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Abstract. This article describes the derivation and implementation of a numerical method to
solve constant-coefficient, parabolic partial differential equations in two space dimensions on rect-

angular domains. The method is based on a formula for the Green’s function for the problem

obtained via reflections at the boundary of the domain from the corresponding formula for the
fundamental solution in the whole plane. It is inspired by a related method for variable coeffi-

cients equations in the whole space introduced by Constantinescu, Costanzino, Mazzucato, and

Nistor in J. Math. Phys, 51 103502 (2010). The benchmark case of the two-dimensional heat
equation is considered. We compare the Green’s function method with a finite-difference scheme,

more precisely, an alternating direction implicit (ADI) method due to Peaceman and Rachford.

Our method yields better rates of convergence to the exact solution.
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1. Introduction

This research is motivated by the desire to maximize calculation speed in engineering, scientific, fi-
nancial and other applications that necessitate a large amount of approximations in a short amount
of time. These applications require numerical methods for approximating solutions to partial dif-
ferential equations (PDEs) with high accuracy and efficiency.

In this paper, we demonstrate the robustness of a numerical method for solving parabolic PDEs
in two space dimensions, although the method can in principle be applied in any dimension. The
method relies on representing the solution of the initial-value problem for the parabolic equation via

27

bmh
Text Box
 Copyright © SIAM  Unauthorized reproduction of this article is prohibited



                                                                   L  . EDWARDS

its Green’s function and suitable multiple reflections across the boundary of the domain. Though
this process, sometimes known as the method of images[1], we extend the the solution to the
whole space in such a way that our extension satisfies the prescribed boundary conditions. The
resulting solution is periodic on the plane. As in [2, 3], our method relies on writing the solution
u(t, x) =

∫
G(t, x, y)f(y)dy, where f is the initial data and G is the Green function of our problem.

In the whole plane, the Green’s function is more often referred to as the fundamental solution.
The main issue in the variable coefficient case is to approximate G. A solution to this problem is
proposed in [2, 3], where equations on domains without boundaries were considered, and hence no
boundary conditions were needed. A natural question is whether the approximation in [2, 3] recovers
the exact solution in the case of constant coefficients, for which the fundamental solution is known.
Another natural question is how should the method be modified in the presence of boundaries.
These two questions are addressed in this paper in the particular case of a rectangular domain
and the approximation of solutions to the heat equation in two space dimensions. It should also be
noted that the method is applicable in situations where we have coefficients that are constant at the
boundary but may be non-constant within the domain of interest by combining the approximations
discussed here with those in [2, 3] for the variable-coefficient case. Another general issue, is to
estimate the integrals

∫
G(t, x, y)f(y)dy numerically, and for this we use the simplest approach of

a composite trapezoid rule for periodic functions, since there seems to be no additional advantage
in considering some higher order rules. As a means for comparison against our method, we utilize
an alternating direction implicit (ADI) method due to Peaceman and Rachford [4] to numerically
solve the initial-value problem directly.

We study the initial-boundary-value problem for the two-dimensional heat equation on the square
0 ≤ x, y ≤ π, given by

(1)
∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, 0 ≤ x, y ≤ π,

where we will consider the imposed Dirichlet boundary conditions

u(t, x, 0) = u(t, x, π) = u(t, 0, y) = u(t, π, y) = 0

and an initial condition of the form

u(0, x, y) = f(x, y) :=
∑

m=1,2...

∑
n=1,2...

Amn sin (nx) sin(my).

with suitable coefficients Amn ∈ R.

The existence of a closed form solution to this problem makes it especially useful in demonstrating
the robustness of our numerical method since we can always compare with the exact solution. The
exact solution given the boundary and initial conditions is well known to be

(2) u(t, x, y) =
∑

m=1,2...

∑
n=1,2...

Amn sin (nx) sin(my)e−(n2+m2)t.

