cY (t)− γV (t) ≥ −γV (t)

dT

dt
= ρY (t)T (t)− δT (t) ≥ −δT (t)

Through basic differential equations methods we can resolve the inequalities and produce:

X(t) ≥ e−µt−β
R

V (t)dt ≥ 0

I(t) ≥ e−αt−ρ
R

T (t)dt ≥ 0
V (t) ≥ e−γt ≥ 0
T (t) ≥ e−δt ≥ 0

Thus, for all t ∈ [0, t0], X(t), I(t), V (t), T (t) will be positive and remain in R4
+.

Lemma (Boundedness). There exists an XM , IM , VM , TM > 0 such that for X(t), I(t), I(t), T (t) lim supt→∞

(
X(t)

)
≤

XM , lim supt→∞

(
I(t)

)
≤ IM , lim supt→∞

(
V (t)

)
≤ VM , lim supt→∞

(
T (t)

)
≤ TM for all t ∈ [0, t0].

Proof: Boundedness. We must prove that for all t ∈ [0, t0], X(t), I(t), V (t), T (t) will be bounded. We know
that all of the constants used in the system are positive.

dX

dt
+

dI

dt
+

dT

dt
= λ− µX(t)− αI(t)− δT (t)

Since all of the constants are positive,
d(X + I + T )

dt
≤ λ−min{µ, α, δ}(X + I + T )(t)

which implies,
(X + I + T )(t) ≤ λ

min{µ, α, δ}
+ c0e

−min{µ,α,δ}t

taking the limsup of both sides,

lim sup
t→∞

(X + I + T )(t) ≤ lim sup
t→∞

( λ

min{µ, α, δ}
+ c0e

−min{µ,α,δ}t
)

=
λ

min{µ, α, δ}

So, choose
XM = IM = TM =

λ

min{µ, α, δ}
Thus, (X + I + T )(t) is bounded, so X(t), I(t), and T (t) are all bounded since
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X(t), I(t), T (t) ≤ (X + I + T )(t).

So,
X(t) ≤ XM , I(t) ≤ IM , and T (t) ≤ TM for all t ∈ [0, t0]

Furthermore, since all of the constants are positive, we can place an upper bound on
dV

dt
so,

dV

dt
= cI(t)− γV (t) ≤ cI(t)

Therefore, we can choose
VM = cIM

Thus,
V (t) ≤ cIM = VM .

Hence, since I(t) is bounded for all t ∈ [0, t0], we know that V (t) is bounded for all t ∈ [0, t0].

Theorem 1 (Existence). Let t0 > 0. In the model, if the initial conditions satisfy X(0) > 0, I(0) > 0, V (0) > 0,
T (0) > 0 then ∀t ∈ R X(t), I(t), V (t), T (t) will exist in R4

+ .

Proof: Existence and Uniqueness. In the case of our model we have:

x =


X(t)
I(t)
V (t)
T (t)

 and f(x) =


λ− µX(t)− βV (t)X(t)

βV (t)X(t)− αI(t)− ρI(t)T (t)
cI(t)− γV (t)

ρI(t)T (t)− δT (t)


Note that f has a continuous derivative on R4 and thus, f is locally Lipschitz in R4. Hence, by the

Fundamental Existence and Uniqueness Theorem located in the appendix as well as the lemmas proved on
positivity and boundedness of solutions, we know that there exists a unique, positive, and bounded solution to
the ordinary differential equations given in 1(a)− 1(d).

3.3 Equilibria

For the model we consider the equilbiria for the populations (X, I, V, T ). At the equilibrium, the rate
of change for each population is zero. Thus, we obtain these values by setting each differential equation
simultaneously equal to zero. Therefore, dX

dt = 0, dI
dt = 0, dV

dt = 0, dT
dt = 0.

From a biological perspective we are able to classify these equilibria as viral persistence equilibrium or viral
free equilibrium. If the values for any population at the equilibrium is zero (X = 0, I = 0, V = 0, T = 0),
those cells are defined as extinct, meaning that as t →∞ the populations will become zero. Thus, if V = I = 0
at the equilibrium, the virus is extinct from the body as t → ∞ and the equilibrium is known as a viral free
equilibrium (also referred to as an infection free steady state). However, if the value for any population at the
equilibrium is not zero (X 6= 0, I 6= 0, V 6= 0, T 6= 0) those cells are defined as persistent. Thus, if V 6= 0 and
I 6= 0, then the virus persists and the equilibrium is known as a viral persistence equilibrium (also known as
a chronic infection steady state). In addition, if T 6= 0, then the immune response persists as t → ∞ and we
classify the equilibrium as an immune persistence equilibrium.

If the system takes on an equilibrium at any time, it will remain at the value for all remaining time;
however, unless the initial conditions are exactly one of the equilibria, the system need not necessarily obtain
these values. The system may approach the equilibrium, move away from the equilibrium, or cycle between
specific equilibria. In order to accurately determine which type of behavior the system will yield, we must
perform a stability analysis for the system.

242



4 APPLICATION TO THE MODEL

3.4 Linearization and the Jacobian

In modeling systems it becomes apparent that nearly all systems are non-linear, including the model we are
examining. However, most of the theory that has been developed by mathematicians governing the behavior of
systems of differential equations, especially stability, is centered upon linear systems. Thus, in order to further
understand the behavior of a non-linear system it is first crucial to linearize the system. Essentially, this process
approximates a non-linear system in a linear manner near the values around which a linear approximation
occurs. The linear approximation occurs at the equilibria, which will be denoted Pn.

