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1 Abstract4

Malaria epidemics are detrimental to the health of many people and economies of many countries. There5

exist methods of malaria control, but the fight against the disease is far from being over. The history of6

mathematical modeling of malaria spread is more than hundred years old. Recently, a model was proposed in7

the literature that captures the dynamics of malaria transmission by taking into account the behavior and life8

cycle of the mosquito and its interaction with the human population. We modify this model by including the9

effect of an anti-parasitic medication, ivermectin, on several threshold parameters, which can determine the10

spread of malaria. The modified model takes a form of a system of nonlinear ordinary differential equations.11

We investigate this model using applied dynamical systems techniques. We were able to show that that exist12

parameter regimes such that careful use of ivermectin can curtail the spread of malaria without harming the13

mosquito population. Otherwise, the ivermectin either eradicates the mosquito population, or has little to14

no effect on the spread of malaria. We suggest that ivermectin can be very effective when used as a malaria15

control method in conjunction with other methods such as reduction of breeding sites.16

2 Introduction17

2.1 Background18

Malaria, a disease caused by a mosquito-borne parasite, results in hundreds of thousands of deaths each19

year, primarily in sub-Saharan Africa. According to the 2014 WHO report [1] there were about 198 million20

cases of malaria in 2013, resulting in approximately 584,000 deaths, 90% of which occurred in sub-Saharan21

Africa. Roughly 78% of malaria related deaths were in children under five years of age. In addition to22

causing a large number of deaths, malaria can also damage the active and potential work force in a country,23
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hindering economic growth. Malaria is seen predominantly in areas with poor economic conditions to begin24

with, making it challenging for the economy to flourish. Because of the detrimental effects of malaria, it is25

clear that ongoing research for control methods for malaria can save future lives and boost the economies of26

nations at risk. Malaria has been a recurring issue since as early as 1324 BC when it was said to have played27

part in the death of the boy Pharaoh Tutankhamen [2]. Although the number of malaria infections a year28

have dropped from 227 million in 2000 to 198 million in 2013 [3], there are still many areas where malaria29

is prevalent.30

As a response to this epidemic, several mathematicians have developed models in search of understanding31

of malaria dynamics. The research began as early as 1911, when the Ross-Macdonald was the first to32

create a model demonstrating the interaction between mosquitoes and humans which perpetuates malaria.33

Although we will not go into depth about the history of malaria models, those interested may see [4] -34

[6] for details. In 2012, as a part of this ongoing research, a Susceptible-Infectious-Susceptible model for35

malaria that accounts for the interactions between the human and mosquito populations was created in [7] to36

account for the complex dynamics of the disease. This model was among the first models which consider the37

population dynamics of the mosquito population. Other models which consider the population dynamics of38

the mosquito include [8], [9]. Specifically, the model in [7] considers factors related to local carrying capacity39

of the mosquito population, as well as mosquito birth rates, that ultimately affect how the disease spreads40

through the human population. The new, rich dynamics of the system provide valuable insight into what41

factors most directly affect the spread of malaria, and make it possible to study many additional control42

strategies.43

In [7] the existence of zero, one, or two endemic steady states, Hopf bifurcations, and backwards (subcrit-44

ical) bifurcations were shown. Furthermore, the effect of certain parameters, such as the carrying capacity45

and birthrate mentioned above, on these phenomena was studied. Here we adapt the model used by [7]46

account for the use of another control strategy in the form of medication. In particular, we investigate the47

pharmaceutical drug ivermectin, a widely accepted broad-spectrum antiparasitic drug. Ivermectin has been48

identified in [10] to cause infertility and death in the anopheles mosquito. When a mosquito bites a human49

who has recently ingested ivermectin, it will die within 48-72 hours. If the concentration of ivermectin is50

too weak, the mosquito will not die, but its eggs will not be fertile. Some recent studies [11]-[13] suggest51

that ivermectin could be used as an additional control method for malaria. Here we study the possible52

effects of ivermectin on malaria control and the mosquito population. We show that the medication can53