We utilize a combination of absolute and relative forms of the discretized L2 and L∞ error norms
in order to obtain a complete understanding of the strengths of our method over others.
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GREEN’S FUNCTION METHOD

In the future, it would be interesting to apply the methods discussed in this paper to higher
dimensional cases. Since the two dimensional calculations used in this paper are primarily useful
as a simple platform for discussion, an application to higher dimensional problems would provide
a more complete picture of the robustness of the method. It would also be interesting to consider
the extension of the method to equations with non-constant coefficients, but this process is beyond
the scope of this report.

We begin our discussion by defining the solution to the initial-boundary-value problem discussed
above utilizing the Green’s function. This is followed by a demonstration of the process for reflecting
the calculation across the boundary of the square and extending the solution to the entire plane in
an odd and periodic way. The extended solution can be written as convolution with the fundamental
solution, also called the heat kernel. We then show how the fundamental solution in two dimensions
can be equated to a product of one dimensional fundamental solutions.

The next section provides the details of how we move from the closed form solution just derived to
a finite approximation that is more manageable in a numerical setting. Thus, while in our simple,
model problem, the fundamental solution (or Green function) can be determined explicitly, we still
find it useful to approximate it with a simpler function. We expect this to be quite useful for
higher order problems. Methods for simplifying and increasing the efficiency of our method from a
computational standpoint are discussed.

This is followed by a brief discussion of the Peaceman-Rachford ADI method against which we will
compare the Green’s function method. It is a relatively simple implicit predictor-corrector method
for solving PDEs in multiple spacial dimensions which is unconditionally stable (in two dimensions)
and is still used in some applications[4]. We also lay out the precise details of how the two methods
are compared against one another in terms of speed (operation cost) and accuracy.

Finally, we provide a discussion of our results along with a comparison of error and operation count
data, highlighting the strengths of our method.

2. Fundamental Solution Approach

We now show the derivation of the solution to the two-dimensional heat equation using the Green’s
function. The formulation will lead to the observation that the formula can be extended to ar-
bitrarily many spacial dimensions by simply taking the product of one dimensional fundamental
solutions.

The strategy will be to reflect this calculation across the boundary and extend it to the the whole
plane in an odd and periodic fashion, thus obtaining the expression for the extended solution (3) as
an infinite series of definite integrals. Importantly, the resulting series will be rapidly convergent,
allowing for the truncation of the series to retain only a small finite number of its terms without
a significant loss of accuracy in the approximation. The details of this truncation are discussed in
Section 3. This approach is related to what is known as Ewald summation, a commonly used tool
in electrostatics and computational chemistry for studying systems that are infinite and periodic.
The fundamental idea behind Ewald summation is to break up a single divergent series into the sum
of two series, one that is summable in the Fourier domain, and one that is summable with rapidly
decaying terms in the real domain. This allows the energy of an infinite system to be approximated
accurately and efficiently with truncated sums, which in turn leads to highly efficient numerical
algorithms that take advantage of this rapid convergence [5].
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The solution u(t, x, y) of the initial-value for the heat equation in the whole plane is given by the
convolution of the fundamental solution G with the initial condition f (see e.g. [6])

(3) u(t, x, y) =

∫ ∞
−∞

∫ ∞
−∞

G(t, x, y, z, v)f(z, v)dzdv

where the fundamental solution G is given by:

(4) G(t, x, y, z, v) =
1

4πt
exp

[
−(x− z)2 − (y − v)2

4t

]
.

We want to obtain from this explicit form of the solution in the entire plane a form of the solution of
our initial-value/Dirichlet boundary value problem. To this end, we first observe that the indefinite
integral (3) can be written as the infinite sum of definite integrals in the following way:

(5) u(t, x, y) =

(
· · ·+

∫ π

0

∫ π

0

(G · f)dzdv +

∫ π

0

∫ 0

−π
(G · f)dzdv + · · ·

· · ·+
∫ 0

−π

∫ π

0

(G · f)dzdv +

∫ 0

−π

∫ 0

−π
(G · f)dzdv + · · ·

)
,

where we have written (G · f) for G(t, x, y, z, v)f(z, v), for simplicity.