In a neighborhood of the equilibria we can make a linear approximation and so determine the local character
of the paths. This technique allows the stability of the system at the equilibria to be determined and provides a
starting point for global investigations of solutions. The goal of this stability analysis is to perturb the system
from equilibrium and study the behavior of the system. Thus, we will look to see if the solutions move towards
or away from equilibrium.

In order to linearize the system, we must compute the Jacobian matrix of the system. The Jacobian is
the matrix of the partial derivatives of each function with respect to each variable. Essentially, the Jacobian
provides a linear approximation of a system at any given value.

3.5 Local Stability

Analysis of the eigenvalues of the Jacobian matrix evaluated at the equilibrium gives insights into the local
stability properties at that equilibrium. We will apply the Poincare-Perron Theorem, Routh-Hurwitz Criteria,
and the Hartman-Grobman Theorem, which can all be found in the Appendix, as well as analyze the eigenvalues
to determine the local asymptotic stability properties of our system of differential equations.

4 Application to the Model

The model has three biologically relevant equilibria denoted Pn = (X, I, V, T ) for n = 1, 2, 3:

P1 = (
λ

µ
, 0, 0, 0)

P2 = (
αγ

cβ
,
cβλ− αγµ

cαβ
,
cβλ− αγµ

αβγ
, 0)

P3 = (
γλρ

cβδ + γµρ
,
δ

ρ
,
cδ

γρ
,
−cαβγ + cβλρ− αγρµ

ρ(cβδ + γµρ)
)

We characterize P1 as a viral free equilibrium; this means that as t →∞, the virus will be eliminated from
the body. P2 and P3 describe the persistence of the virus, and thus can be characterized as a viral persistence
equilibrium. At these values, the virus will remain in the system as t →∞. The equilibrium also describe the
persistence of an immune response. We denote that at P2 and P1 the immune response is either not required,
or may even be suppressed as t → ∞, while at P3 the immune system’s response remains present for all time,
even after the virus population reaches a stable level. Notably, P3 is the only equilibrium which describes the
co-existence of virus and CTLs as t →∞. In addition, it is important to denote that all of the equilibria have
a persistence of uninfected cells.

4.1 Jacobian

The Jacobian for the linearized system is:

J(X, I, V, T ) =


V β − µ 0 −Xβ 0

V β α− Tρ Xβ −Iρ
0 c −γ 0
0 Tρ 0 −δ + Iρ
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The characteristic polynomial is defined as the polynomial side of the characterstic equation, det(A−λI) = 0
where A is a square matrix, I is the identity matrix, and λ is an eigenvalue. The roots of the characteristic
polynomial of the Jacobian will tend to depend on several parameters known as threshold parameters. The
values of these parameters, sometimes called the reproductive constants, influence and determine the stability
of the system.

Define:

R0 =
cβλ

αγµ

R1 =
cβλρ

α(γρµ + cβδ)

to be the reproductive constants of the system. Biologically, R0 represents the average number of infected cells
produced by an initially infected cell over its lifetime [6]. The value of R0 is a well established norm when
discussing viral infections [6]. The R0 value associated with Ebola is generally accepted to range from 2 to 3
[1]. This value depends upon the parameters of the individual who is infected, but also varies based on the
geographical location of the disease. R1 translates the notion of viral reproductive constants to the immune
system response. Thus, R1 represents the number of infected cells that a single immune cell (CTL in the case
of our model) is able to address. The interpretation of R1 will be discussed in greater detail in Section 4.5.

Three theorems will be presented to highlight the relationship between the two reproductive constants and
the local asymptotic stability of the equilibria. Thus, we are able to examine the values of R0, R1 and a few
other simple expressions to determine whether viral persistence or viral extinction occurs as t →∞. As a result,
we may be able to predict the persistence of the Ebola virus upon initial infection simply by determining the
values of these expressions. In addition, we will also be able to determine whether or not the immune response
is suppressed during infection.

4.2 Stability Analysis for P1

The Jacobian evaluated at P1 = (λ
µ , 0, 0, 0) becomes:

J1 =


−µ 0 −βλ

µ 0
0 α βλ

µ 0
0 c −γ 0
0 0 0 −δ


Furthermore, the characteristic equation for P1 is

− 1
µ (−x− δ)(x + µ)(−cβλ + x2µ + xαµ + xγµ + αγµ) = 0

From the characteristic equation we can define:

a1 = α + γ + δ + µ

a2 = α(γ + δ + µ)− βcλ
µ + γ(δ + µ) + δµ

a3 = µ(α(γ(δ+µ)+δµ)+γδµ)−βcλ(δ+µ)
µ

a4 = αγδµ− βcδλ

such that − 1
µ (−x− δ)(x + µ)(−cβλ + x2µ + xαµ + xγµ + αγµ) = x4 + a1x

3 + a2x
2 + a3x + a4.

4.2.1 Analysis:

Theorem 2 (Local Asymptotic Stability of P1). For the viral extinction equilibrium (P1) given by

(X, I, V, T ) = (λ
µ , 0, 0, 0)

if R0 < 1, then P1 is stable; however if R0 > 1, then P1 is unstable.
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Proof. We will use the Routh-Hurwitz Criteria and the values of a1, a2, a3, and a4 to derive the stability of P1.
We know that all of the parameters are positive. Therefore, a1 is clearly > 0.