eradicate malaria in certain cases without detrimental effects to the mosquito population. Although some54
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may argue that this complete eradication of mosquitoes is a viable solution, from an ecological stand point,55

such action could be quite dangerous. Mosquitoes are a food source for predators and provide pollination56

in any environments in which they reside, thus, their total disappearance could have a negative effect on an57

ecological system. Although this effect could be studied further, we assume in this paper that the eradication58

of mosquitoes is not desirable.59

2.2 Ideas behind the Model60

Malaria is caused by the parasite Plasmodium and is not transmissible by human to human contact. However,61

a mosquito biting an infected human becomes infected and therefore can spread the disease to other humans.62

Diseases such as malaria which are spread by a secondary source are referred to as vector-borne disease. In63

the case of malaria, the female mosquito is the vector which spreads the disease. Since the female mosquitoes64

rely on blood meals to reproduce, the transmission of malaria is driven by the life cycle of the mosquito.65

The vector-borne transmission of malaria is of great importance in regards to understanding, and hopefully66

controlling, the spread of the disease. In particular, the female Anopheles mosquito transmits or receives67

the parasite while biting a human as part of the mosquito’s reproductive cycle [14]. This is an important68

distinction from many other diseases, as both mosquitoes and humans are intimately tied to one another69

in both reception and transmission of the parasite. Thus, understanding the life cycle of the parasite-70

bearing mosquito population directly influences the understanding of the dynamics of malaria in the human71

population. Accordingly, a mathematical model for malaria must take into account the dynamics of the72

disease, as well as the life cycles of mosquitoes, and their interaction with the human population.73

It is important that only the life cycles of the female mosquitoes is relevant, as only the females transmit74

the disease to humans. To model the spread of Malaria, the life of the mosquito can be split into three stages;75

resting, questing, and fed. The life cycle of the mosquito starts in the resting stage, enters the questing stage76

upon maturity where it begins searching for a blood-meal to reproduce, and if a meal is successfully taken,77

enters into the fed stage. Examining the life of a mosquito, and specifically the reproduction process, it78

is apparent that mosquitoes reproduce only after taking a blood-meal. After reproducing, the mosquitoes79

re-enter the resting stage, and the cycle continues. It should also be noted that a mosquito is not guaranteed80

a blood-meal while questing. It is possible for a mosquito to fail to take a meal, and live to attempt another81

meal, and also to die within the questing stage.82

Relating ivermectin to the life cycle structure introduced above, the drug would affect mosquitoes during83

the transition from the questing stage to the fed stage. We focus here on the effect of the drug killing84
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mosquitoes that take a blood-meal from a medicated human. Essentially, ivermectin creates a break in the85

life cycle of the mosquito, removing a mosquito from the system between the questing and fed stages. It86

should also be noted that using ivermectin does not directly prevent disease transmission to people who87

have taken the drug, or help cure infected individuals. Rather, the medication kills the mosquito, stopping88

it from transmitting the disease after biting a person with ivermectin in their blood.89

3 The Model90

3.1 The Model, Variables, and Parameters91

The mathematical model used here is a nonlinear system of ordinary differential equations. The primary92

feature of the model is its focus on the life cycles of the mosquito vectors in the transmission of malaria.93

The model itself is based on the model in [7], but includes additional features related to the administration94

of the drug ivermectin, and its effect on the spread of the disease. The inclusion of the intricate life cycle95

of the mosquitoes within the model allows for a realistic interpretation of the effects the drug would have if96

administered in areas of the world struggling with the disease. The original model by [7] takes into account97

the three stages of mosquito life described above; resting, questing, and fed. Further, each stage of mosquito98

as well as the human population can be either susceptible or infected. The model utilizes parameters such as99

flow rates of mosquitoes to and from human habitats, probabilities of mosquitoes successfully taking blood100

from a human, and birth and death rates to capture the dynamics of the disease as accurately as possible.101