This integral can be rewritten as the double infinite summation:

(6) u(t, x, y) =
1

4πt

∞∑
k,m=−∞

[ ∫ (2m+1)π

2mπ

∫ (2k+1)π

2kπ

(G · f)dzdv +

∫ (2m+1)π

2mπ

∫ 2kπ

(2k−1)π

(G · f)dzdv

· · ·+
∫ 2mπ

(2m−1)π

∫ (2k+1)π

2kπ

(G · f)dzdv +

∫ 2mπ

(2m−1)π

∫ 2kπ

(2k−1)π

(G · f)dzdv

]
.

The convergence of this sum is justified by the convergence of the original integral in the whole
plane, which in turns depends on having the right summability assumptions on the initial data f .
Importantly, f is typically very nice in applications (continuous and with compact support), so we
will neglect providing the optimal assumptions on f in what follows.

We utilize the homogeneous Dirichlet boundary conditions and extend u to an everywhere defined
periodic function (with period 2π in each variable) by requiring that u be odd with respect to
reflections across the the walls of our domain. Accordingly, we first make the substitutions z =
z+2mπ and v = v+2kπ in our equation. Since our initial condition f is 2π periodic, we have:

f(z + 2mπ, v + 2kπ) = f(z, v).

By making a change of variables in each integral, we can rewrite (6) as follows:

(7) u(t, x, y) =
1

4πt

∞∑
k=−∞

∞∑
m=−∞

[∫ π

0

∫ π

0

(Gm,k · f)dzdv +

∫ π

0

∫ 0

−π
(Gm,k · f)dzdv + · · ·

· · ·+
∫ 0

−π

∫ π

0

(Gm,k · f)dzdv +

∫ 0

−π

∫ 0

−π
(Gm,k · f)dzdv

]
.
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where the translated Green’s function Gm,k has the formula:

Gm,k =
1

4πt
exp

[
−(x− z − 2mπ)2 − (y − v − 2kπ)2

4t

]
.

Now, we make the substitutions z = −z and v = −v in the terms that corresponds to integration
over the negative interval, using that the extension of f is odd. We can then reverse the order of
the bounds on the integrals, make the appropriate sign changes, and combine the terms under one
double integral. The solution becomes

(8) u(t, x, y) =
1

4πt

∞∑
k=−∞

∞∑
m=−∞

[∫ π

0

∫ π

0

(
(e−Am − e−Bm)(e−Ck − e−Dk) · f(z, v)dzdv

)]
where Am and Bm are defined as

Am =
(x− z − 2mπ)2

4t
, Bm =

(x+ z − 2mπ)2

4t

and Ck and Dk are defined as

Ck =
(y − v − 2mπ)2

4t
, Dk =

(y + v − 2mπ)2

4t
.

Now, observe that if we define Hm(t, x, z) and Hk(t, y, v) in the following manner:

(9) Hm(t, x, z) = e−Am − e−Bm , Hk(t, y, v) = e−Ck − e−Dk ,

then the solution can be written as

(10) u(t, x, y) =
1

4πt

∞∑
k=−∞

∞∑
m=−∞

[∫ π

0

∫ π

0

(
Hm(t, x, z) ·Hk(t, y, v)f(z, v)

)
dzdv

]
,

Let us denote G(1)(t, x, z) := 1√
4πt

∑∞
m=−∞Hm(t, x, z) and

(11) G(2)(t, x, y, z, v) := G(1)(t, x, z)G(1)(t, y, v)

Then formula (10) becomes

(12) u(t, x, y) =

∫ π

0

∫ π

0

G(2)(t, x, y, z, v)f(z, v)dzdv.

So far, our calculations have been formal, but they can be justified by estimating the terms involved.
These estimations will show that the corresponding series are absolutely and uniformly summable
and, more importantly for applications, they will give a more effective way of approximating the
Green’s function G(2).