We can write a2 as,

a2 = (1−R0) 1
αγµ

(
(α + γ)µ(δ + µ) + δµ2

)
.

Thus, if R0 < 1, then a2 > 0 since all the parameters are positive. However, if R0 > 1, then clearly a2 < 0.

Furthermore, a3 can be represented by,

a3 = (1−R0)(δ + µ) 1
αδµ

(
δµ(α + γ)

)
Thus, if R0 < 1, then a3 > 0; however, if R0 > 1, then a3 < 0.

In addition,

a4 = (1−R0) δ
αγµ

Thus, if R0 < 1, then a4 > 0; however, if R0 > 1, then a4 < 0.

Finally,

a1a2a3 − (a2
3 + a2

1a4) = 1
µ2

(
(α + γ)(δ + µ)(1−R0 + αδµ + γδµ + δ2µ)(1−R0 + αµ2 + γµ2 + µ3)

)
Thus, if R0 < 1, then a1a2a3 − (a2

3 + a2
1a4) > 0. and therefore, a1a2a3 > a2

3 + a2
1a4. Thus, if R0 < 1 all of the

conditions necessary for stability are met and P1 is stable. However, if R0 > 1, then a2, a3, a4 < 0 and P1 is
unstable.

Figure 2: The viral phase portrait for R0 = 0.9373 and
R1 = 0.5207.

Figure 2 illustrates the interaction between the virus
and uninfected cell populations given that R0, R1 < 1.
The arrows in the graph illustrate the progressions of the
viral and uninfected populations relative to one another
over time. Figure 2 reveals that upon introduction of the
virus, the population of uninfected cells decreases relative
to the viral population. This behavior continues until the
virus reaches the peak viral load point, or the maximum
value for the virus population. After reaching this value,
the virus population begins to decline until it reaches zero.
This suggests that either the immune system has the abil-
ity to suppress the increase in viral load, or that the virus
does not maintain an infection rate which is high enough
in order to sustain chronic infection, i.e. ensuring its per-
sistence.

Based on our analysis in the previous section as well as
the values for R0 and R1, we expect that the equilibrium
will be locally asymptotically stable and that the equi-
librium should be an infection-free equilibrium. Figure 2
reveals that as t →∞ the viral load goes to zero, thereby
suggesting that the equilibrium is in fact a viral extinc-
tion equilibrium. This is precisely the behavior that we
expected given the values of R0 and R1. Thus, Figure 2

highlights the local asymptotic stability of the two populations at the equilibrium.
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Figure 3: A system phase portrait for R0 = 0.9373 and R1 = 0.5207.

Figure 3 describes the dynamic between the virus and uninfected cell populations; however, this figure un-
derscores the interactions of both of these populations while also considering the population of CTLs. Thus,
Figure 3 illustrates the dynamic of the virus and uninfected cells relative to a primary actor in an immune
response. In addition, Figure 3 highlights the local stability of the system. The figure suggests that the viral
extinction equilibrium is locally asymptotically stable which is exactly what we expect given the values of R0

and R1.
In addition, Figure 3 suggests that the CTL response raised by the immune system is sufficient to control

the spread and proliferation of the virus. However, the figure also reveals that the population of CTLs is relatively
low when compared with both the viral load as well as the population of uninfected cells.

Figure 4: The system phase portrait for R0 = 0.2464 and R1 = 0.1760.

Thus, it appears as though the
immune system did not need to
mount an extremely robust re-
sponse in order to stop the in-
crease in viral load. Further-
more, Figure 3 illustrates that
as t → ∞ the CTL population
diminishes and becomes zero,
which corresponds with our bi-
ological understanding of im-
mune system function post in-
fection; this is expected since
the virus is eliminated from the
immune system during a suc-
cessful immune challenge.

Figure 4 highlights the sys-
tem interaction between the virus, uninfected cell, and CTL populations given that R0, R1 < 1. Figure 4 again
reveals that the equilibrium is locally stable since the trajectory approaches P1 and that the virus population as
t →∞ is equal to zero, thereby suggesting that the equilibrium is a viral extinction equilibirum. Furthermore,
Figure 4 highlights that the immune response was extremely small in magnitude when compared to Figure 3.

Thus, it appears as though the virus does not reach a high enough level to either stimulate a robust immune
response or escape any immune response since the both the population of virus and CTL population remain rel-
atively low. This suggests that the magnitude of R0 and R1 may reveal the magnitude of the immune response.
In addition, it suggests that the low infection rate means that the population of virus will likely be controlled
solely via natural death.
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4.3 Stability Analysis for P2

The Jacobian evaluated at P2 = (αγ
cβ , cβλ−αγµ

cαβ , cβλ−αγµ
αβγ , 0) is:

J2 =


−µ− cβλ−αγµ

αγ 0 −αλ
c 0

cβλ−αγµ
αγ α αλ

c − (cβλ−αγµ)ρ
cαβ

0 c −γ 0
0 0 0 −δ + (cβλ−αγµ)ρ

cαβ


Furthermore, the characteristic equation for P2 is

− 1
c2α2βγ2 (c2α(x + α)β(−x− γ)γ(xαγ + cβλ)− c(−cxα3βγ3 − cα3βγ3µ))

(
− x− δ + (cβλ−αγµ)ρ

cαβ

)
= 0

4.3.1 Analysis:

Theorem 3 (Local Asymptotic Stability of P2). For the viral persistence equilibrium and immune suppressive
equilibirum (P2) given by

(X, I, V, T ) = (αγ
cβ , cβλ−αγµ

cαβ , cβλ−αγµ
αβγ , 0)

P2 is stable iff R0 > 1 and R1 < 1.