For the portion of the model related to humans, birth and death are constant and transitions between102

susceptible and infected are considered. Susceptible humans that have blood taken by an infected mosquito103

become infected, and infected humans can also naturally recover at a slow rate. Within the mosquito104

population, the vectors are born and die, and also transfer between each of the three life cycles, as well as105

being either infected or susceptible. Susceptible mosquitoes can become infected by feeding on an infected106

human. The variables and parameters used in the model are described in the Tables 1 and 2 respectively.107

For a more technical, in depth description of the model, see [7].108

As described above, the effect of ivermectin on the transmission of malaria is that mosquitoes which109

take a blood meal from a medicated human will die before returning to the breeding site and successfully110

reproducing. We assume that staggered doses of ivermectin will be given consistently to some portion M111

of the population, thus that portion of the population will always have a large enough concentration of the112
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Description Original Variable Dimensionless Variable
Total human population Nh(t)
Susceptible humans Sh(t)
Infected humans Ih(t) ih
Susceptible resting mosquitoes Sr(t) sr
Susceptible questing mosquitoes Sq(t) sq
Susceptible fed mosquitoes Sf (t) sf
Infected resting mosquitoes Ir(t) ir
Infected questing mosquitoes Iq(t) iq
Infected fed mosquitoes If (t) if
Total mosquito population Nm(t)

Table 1: The variables for systems (1) and (5).

Parameter Description
av Fed mosquitoes rate of return to the breeding site.
αv(Nh) Rate of mosquito attraction to humans.
µh, µu, µv, µw Human and mosquito death rates.
λv(Sr) birth rate of the resting mosquitoes (note: no other mosquitoes give birth).
rh Human recovery rate from malaria.
βv Flow rate of susceptible and questing mosquitoes to humans.
βh Flow rate of infectious and questing mosquitoes to humans.
p Probability of blood being taken from a susceptible human by a susceptible mosquito.
q Probability of blood being taken from an infected human by a susceptible mosquito.
p1 Probability of blood being taken from an infected human by an infectious mosquito.
q1 Probability of blood being taken from an susceptible human by an infectious mosquito.
M The portion of humans which have mosquito killing levels ivermectin in their blood.
L The mosquito carrying capacity in the local environment.

Table 2: The parameter descriptions for system (1).

drug in their system to kill the mosquitoes. The result is the following model,113

Ṡh = µhNh + rhIh − βhShIf − µhSh, (1a)

İh = βhShIf − (µh + rh)Ih, (1b)

Ṡr = pβvShSf (1−M)− (av + µv)Sr, (1c)

Ṡq = avλv(Sr)Sr + avλv(Ir)Ir + avSr − (µv + αv(Nh))Sq, (1d)

Ṡf = αv(Nh)Sq − (µv + βvNh)Sf , (1e)

İr = (p1βhNhIf + qβvIhSf )(1−M)− (av + µv)Ir, (1f)

İq = avIr − (µv + αv(Nh))Iq, (1g)

İf = αv(Nh)Iq − (µv + βhNh)If . (1h)
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with the equations for the total populations of mosquitoes and humans114

Ṅh = 0, (2a)

Ṅm = pβvShSf (1−M) + av(λv(Sr)Sr + λv(Ir)Ir) (2b)

− ((1− p1)(βhNhIf ) + (1− q)(βvNhSf ))(1−M)− µvNm.

The effect of ivermectin is captured through the scaling of the questing mosquitoes which successfully take115

a blood meal by ratio of the humans medicated with the drug. In the system, the two terms in which are116

scaled are pβvShSf in Equation (1c) and p1βhNhIf + qβvIhSf in Equation (1f). Ultimately, we assume that117

any mosquito taking blood from a medicated human dies before reaching the next stage of the life cycle. So118

we change the original model by scaling the mosquitoes entering the fed life stage by a constant (1 −M).119

In this constant, M represents a proportion of the human population which are medicated with the drug120

ivermectin.121

The system (1) also requires appropriate initial conditions in the form122

(Sh(0), Ih(0), Sr(0), Sq(0), Sf (0), Ir(0), Iq(0), If (0)).