We provide the necessary estimations of the exponential terms (9) in the following proposition.
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Proposition 2.1. Let K := e−π
2/4t. Then for the exponential terms in (8), we have the following

uniform bounds. For m, k ∈ Z we have

e−Am ≤ K |m|, and e−Ck ≤ K |k|.

For m, k ∈ Z,with m, k 6= 1, we have

e−Bm ≤ K |m|, and e−Dk ≤ K |k|.

Proof. We demonstrate the bounds for e−Am and e−Bm . The corresponding bounds for e−Ck and
e−Dk follow from identical arguments. Note that for m = 0 we have e−A0 = e−B0 = K0 = 1. For
all other m ∈ Z, using the fact that x, z ∈ [0, π], we have the following string of inequalities:

(13) e−Am = exp

(
− (−2mπ + x− z)2

4t

)
≤ exp

(
− (2mπ − π)2

4t

)

≤ exp

(
− (mπ)2

4t

)
≤ exp

(
− π2

4t

)|m|
= K |m| .

To bound e−Bm , we note that for m = 0 and m = 1, we have e−Bm ≤ 1. For all other m ∈ Z, we
can make the following estimates

(14) e−Bm = exp

(
− (−2mπ + x+ z)2

4t

)
≤ exp

(
− (mπ)2

4t

)
≤ exp

(
− π2

4t

)|m|
= K |m|.

This completes the proof.

�

We note that the factor K in the above proposition depends on t and is very small as t → 0:
limt→0K = 0, but K increases to 1 as t increases to ∞.

Let us fix an integerN ≥ 0 in the following discussion and let us define G̃(1)(t, x, z) := 1√
4πt

∑
|m|≤N Hm(t, x, z)

and

(15) G̃(2)(t, x, y, z, v) := G̃(1)(t, x, z)G̃(1)(t, y, v).

Then we have the following estimates:

Theorem 2.2. Let t > 0 and K := e−π
2/4t, as in Proposition 2.1, and D :=

(√
πt (1 − K)

)−1
.

Then

(i) |G(1)(t, x, z)| ≤ 2D and |G̃(1)(t, x, z)| ≤ 2D(1−KN+1) for all x, z.

(ii) |G(1)(t, x, z)− G̃(1)(t, x, z)| ≤ DKN+1.

(iii) |G(2)(t, x, y, z, v)− G̃(2)(t, x, z)| ≤ 2D2KN+1.
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Proof. (i) From the definition of G(1) and G̃(1), the bounds in Proposition 2.1, and the expression
for the sum of a convergent geometric series, we have

|G(1)(t, x, z)| ≤ 2√
4πt

∞∑
m=−∞

|Hm(t, x, z)| ≤ 4√
4πt

∞∑
m=0

Km = 2D,

and similarly,

|G̃(1)(t, x, z)| ≤ 2√
4πt

∑
|m|≤N

|Hm(t, x, z)| ≤ 4√
4πt

N∑
m=0

Km = 2D(1−KN+1).

(ii) This follows immediately from (i).

(iii) This last estimate is obtained by writing

G(2)(t, x, y, z, v)− G̃(2)(t, x, y, z, v) =
(
G(1)(t, x, z)− G̃(1)(t, x, z)

)
G(1)(t, y, v)

+ G̃(1)(t, x, z)
(
G(1)(t, y, v)− G̃(1)(t, y, v)

)
,

and then using the results from (i) and (ii). This completes the proof.

�

The following proposition serves to characterize the behavior of our approximation.

Proposition 2.3. We have limt→0 2D2KN+1/tk = 0 for all k > 0.

Proof. Observe

lim
t→0

2D2KN+1

tk
= lim
t→0

2KN+1

πt(1−K)2tk
≤ lim
t→0

KN+1

K2tk+1
= lim
t→0

KN−1

tk+1
= 0.