Proof. One eigenvalue of J2 is x1 =
cβλρ− (cαβδ + αγµρ)

cαβ
.

Thus, we can simplify the characteristic equation. As a result the remaining two eigenvalues are solutions to
the equation,

x3 + x2 α2γ + αγ2 + cβλ

αγ
+ x

cβ(α + γ)
αγ

+ cβλ− αγµ = 0

We will then use the Routh-Hurwitz criteria to prove that all of the roots are negative given R0 > 1 and R1 < 1.
From the characteristic equation we obtain,

a1 = α2γ+αγ2+cβλ
αγ

a2 = cβ(α+γ)
αγ

a3 = cβλ− αγµ

We know a1, a2 > 0 since all of the parameters are positive.

Furthermore, we can denote:
a3 = cβλ− αγµ = (R0 − 1) 1

αγµ

Thus, if R0 > 1 then a3 > 0, however, if R0 < 1 then a3 < 0 and P2 is unstable.

In addition, we can define:
a1a2 − a3 = cβλ + cβαλ

γ + cβγλ
α + c2β2λ2

αγ2 + c2β2λ2

α2γ + αγµ

Also, since all of the parameter are positive a1a2 − a3 > 0 which implies that a1a2 > a3.
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Figure 5: A viral phase portrait for R0 = 2.1089 and R1 = 0.84356.

Figure 5 illustrates the
dynamic between the virus
and uninfected cell populations
given the values R0 > 1
and R1 < 1. In this case,
P1 = (42.2, 0, 0, 0) and P2 =
(20, 3.70, 18.48, 0). Upon intro-
duction of the virus, the pop-
ulation of uninfected cells be-
gins to decrease relative to the
population of the virus until
the virus population reaches
the peak viral load point. Af-
ter this point, the population of
the uninfected cells remains rel-
atively constant whereas there
is a decrease in the viral load.
In terms of stability, Figure 5
demonstrates the persistence of

the virus since the population of the virus remains positive as t →∞ and the equilibrium is locally asymptoti-
cally stable.

The introduction of virus clearly has a large impact on the magnitude of the uninfected cell population.
Throughout the course of infection, the uninfected cell population is reduced to 20% of it’s original size. This
may be associated with a loss of functionality of the cells the virus infects, and may prove to be deleterious for
an infected individual. However, it also appears as though the viral load reaches extremely low levels as the
population of virus approaches the equilibrium. This behavior may be consistent with a suppression of the virus
population by the immune response. However, this behavior might also suggest the presence of a viral latency
period in which the virus population remains dormant at very low levels within the immune system. During
such a stage, the immune system would not have the ability to detect the presence of the virus, and thus would
not be able to mount an effective response. In addition, Figure 5 illustrates the resurgence of the virus after
a possible latency stage; it appears as though the virus is able to re-infect the host since the virus population
increases as the trajectory approaches the stable node.

Figure 6: A CTL phase portrait for R0 = 2.1089 and R1 = 0.84356.

Figure 6 under-
scores the dynamic
between the virus
and immune response.
From this figure we
can see that the
population of CTLs
does not significantly
increase until the
virus reaches the
peak viral load. Thus,
the figure suggests
the presence of a CTL lag phase. This type of behavior is regular of a natural immune response. In addi-
tion, Figure 6 suggests that the viral load increases at a rate which is significantly greater than the rate at
which the CTLs recognize the virus, activate, and proliferate. Yet, even though an immune response is acti-
vated upon the virus reaching the peak viral load, the immune response, as reflected by the CTL population,
ultimately deteriorates and is unable to address and stop the proliferation and eventual persistence of the virus.
Thus, the virus successfully “evades” the immune response.
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Figure 7: A system phase portrait for R0 = 2.1089 and R1 = 0.84356.

Figure 7 shows the dynamic be-
tween the virus and uninfected cell
populations, however Figure 7 inte-
grates both Figure 5 and Figure 6 to
highlight the interactions of the vi-
ral and uninfected populations with
the CTL population developed dur-
ing the immune response. Again,
Figure 7 highlights the local stabil-
ity of the system, as well as the per-
sistence of the virus which is exactly
what we expect given the values of
R0 and R1. The figure also illus-

trates that as t → ∞ the immune response, as reflected by the CTL population, fades and becomes zero.
Thus, the immune system is ineffective at controlling the increase in viral load and the individual remains
chronically infected.