3.2 Positivity, Uniqueness of Solution, and Boundedness123

Since the variables in this model represent populations, their values are non-negative. Therefore, we use a124

reasonable domain D ⊂ R8,125

D = {(Sh, Ih, Sr, Sq, Sf , Ir, Iq, If ) : Sh ≥ 0, Ih ≥ 0, Nh ≥ Sh + Ih ≥ 0, Sr ≥ 0, Sq ≥ 0, Sf ≥ 0,

Ir ≥ 0, Iq ≥ 0, If ≥ 0, Nm ≥ Sr + Sq + Sf + Ir + Iq + If ≥ 0}.

Since the right hand side of the equations in (1) and (2) and their partial derivatives are continuous in D, it126

can be verified by standard techniques as in [15] that for any initial condition in D with127

Sr(0) + Sq(0) + Sf (0) + Ir(0) + Iq(0) + If (0) = Nm(0) and Sh + Ih = Nh,

there exists a unique solution to the system for all t. Also note that if Nm(0) > 0 then Nm(t) > 0 for all t128

and if Nm(0) = 0 then Nm(t) = 0 for all t. The same holds for the human population, Nh. Additionally we129
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note the following result for the mosquito population.130

Theorem 3.1. The closed set Φ = {(Sr, Sq, Sf , Ir, Iq, If ) ∈ R6 : Nm = Sr+Sq +Sf +Ir+Iq +If ≤ 2avλ0L
µv
}131

is positively invariant and attracting with respect to the system (1).132

Proof. See [7, Theorem 2.1].133

3.3 Reparameterization and Nondimensionalization134

We now scale the model by introducing dimensionless variables. Noting that Sh = Nh − Ih, we introduce135

the new variables:136

sr =
Sr
L
, sq =

pβvNhα(Nh)

L(av + µv)(µv + βvNh)
Sq, sf =

pβvNh
L(av + µv)

Sf , τ = (av + µv)t,

ir =
Ir
L
, iq =

µv + αv(Nh)

avL
Iq, if =

(µv + αv(Nh))(µv + βhNh)

avLαv(Nh)
If , ih =

Ih
Nh

,

(3)

and the dimensionless parameter groupings:137

β =
avαv(Nh)βhL

(av + µv)(µv + αv(Nh))(µv + βhNh)
, δ =

avαv(Nh)βhNhp1

(av + µv)(µv + αv(Nh))(µv + βhNh)
, µ =

µh + rh
av + µv

,

σ =
q

p
, α =

avαv(Nh)βhNhp

(av + µv)2(µv + βvNh)
, γ =

µv + βvNh
av + µv

, ρ =
µv + αv(Nh)

av + µv
, ε =

µv + βhNh
av + µv

,

(4)

to yield new parameters for the model. System (1) now takes the form:138

i̇h = β(1− ih)if − µih, (5a)

ṡr = (1− ih)sf (1−M)− sr, (5b)

ṡq = αλ0(sr(1− sr) + ir(1− ir)) + αsr − ρsq, (5c)

ṡf = γ(sq − sf ), (5d)

i̇r = (δif + σIsf )(1−M)− ir, (5e)

i̇q = ρ(ir − iq), (5f)

i̇f = ε(iq − if ), (5g)

where the dots now represent the derivative with respect to τ . A feasible region for the parameter space is139
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Γ = {0 ≤ β < L/Nh, µ > 0, 0 < α < ρ < 1, 0 ≤ δ < 1, ε > 0, ρ > 0, γ > 0, λ0 > 0}, for details see [7]. The140

system (5) requires an initial condition in the form (ih(0), sr(0), sq(0), sf (0), ir(0), iq(0), if (0)).141

4 The Existence and Linear Stability of Steady States142

4.1 The Disease Free System143

In the absence of malaria, ih = 0, ir = 0, iq = 0, if = 0, and our model (5) reduces to:144

ṡr = sf (1−M)− sr, (6a)