The last equality is clear from the dominance of the exponential term K which goes to 0 faster
than any polynomial in t as t→ 0. �

We thus obtain a very good approximation as t→ 0, i.e. for small time. However, this approxima-
tion is not very good for very large t. We can improve it however for medium t by increasing N .
This is why in our numerical tests we take N = 1 instead of N = 0.

Now, for some applications it may be of interest to write our solution as the product of two terms,
independent of one another with respect to the spatial variables x and y. This can be done if the
initial data can be expressed as a separable product. We provide this result as a proposition. We
stress that our method works in general for any sufficiently regular f .

Proposition 2.4. The fundamental solution G(2) to the heat equation in two dimensions can be
expressed as the product of one dimensional solutions as in Equation (11). Consequently, the
solution u(t, x) · u(t, y) for a continuous initial value f(z, v) = f1(z)f2(v) can be written as
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(16) u(t, x, y) =
(∫ π

0

G(1)(t, x, z)f1(z)dz
) (∫ π

0

G(1)(t, y, v)f2(v)dv
)
.

Proof. In order to assert this equality, it is enough to show uniform convergence of the series

(17)
∞∑

k=−∞

∞∑
m=−∞

[(
(e−Am − e−Bm)(e−Ck − e−Dk) · f(z, v)dzdv

)]
,

over the region [0, π]× [0, π]. Using the bounds given in Proposition 2.1 and the fact that conver-
gence is preserved under addition and multiplication of absolutely convergent series, the uniform
convergence of (17) is immediate from the Weierstrass M test. �

This proof lays the foundation for an important result which we will offer as a proposition, but will
not prove here. Indeed, it can be shown that the previous result can be extended to arbitrarily
many spacial dimensions.

Proposition 2.5. The Green function for the heat equation with zero Dirichlet boundary con-
ditions on the Cartesian product of n intervals is the product of the corresponding Green func-
tions for each interval. Moreover, if the initial data has a product structure f(x1, x2, . . . , xn) =
f1(x1)f2(x2) . . . fn(xn), then the solution of the n-dimensional problem is the product of n one-
dimensional solutions ui(t, xi) in xi, that is,

u(t, x1, x2, . . . , xn) = u1(t, x1)u2(t, x2) . . . un(t, xn).

This result could be of importance in practical applications with separable initial data, as it is often
necessary to consider in higher dimensional problems.

3. Numerical Method

While the solution (12) just developed is exact, it is not feasible or necessary to calculate the infinite
sums numerically. The goal is to utilize this solution to numerically approximate the exact solution
to the heat equation using a far smaller operation count than other known methods. The operation
count for a calculation is found by tracking the number of operations that a program must execute
in order to produce an estimate within a given threshold of accuracy of the exact solution. It should
be noted that there is necessarily some error due to computer rounding when calculating the exact
solution, but it is negligible and will not be a relevant factor in our comparisons.

Several observations can be made about our solution which significantly reduce the operation count
while preserving the accuracy of the approximation.

Recall that the solution (12) is found by taking the infinite sum of the integral of a product of terms
similar in form to the expression

(18) exp

[
−(x+ z − 2mπ)2

4t

]
.
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Based on the results given at the end of Section 2, we know these terms exhibit rapid decay every-
where on the domain [0, π]× [0, π] as |m| grows large. This can also be easily observed informally
from (18) by fixing some small t > 0 and x, z in the domain and evaluating the exponential for
increasing values of m. This rapid decay is of critical importance for the efficiency of our numerical
method. It turns out that all but a small finite number of terms in the series are negligible, thus
the infinite sums can be truncated dramatically while still providing very accurate approximations.
In particular, the calculations in this report were done by truncating the sums so that they only
include terms corresponding to m, k ∈ {0,±1}.

Thus the approximation to (12) used to obtain all of the data in this report is given by

(19) u(t, x, y) ≈ 1

4πt

∑
m,k=0,±1

[∫ π

0

∫ π

0

(
Hm(t, x, z)Hk(t, y, v)f(z, v)

)
dzdv

]
.