4.4 Stability Analysis for P3

The Jacobian evaluated at P3 = ( γλρ
cβδ+γµρ , δ

ρ , cδ
γρ , −cαβγ+cβλρ−αγρµ

ρ(cβδ+γµρ) ) is:

J3 =


−µ− cβδ

ργ 0 − βγλρ
cβδ+γρµ 0

cβδ
ργ α− −cαβδ+cβλρ−αγµρ

cβδ+γµρ
βγλρ

cβδ+γµρ −δ

0 c −γ 0
0 −cαβδ+cβλρ−αγµρ

cβδ+γρµ 0 0


Furthermore, the characteristic equation for P3 is

−x(βcγ2λρ2(µ+x)−(α+x)(γ+x)(βcδ+γµρ)(βcδ+γρ(µ+x)))+ρY(γ+x)(βcδ+γρ(µ+x))(αγµρ+βc(αδ−λρ))

γρ(βcδ+γµρ) = 0

Therefore,

a1 = β2c2δ2+γ2µρ2(γ+µ)+βcγρ(γδ+2δµ+λρ)
γρ(βcδ+γµρ)

a2 =
γ2µρ2(γµ−αδ)+β2c2δ(γδ+λρ)+βcγρ(−αδ2+2γδµ+λρ(δ+µ))

γρ(βcδ+γµρ)

a3 =
δ(−αγ2µρ2(γ+µ)+β2c2(λρ(γ+δ)−αδ2)+βcγρ(λρ(γ+µ)−αδ(γ+2µ)))

γρ(βcδ+γµρ)

a4 = δ
(
βc

(
λ− αδ

ρ

)
− αγµ

)
4.4.1 Analysis:

Theorem 4 (Local Asymptotic Stability of P3). For the viral persistence equilbirium and immune response
persistence equilbirium (P3) given by

(X, I, V, T ) = ( γλρ
cβδ+γµρ , δ

ρ , cδ
γρ , −cαβγ+cβλρ−αγρµ

ρ(cβδ+γµρ) )

If R1 > 1, R0 > δ
µ , cβ > αρ, λ(γ + δ) > αδ2 then P3 is stable.

Proof. We know that since all the parameters are positive, a1 > 0.

Taking the numerator of a2, we want δ(−αγ2µρ2(γ+µ)+β2c2(λρ(γ+δ)−αδ2)+βcγρ(λρ(γ+µ)−αδ(γ+2µ))) > 0.
Thus, if γ3µ2ρ2 + β2c2δ(γδ + λρ) + βcγρ(2γδµ + λρ(δ + µ)) > αγδρ(βcδ + γµρ) then a2 > 0. Since cβλ

αγδ = µ
δ R0,
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if R0 > δ
µ then cβλ > αγδ. Thus, if cβ > αρ and R0 > δ

µ then cβλ > αγδ. Therefore, if R0 > δ
µ and

λ(γ + δ) > αδ2 then a2 > 0.

Considering the numerator of a3, we want to prove that δ(−αγ2µρ2(γ+µ)+β2c2(λρ(γ+δ)−αδ2)+βcγρ(λρ(γ+
µ)−αδ(γ+2µ))) > 0. Additionally, if βcδλρ(βc(γ+δ)+γρ(γ+µ)) > αδ

(
β2c2δ2 + γ2µρ2(γ + µ) + βcγδρ(γ + 2µ)

)
,

then a3 > 0. Thus, if R1 > 1, and λρ(γ + δ) > αδ2, then a3 > 0.

Furthermore, a4 can be written as
a4 = δ

ρ(cαβδ+αγµρ) (R1 − 1)

Thus, if R1 > 1 then a4 > 0; however, if R1 < 1, then a4 < 0 and P3 is unstable.

The expression for a1a2a3 − (a2
3 + a2

1a4) can be found in the appendix. However, if cβ > αρ, cβλ > αδγ,R1 >
1, R0 > 1, and λρ(γ + δ) > δ2α, then a1a2a3 − (a2

3 + a2
1a4) > 0 and thus, a1a2a3 > (a2

3 + a2
1a4).

Figure 8 illustrates the dynamic between the virus and uninfected cell populations given that R0, R1 > 1.
Based on our analysis, we expect a stable viral persistent equilibrium that maintains an immune response. The
graph shows the persistence of the virus as t → ∞ as the viral load remains positive. Furthermore, Figure 8
suggests that the system approaches a viral and immune response persistence equilibrium, highlighting the lo-
cal asymptotic stability predicted by our analysis. This behavior is consistent with our analysis given R0, R1 > 1.

Figure 8: A system phase portrait for R0 = 4.6864
and R1 = 2.8119.

Similar to Figure 7, the virus population appears
to approach zero several times during the course of
infection, reaching very low levels within the system.
This may suggest the presence of a latency period.
However, in Figure 9 there appears to be signifi-
cantly more oscillation between populations than in Fig-
ure 7. This may suggest that as the magnitude of
R0 and R1 increase, the dynamical behavior will in-
crease as well. However, there is a possibility that
the behavior may be solely a result of the magnitude
of R1 since in Figure 6, R1 < 1 whereas in Fig-
ure 9, R1 > 1. Thus, R1 may have an effect on
the oscillatory behavior of the system. The behav-
ior in Figure 8 suggests that the virus is able to re-
infect the host multiple times, even once the popula-
tion approaches zero during infection. Thus, the mag-
nitude of R0 and R1 may have an effect on the reacti-
vation and re-emergence of the virus from a latency pe-
riod.

Figure 9: A CTL phase portrait for R0 = 4.6864 and R1 = 2.8119.

Figure 9 displays the relationship be-
tween the virus and the CTL response.
Again, the figure illustrates that the equi-
lbirum is stable, as we expected. Addi-
tionally, as t → ∞ the immune response
remains non-zero suggesting that the im-
mune response is present even when the
populations stabilize. In addition, this
figure depicts the oscillations described
above. Furthermore, Figure 9 illustrates
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that the immune response occurs only when the virus is close to the peak viral load point, which is what we
expect given the known dynamics of viral infection. However, Figure 10 reveals that the magnitude of the
immune response remains relatively small when compared with the population of uninfected cells in Figure 9.
This again may suggest that the virus is evading a full response from the immune system.