ṡq = αλ0sr(1− sr) + αsr − ρsq, (6b)

ṡf = γ(sq − sf ). (6c)

We identify a threshold parameter R∗ with the properties stated in the Theorems (4.1) and (4.2), where145

R∗ =
αλ0
ρ

1−M − α
. (7)

Theorem 4.1. The threshold parameter R∗ has the following properties:146

• If R∗ ≤ 1, there exists only the trivial steady state, E0 = (s∗r , s
∗
q , s
∗
f ) = (0, 0, 0).147

• If R∗ > 1, there exists, in addition to the tivial steady state E0, a non-trivial steady state148

E1 = (s∗r , s
∗
q , s
∗
f ) =

(
1− 1

R∗
,

1− 1
R∗

1−M
,

1− 1
R∗

1−M

)
. (8)

Proof. We find the steady state solutions to system (6) by setting the right hand side of that system equal149

to zero and solving the resulting system of equations. It is straightforward calculation to verify that the150

existence of realistic steady state solutions as given by (7) and that if R∗ > 1 then E1 as given in (8) exists.151

When R∗ = 1, E1 reduces to the trivial steady state E0, and when R∗ < 1, E1 is not a realistic steady152

state.153

Remark 4.1. From a biological standpoint, Theorem 4.1 states that the threshold parameter R∗ has the154

following effect on the mosquito population. If R∗ < 1, the mosquito population will die out over time. If155
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R∗ = 1, the mosquito population will remain constant. Finally, when R∗ > 1 the mosquito population will156

grow to the carrying capacity of the environment.157

Theorem 4.2. The trivial steady state always exists and is linearly stable to small perturbations. Let158

Y = γ + ρ+ 1 > 0, Z = γ + ρ+ γρ > 0, X = γ(ρ− α(1−M)) > 0 since ρ > α,M < 1. (9)

Then when R∗ > 1, the non-trivial steady state E1 is linearly stable to small perturbations whenever159

Y Z −X(R∗ − 1) > 0

and can be driven to instability via a Hopf bifurcation at the point in the parameter space where160

Y Z −X(R∗ − 1) = 0.

Proof. Stability of steady state solutions to the system (5) is determined by the signs of the eigenvalues of161

the linearized system at the steady state, namely162


ṡr

ṡq

ṡf

 = J(s∗r , s
∗
q , s
∗
f )


sr

sq

sf

 =


−1 0 1−M

α(λ0 + 1)− 2αλ0s
∗
r −ρ 0

0 γ −γ




sr

sq

sf

 ,

where J(s∗r , s
∗
q , s
∗
f ) is the Jacobian matrix of the system evaluated at the steady state. If k is an eigenvalue163

of J(s∗r , s
∗
q , s
∗
f ) then k is a solution to the characteristic equation164

k3 + Y k2 + Zk + ργ + 2γαλ0s
∗
r(1−M)− γα(λ0 + 1)(1−M) = 0, (10)

where Y and Z are as stated in Equation (9). It then follows that at E0, s∗r = 0, and all solutions to Equation165

(10) have negative real parts when R∗ ≤ 1. Additionally, when R∗ > 1 the solution to (10) has positive166

real parts, so perturbations grow exponentially and at E1, s∗r = 1− 1
R∗ . Routh - Hurwitz stability criterion167

tells us that solutions of Equation (10) have negative real parts when Y Z − X(R∗ − 1) > 0, and a Hopf168

Bifurcation occurs where X(R∗ − 1) = Y Z.169

Remark 4.2. From a biological standpoint, Theorem 4.2 says the following. If there are no mosquitoes in170

the environment, introducing a small number mosquitoes will have no long term effect on the population of171
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mosquitoes, they will simply die out again shortly. Similarly, if there is a living population of mosquitoes172