This formula allows for a significant reduction in operation count without significantly compromising
the accuracy of the approximation. In fact, using the product structure, we see that we need to
compute only 12 exponentials.

To approximate the integrals in the approximate solution, we use a standard midpoint Riemann
sum, which turns out to be sufficient despite its relative simplicity (second order), even with a
surprisingly low number of partitions. For periodic functions, the composite midpoint rule will
coincide with the composite trapezoid rule, and it seems that higher order composite methods
actually do not contribute to the precision of the integration.

In order to balance the accuracy with the operation count of our method, the fineness of the
mesh used to approximate the integrals in the approximation (19) can be increased or decreased.
The number of terms of the series can also be increased based on the desired accuracy of the
approximation. Thus, we can easily alter the method to better the approximation while maintaining
the minimum operation count that meets our needs.

4. Comparison Methods

In order to obtain a comparison of the accuracy vs. speed of our solution with other known methods
in the two-dimensional case, we use a Peaceman-Rachford variant of the ADI method to solve the
PDE directly. Comparisons with explicit and implicit Euler schemes in the one-dimensional case
have been made by W. Cheng et al. [2]. The ADI method is best known for its use in solving
heat conduction problems. It is a finite-difference based scheme which splits the solution into two
parts. First, an implicit treatment of the first space variable is utilized while the other is treated
explicitly. These roles are then reversed in the next step. The method can be shown to be uncon-
ditionally stable with respect to the time and space discretizations for two dimensional problems,
and is second order in time and space [4].

The strength of the ADI method is partially due to the fact that it reduces to solving a sym-
metric tridiagonal system, unlike the well known implicit Crank-Nicolson method from which it
is derived. Due to this nice structure, the number of operations per time step needed to find a
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solution on an N ×M rectangular grid is only O(NM). However, O
(
(NM)2

)
time steps are usu-

ally required. The Greens function method requires a total of O
(
(NM)2

)
operations to obtain

a solution on the same rectangular grid. This assumes that the discretization of the integrals in
(19) is O(NM), which is typically an overestimate. It is important to emphasize that there is no
time stepping needed in the Greens function method, although a small number of time steps may
be taken when using the approximate Greens function in order to keep errors small. It should be
noted that although (19) does not converge to the exact solution as N and M go to infinity if the
number of time steps is fixed, we do obtain convergence by allowing the number of time steps to go
to infinity. The number of time steps needed to achieve a certain error is nevertheless much smaller
than for the ADI method.

The two major steps of the ADI algorithm applied to the two-dimensional heat equation can be
expressed concisely as follows:

u
n+ 1

2
ij − unij

∆t/2
=
[
δ2
xu

n+ 1
2

ij + δ2
yu

n
ij

]
(20)

un+1
ij − un+ 1

2
ij

∆t/2
=
[
δ2
xu

n+1
ij + δ2

yu
n+ 1

2
ij

]
,(21)

where δ2
x and δ2

y represent second order central difference operators in x and y respectively, e.g.

(22) uxx →
δ2
xu

n
ij

h2
≡
uni+1,j − 2uni,j + uni−1,j

h2
.

The subscripts i, j in these formulas correspond to the spatial discretization and the superscript n
corresponds to the time step. Note that the first step (20) is implicit in x and explicit in y, whereas
the second (21) is implicit in y and explicit in x. In fact, the implicit and explicit schemes are simply
backward and forward Euler respectively. The algorithm proceeds by conducting alternating sweeps,
first in the x direction at half time steps n∆t

2 , then in the y direction at times n∆t.

In order to compare the ADI method against the Green’s function method, we first obtain the
exact closed form solution as well as both approximations to the solution of the heat equation on
[0, π] × [0, π] given some initial condition. We then determine the (discretized) L2 and L∞ error
for each method at some specified time. Note that although the spatial discretization for the ADI
method was not necessarily fixed between trials, the error calculations were only made on a 50×50
grid over the square. For consistency, the same grid was then used to calculate the error in the
approximation found using the Greens function method.