Figure 10 displays the dynamic between the virus, uninfected cell population, and the CTL response. The
figure illustrates that the equilibrium is stable, as we expected given that both R0 and R1 > 1. Additionally, the
equilibrium maintains both a non-zero virus population as well as an immune response. However, the immune
response, as reflected by the CTL population, appears to be limited and insubstantial.

Figure 10: A system phase portrait for R0 = 4.6864 and R1 = 2.8119.

4.5 Model Simulations

Upon examination it is clear that the values of the viral reproduction numbers, R0 and R1, have large effects
on the behavior of the overall system. Our analysis demonstrates that a comparison of these values determined
which equilbiria were biologically feasible as well as the local asymptotic stability behavior at these values.
By understanding the stabilities of the solutions, we were able to determine viral persistence or elimination
as well as the persistence or extinction of other cellular populations. However, the simulation reveals that the
magnitude of both values also greatly changes not only the long term behavior, but also has a large impact on
the dynamics of the system during the course of infection. In addition, the simulations reveal and illustrate some
interesting insights into the behavior of the virus which have been recently determined. More specifically, the
simulations reveal the ability of Ebola virus to evade detection by the immune system. In Figure 11 graph (a),
R0 and R1 are both greater than one. Thus, we expect to obtain a stable equilibrium which is viral-persistent.
In addition, we expect that the equilibrium also maintains an immune response as t →∞. In Figure 11 graph
(b), the value for R0 is greater than one, however, the value of R1 is less than one. Thus, we expect to obtain
a stable viral persistence equilibrium. For both Figure 11 graphs (c) and (d) the values of R0 and R1 are less
than one and thus we expect that the equilbirium will be a virus free equilibrium and that the only population
that remains as t →∞ is the population of uninfected cells.

Figure 11 shows the system dynamic interaction plots for four different combinations of R0 and R1 defined
in the table below. These plots illustrate how all of the populations are interacting with one another over time.
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Figure 11: A comparison of the course of viral infection and immune response based on differing values of R0 and R1.

Location Value of R0 Value of R1 Corresponding Phase Portraits
upper-left (a) 4.6864 2.8119 Figures 8, 9, 10

upper-right (b) 2.1089 0.8436 Figures 5, 6, 7
lower-left (c) 0.9373 0.5207 Figures 2, 3

lower-right (d) 0.2464 0.1760 Figure 4

The parameters for the plots in Figure 11 were chosen from the ranges provided in the parameter table in section
two to achieve specified values of R0 and R1. We then simulated the system in Mathematica and provide the
obtained plots from our simulations. In Figure 11 graphs (a), (b), and (c), we can clearly see the proliferation
of the virus upon introduction at time zero. In all three cases, the virus reaches a peak viral load point within
the first few days of infection; this behavior is characteristic of Ebola infection [1]. For instance Figure 11 graph
(a) reaches a peak viral load of 104.735virions

mL at day 3.324 and graph (b) achieves its peak of 159.22virions
mL

at day 6.280. Yet, we can clearly see that the time in which the peak viral load point is achieved, as well as
the magnitude of the viral load, is influenced by the values of R0 and R1. It appears that when R0 and R1

increase, the infection progresses at a much faster rate. However, we can see that in Figure 11 graph (b) the
peak viral load point is 54.485virions

mL greater than that of Figure 11 graph (a). This may be explained by the
value of R1. As we mentioned previously, R1 serves to translate the notion of viral reproductive numbers to
immune response. In this manner, R1 represents the number of infected cells that a single immune cell (CTL
in the case of our model) is able to address. Thus, a greater R1 value would be associated with a smaller peak
in the infected cell population, and thus a smaller peak viral load point which is precisely the behavior we see
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illustrated by Figure 11 graphs (a) and (b).
In addition, we see the massive effect that infection has on the population of the uninfected cells. In Figure

11 graphs (b) and (c) the population of uninfected cells is reduced to 31.456% and 31.497% of its original size by
day 25 of infection respectively. Furthermore, for graph (a) the population is reduced to 62.04% of its original
size by day 25. Yet, in each case the uninfected cell population remains strictly positive, as expected. It is
important to note that during infection the population is never completely eliminated.

Figure 11 graphs (a) and (b) illustrate viral persistence, however, the population of the virus is extremely
low within the system, approximately 0.005virions

mL . As mentioned previously, this may suggest the potential for
a latency period in which the virus remains dormant within the immune system. Figure 11 graphs (c) and (d)
highlight the notion of viral extinction. In these two cases, the virus is eliminated from the system as t →∞.

Figure 11 graph (d) illustrates the case in which Ebola virus is never able to reach a critical infection point;
thus, the virus is not able to sustain the infection. In other words, the virus is not “infectious” enough in order
to establish itself within the system. From a biological perspective, this means that each virus particle is not
able to infect a cell and produce a new virus particle, and thus the infection is eliminated in the long run. There
are several possible methods by which this can occur. First, the virus is able to be eliminated via regular cell
death. Thus, there is no development of an immune response during the infection. However, the population of
the virus may also remain at a low enough level that the immune system either does not recognize the infection
prior to elimination, or the required response is minimal and virtually undetectable.