Both absolute and relative forms of these errors will be used in order to present a clearer picture
of the results. Our first two comparisons are meant to highlight the relatively small operation
count required by the Green’s function method as compared to the ADI method in obtaining a
reasonably accurate solution. We consider two different initial conditions, the first consisting of a
single low frequency mode in each of x and y, and the second consisting of five modes of widely
varying frequencies. We then focus on the high order accuracy that can be obtained using the
Green’s function method while still maintaining a manageable operation count.
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Finally, It is important to note that although the algorithm for the Green’s function method can be
made faster by utilizing the one-dimensional nature of the solutions given certain initial conditions,
we do not expect to have these conditions in general and thus we conduct the comparisons without
taking advantage of this computational shortcut. Thus, the comparisons made here are valid for a
much broader class of initial conditions, in particular, those that cannot be separated.

5. Results and Conclusions

The superiority of our method over the ADI method in terms of speed and accuracy is demonstrated
in several different ways. Tables 1 and 2 are meant to demonstrate the comparatively low operation
cost or speed of our method when obtaining a reasonably accurate solution. To obtain the results in
these tables, each method was used to obtain approximations with relative L∞ error of O(10−4) on
the domain while maintaining the lowest possible operation count. In the approximations obtained
using the Greens function method, only the number of partitions used in approximating the integrals
in (19) were changed in order to increase accuracy. For the ADI method, both the time and spatial
discretizations were systematically and individually incremented by ±10 in order to experimentally
obtain the lowest order operation count for a desired accuracy. Note that the data in Table 1
correspond to a single mode initial condition and the data in Table 2 correspond to a more peaked
initial condition with five modes. All of the errors given in Tables 1 and 2 are relative errors, and
the operation counts are approximate.

Table 1 provides a comparison of the two methods in solving the heat equation with the initial
condition f(x, y) = sin(3x) sin(3y). Both methods require O(105) operations to arrive at a solution
within the required error tolerance for early time t = 0.05, but this trend does not persist. The
Green’s function method requires roughly one order of magnitude fewer operations at intermediate
times t = 0.10 and t = 0.50, and three orders of magnitude fewer at a ’late’ time t = 1.00. Also, note
that the two methods differ dramatically in the number of operations required as time increases.
To arrive at a solution at any given time ti, the ADI method must compute the solution at a certain
number of earlier times t1, . . . , ti−1 depending on the time step chosen. This means that obtaining
a solution at a later time typically requires many more operations than an earlier time. This is not
the case with the Green’s function method which does not have any dependence on earlier data.
Thus the operation count for the ADI method increases with time whereas the operation count
decreases for the Green’s function method as the solution becomes less peaked.

Time Relative L2 Error Relative L∞ Error Operation Count
Green’s ADI Green’s ADI Green’s ADI

0.05 4.90e-3 2.53e-2 2.46e-4 9.92e-4 1.22e5 1.20e5
0.10 4.82e-3 2.20e-2 2.59e-4 9.86e-4 9.00e4 4.35e6
0.50 4.66e-5 1.11e-2 1.10e-5 9.99e-4 4.00e4 6.38e6
1.00 4.50e-3 9.53e-3 3.25e-4 9.85e-4 4.00e4 1.69e7

Table 1. Relative L2 and L∞ errors and operation count required for each method
in obtaining an approximation with O(10−4) relative L∞ error at various times.
Initial condition: f(x, y) = sin(3x) sin(3y).