The most important result from the simulations is the notion of immune response. In each case, the immune
system does not seem to mount a prolific, or appropriate, response to the infection. In an ideal scenario, the
immune system would recognize the pathogen immediately after infection and begin a response by dividing
the specific T-cell or B-cell which recognized the pathogen, ultimately resulting in a dramatic increase in the
population of CTLs. However, the population of CTLs remains relatively low during the course of infection
when compared to the other cellular populations, or the CTLs are altogether non-existent within the system.
This suggests that regardless of the values of R0 and R1, the virus is able to evade detection and response,
which is notably the exact behavior of the Ebola virus during infection.

For instance, in Figure 11 graphs (a) the immune response is 26.753 cells
mL at its peak point (day 4.13) and

23.994 cells
mL (day 7.67) in graph (b). This magnitude of response is significantly lower than the population of

uninfected cells, and is much smaller than immune responses in other typical viral infections, including the early
stages of human immunodeficiency virus (HIV) (prior to the onset of acquired immune deficiency syndrome, or
AIDS) and chicken-pox infections. In graph (c), the immune response is barely present and only occurs late in
the infection, and in Figure 11 graph (d) there is no immune response development highlighted by the absence
of CTLs. Furthermore, in all cases the duration of the immune response is extremely short-lived.

5 Discussion and Conclusions

In this paper we develop and analyze a model for Ebola virus dynamics in vivo using reasonable biological
assumptions about both the virus and its primary cellular target in mammalian cells. The proposed model
focused on the highly dynamic interaction between Ebola virus particles, uninfected cells typically prone to
infection by Ebola, infected cells and CTLs. The development and analysis of a model which incorporates the
immune response to viral infection was a key feature in examining the course of Ebola infection within the
human immune system.

Our findings illustrate that utilizing two determined threshold parameters, R0 known as the viral repro-
duction number, and R1 determined to be the immune response number, as well as some small, biologically
reasonable assumptions, allow us to predict the local asymptotic stability of the system around the equilibria.
Furthermore, we are able to classify equilibria based upon their persistence or extinction of specific cell types
or virions. This is especially important when considering the notion of viral persistence and extinction as we
are able to determine conditions which yield viral extinction and persistence as well as immune extinction and
persistence. Our analysis highlights that if the value of the viral reproduction number, R0, is less than one,
the equilibrium will be a locally asymptotically stable virus-free equilibrium. This insight is consistent for that
of other viral infections, including the human immunodeficiency virus (HIV) [15, 16, 20, 21, 26]. In addition,
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our analysis illustrated that increasing the value of R1 such that R1 > 1, is consistent with a decrease in the
peak viral load as well as a decrease in the peak population of virally infected cells. Thus, using the theorems
we developed, we are able to establish conditions which by incorporating the values of R0 and R1 are able to
predict the long term outcomes of Ebola virus infection.

Furthermore, our findings illustrate the notion of evasion of the virus from the immune system. Our simu-
lations revealed that the population of the CTLs remains extremely low when compared to the other cellular
populations. This type of behavior is typically exhibited by other viral infections which subvert immune re-
sponses. In the case where R0 < 1 this behavior is expected from most viral infections, and results from the
fact that each infected cell will fail to produce an additional infected cell prior to death. In this sense, the
virus is not “infectious” enough to commence and sustain an infection which will necessitate a robust immune
response. However, when R0 > 1 we fully expect that the immune system will become activated and thus, we
would expect an increase in the CTL population [26]. We believe that this behavior exhibited by the model
comes as a result of the ability of Ebola virus to effectively evade immune detection.

It is important to illustrate that our biological understanding of Ebola virus infection agrees with the math-
ematics we have shown above. We know from the underlying biology that Ebola virus maintains the ability to
evade both host innate and humoral responses. As mentioned previously, each Ebola virus particle consists of
the polymerase cofactor VP35, the virus specific transcription activator VP30, and the viral RNA polymerase L
proteins [3]. In addition, the matrix between the outer viral envelope and the nucleocapsid contains the VP40
and VP24 viral proteins [3]. It is via these proteins that Ebola virus is able to subvert the immune response.
Ebola virus evades host innate immune responses by downregulation of type I inferion (IFN) responses with
VP24, which desensitize host cells to the effects of IFN-α/β and IFN-γ, and VP35, which can interfere with the
synthesis and expression of IFN and inferion stimulated genes. Furthermore, the Ebola virus glycoprotein (GP)
uses epitope masking and seric shielding to prevent interactions of host MHC Class I and β1 integrin thereby
inhibiting the host immune response. In addition, Ebola evades host humoral immune responses through anti-
genetic subversion with soluble GP and prevention of dendritic cell maturation with VP35. While modeling
these detailed and complex interactions would be extremely difficult, the general behavior of the virus and
the immune system resulting from our model is highly consistent with what we know about dynamics of the
infection.

Furthermore, our work in this paper reveals that the model we developed effectively addresses the dynamics
of Ebola virus infection in vivo, including an immune response. Thus, there is potential to further the analysis
that we conducted in this paper to incorporate a time delay, which would more accurately model the true
dynamics of the system. Lastly, we could also introduce various treatment regiments or protocols and analyze
their impact on the behavior of the system.

Appendix

To prove the existence and uniqueness of solutions, we must prove the following theorem, referred to in Section
3.1.

Theorem (Fundamental Existence and Uniqueness Theorem). Suppose the function f : Rn → Rn is continu-
ously differentiable. Then x(t) is a solution of the differential equation dx

dt = f(x) on an interval I if x(t) is
differentiable on I and if ∀t ∈ I, x(t) ∈ Rn and dx

dt = f(x(t)) and given x0 ∈ Rn, x(t) is a solution of the initial
value problem

dx

dt
= f(x)

x(t0) = x0

Remark: The above is a well known theorem and ensures that the solutions exists and is unique in the neigh-
borhood of x0, i.e., the function is locally Lipschitz [21]. The proof for this theorem can be found in [17].

For determining the local stability behavior of the system at the equilibria of a non-linear system, the following
theorem is necessary:
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Theorem (Poincare-Perron). Let A be a constant matrix in the system dx
dt = Ax with eigenvalues λi, i =

1, 2, ..., n

i. If the system is stable, then Re{λi} ≤ 0. i = 1, 2, ..., n.
ii. If either Re{λi} < 0, i = 1, 2, ..., n; or if Re{λi} ≤ 0 i = 1, 2, ..., n and there is no zero repeated eigenvalue;

then the system is uniformly stable.
iii. The system is asymptotically stable if and only if Re{λi} < 0, i = 1, 2, ..., n; note that it is also uniformly

stable by ii.
iv. If Re{λi} > 0, for any i = 1, 2, ..., n the solution is unstable.

Remark: If any of the eigenvalues have a positive real numbers, we define the equilibrium to be a source,
and thus, unstable. If all of the real parts of the eigenvalues are negative real numbers, we define the equilibrium
to be a sink, and thus, stable. The proof for this theorem can be found in [17].

To determine the signs of the eigenvalues without solving the system directly, we use the Routh-Hurwitz stability
criterion.

Theorem (Routh-Hurwitz Criteria). Given the polynomial P (x) = xn + a1x
n−1 + ... + an−1x + an, where

the coefficients ai are real constants, i = 1, ..., n, define the nth Hurwitz matrix using the coefficients ai of the
characteristic polynomial:

Hn =


a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an


where ai = 0 if j > n. All of the roots of the polynomial P (x) are negative or have negative real part iff the
determinants of all Hurwitz matricies are positive: det(Hj) > 0, j = 1, 2, ..., n.

Considering n = 3 and n = 4, the theorem simplifies and we are able to apply the theorem to the analysis
of our system. For n = 3 the following conditions must be met: a1 > 0, a3 > 0, a1a2 > a3. For n = 4 we must
prove that: a1 > 0, a3 > 0, a4 > 0, a1a2a3 > a2

3 + a2
1a4.

The Hartman-Grobman theorem is essential for showing how our analysis of the linearized system relates to the
non-linear system.

Theorem (The Hartman-Grobman Theorem). Let E be an open subset of Rn containing the origin, let f ∈
C2(E) and let φt be the flow of the nonlinear system below. Suppose that f(0) = 0 and that the Jacobian matrix
J(0) has no eigenvalue with zero real part. Then there exists a homeomorphism H of an open set U containing
the origin onto an open set V containing the origin such that for each x0 ∈ U there is an open interval I0 ⊂ R
containing zero such that for all x0 ∈ U and t ∈ I0

H ◦ φt(x0) = eAtH(x0)

Note: The proof for this theorem can be found in [17].

In our analysis for P3 from section 4.4.1 we also need to show that a1a2a3 − (a2
3 + a2

1a4) > 0. We know for P3:
a1a2a3 − (a2

3 + a2
1a4) = 1

γ3ρ2(βcδ+γµρ)3

(
βcδλ(αγ5µ2ρ5(γ + µ)(αδ − µ2) + β5c5δ3(δ(λρ− αδ) + γ2δ + γλρ) +

β4c4γδρ(δ(λρ(4δµ + λρ)− αδ(5δµ + λρ)) + γ3δ2 + γ2δ(4δµ + λρ) + γλρ(3δµ + λρ)) + β3c3γ2ρ2(α2δ4 +
αδ2(γ2δ − γ(δµ + λρ)− 2δ(λρ + 5µ2)− 3λµρ) + 3γ3δ2µ + γ2δ(−δλρ + 6δµ2 + 3λµρ) + γλρ(δ2µ + δλρ + 3δµ2 +

λµρ) + δλρ(δλρ + 6δµ2 + 2λµρ)) + β2c2γ3ρ3(α2δ3(γ + 3µ) + αδ(2γ2δµ− γ(2δλρ + 3δµ2 + λµρ)− µ(4δλρ +
10δµ2 + 3λµρ)) + 3γ3δµ2 + γ2µ(−δλρ + 4δµ2 + 2λµρ) + γλρ(δλρ + 2δµ2 + µ3) + λµρ(δλρ + 4δµ2 + λµρ)) +

βcγ4µρ4(α2δ2(2γ + 3µ) + α(γ2δµ− γδ(2λρ + 3µ2)− µ(2δλρ + 5δµ2 + λµρ)) + µ2(γ + µ)(γ2 + λρ)))
)

thus, since cβ > αρ, cβλ > αδγ,R1 > 1, R0 > 1, and λρ(γ + δ) > δ2α we can simplify the expression to show
that a1a2a3 > (a2

3 + a2
1a4) and thus we have shown a1a2a3 − (a2

3 + a2
1a4) > 0.
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