Table 2 contains data corresponding to similar calculations, but with the initial condition
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(23) f(x, y) = sin(3x) sin(3y)−sin(2x) sin(4y)−sin(5x) sin(2y)−sin(7x) sin(5y)+2 sin(6x) sin(10y),

with modes chosen more or less arbitrarily as a representative for more complicated or more peaked
initial data. (Note that an earlier time, t=.01, is included to reflect the smaller time scales inherent
in the problem for this initial condition.) As expected, both methods require more operations
to reach the same L∞ error tolerance than with the single mode initial condition. However, the
increase is not as dramatic for the Green’s function method as it is for the ADI method which
requires roughly an order of magnitude more operations than with the previous initial condition.
Again, we see the two methods exhibiting opposite trends in terms of operation count with respect
to the time at which the solution is being approximated.

Time Relative L2 Error Relative L∞ Error Operation Count
Green’s ADI Green’s ADI Green’s ADI

0.01 1.34e-2 4.90e-3 5.98e-4 9.94e-4 9.02e5 3.92e6
0.05 1.54e-2 6.81e-3 6.13e-4 9.99e-4 3.02e5 1.56e6
0.10 1.54e-2 7.73e-3 6.12e-4 9.90e-4 2.02e5 3.17e6
0.50 2.65e-3 5.77e-3 1.04e-4 9.98e-4 9.00e4 3.57e7

Table 2. Relative L2 and L∞ errors and operation count required for each method
in obtaining an approximation with O(10−4) relative L∞ error at various times.
Initial condition: f(x, y) = sin(3x) sin(3y) − sin(2x) sin(4y) − sin(5x) sin(2y) −
sin(7x) sin(5y) + 2 sin(6x) sin(10y).

Table 3 contains only data for the Green’s function method and is meant to illustrate the accuracy
that can be obtained with the method without sacrificing speed. These data were obtained by first
experimentally determining the maximal order of accuracy attainable in solving the heat equation
with initial condition (23) using the approximation (19), and then computing approximations which
attain that order of accuracy while maintaining the lowest possible operation count. Observe that
the operation cost for these approximations is only roughly double that of the approximations from
Table 2. Note that the comparatively large relative error at time t = 0.50 is due to the fact that
the solution decays to near 0 everywhere on the domain by this time.

In theory, the ADI method can be used to obtain equally accurate approximations, albeit at a
much greater operation cost. However, the effect of compounding error becomes overwhelming as
the fineness of the spacial and temporal discretization in increased, making it difficult to obtain
highly accurate approximations.

Finally, Figure 1 provides a visualization of the convergence of the Green’s function method with
respect to operation count. The plot depicts the relative L2 and L∞ error corresponding to approxi-
mate solutions to the heat equation with initial condition (23) at time t = 0.10. As the the operation
count increases from 105, the approximation converges to the exact solution exponentially.

One of the great advantages of our method, and an explanation for the huge advantage in operation
cost when compared to the Peaceman-Rachford ADI and other methods, is its lack of dependence
on earlier data. We can arrive at a solution at any ’large’ time at no greater cost than a smaller
time solution would require. This is not the case for a recursive method which requires a dramatic
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Time Absolute Error Relative Error Operation Count
L2 L∞ L2 L∞

0.01 4.38e-9 1.05e-9 4.15e-9 9.93e-10 2.02e6
0.05 1.22e-9 2.50e-10 2.99e-9 6.15e-10 6.40e5
0.10 4.37e-10 9.14e-11 2.94e-9 6.15e-10 4.22e5
0.50 4.97e-10 1.00e-10 6.24e-6 1.25e-6 1.60e5

Table 3. Absolute and relative L2 and L∞ errors corresponding to highest accu-
racy attainable with Green’s function method at each time for multi-modal initial
condition (20).
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Figure 1. Relative error versus operation count for the Green’s Function Method
with initial condition f(x) = sin(4x) sin(4y), t = 0.1.

increase in the number of operations with an increase in time just to maintain an accuracy consistent
with earlier time approximations. This also means that with the Green’s function method, we can
approximate the solution at arbitrary times rather than a set of times dictated by the size of
some time step ∆t. Furthermore, the method, which is straightforward to implement even in high
dimensions, affords us great control over operation count, making the minimization of calculation
speed for a desired level of accuracy quite simple.
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