(R∗ > 1) introducing or killing a small number mosquitoes will have no long term effect on the population173

of mosquitoes unless Y Z − X(R∗ − 1) > 0. In the later case, introducing or killing some mosquitoes may174

have a long term effect on the population of mosquitoes.175

Remark 4.3. We note that the condition Y Z −X(R∗ − 1) > 0 is equivalent to176

1− (γ + ρ+ 1)(γ + ρ+ γρ) + γρ

γα(λ0 + 1)
< M < 1

in terms of M . Additionally, in the case that M = 0, it was found in [7] that Y Z − X(R∗ − 1) > 0 is177

equivalent to178

0 < λ0(γ) <
(γ + ρ+ 1)(γ + ρ+ γρ) + γ(ρ− α)

αγ

in the (γ, λ0) space. Thus the conditions for a Hopf Bifurcation to occur are both179

λ0(γ) ≥ (γ + ρ+ 1)(γ + ρ+ γρ) + γ(ρ− α)

αγ
and 0 < M = 1− (γ + ρ+ 1)(γ + ρ+ γρ) + γρ

γα(λ0(γ) + 1)
.

Theorem 4.3. The trivial steady state E1 is globally and asymptotically stable whenever R∗ ≤ 1.180

Proof. See [18].181

4.2 The Basic Reproduction Number182

In a disease model, an essential threshold parameter is the basic reproduction number R0 which is a measure183

of the average number of secondary cases of the disease caused by a single infected individual in an otherwise184

susceptible population [16]. It is generally assumed that when R0 < 1 the disease disappears from a185

community and when R0 > 1 the disease remains and spreads throughout the community. The critical case186

in which R0 = 1 leaves the community with a constant number of infected individuals. In some cases, there187

is a possibility of backward bifurcation which complicates disease control because R0 < 1 may not be enough188

to curtail the spread of the disease. This phenomena is discussed further in Section 4.5.189

To calculate R0 we use the next generation method where R0 is the spectral radius of the next generation190

matrix. The spectral radius is the eigenvalue with the largest absolute value. As in [16], [17] we calculate191

R̃0 to be the spectral radius of the next generation matrix M = FV−1 where192
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F =



0 0 0 βhNh

qβvS
∗
f (1−M) 0 0 0

0 0 0 0

0 0 0 0


and V =



µh + rh 0 0 0

0 av + µv 0 −p1βhNh(1−M)

0 −av µv + αv(Nh) 0

0 0 −αv(Nh) µv + βhNh


193

From these we obtain the eigenvalue194

R̃0 =

√√√√βvβhNhS∗f (1−M)

µv(rh + µh)
q

avαv(Nh)

avαv(Nh)
(

1 + βhNh(1−p1(1−M))
µv

)
+ (µv + βhNh)(av + αv(Nh) + µv)

and, in dimensionless parameters,195

R̃0 =

√
s∗fσβ(1−M)

(1− δ(1−M))µ
=

√
σβ(R∗ − 1)

(1− δ(1−M))µR∗

We note here that, since R∗ > 1 and 0 ≤ δ(1−M) < 1, R̃0 is a positive real number. Also note that when196

0 < R̃0 ≤ 1, 0 < R̃2
0 ≤ 1 and when 1 < R̃0, 1 < R̃2

0 . We use the value R0 = R̃2
0 , which coincides with the197

value of the basic reproduction number which can be obtained by seeking conditions for the existence of a198

steady state as in [7]. That is, we use the value199

R0 =
s∗fσβ(1−M)

(1− δ(1−M))µ
=

σβ(R∗ − 1)

(1− δ(1−M))µR∗
. (11)

The squaring of R̃0 to obtain R0 is due to the fact that the transmission of malaria takes place via the200

mosquito, so the mosquito must bite two humans to transmit the disease. That is, the mosquito must first201

bite the single introduced infectious individual and then bite one of the susceptible individuals.202

4.3 Existence of Steady States203

Theorem 4.4. In the presence of malaria there is a trivial steady state,204

E0 = (0, 0, 0, 0, 0, 0, 0),
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a disease free steady state,205

Edf = (i∗h, s
∗
r , s
∗
q , s
∗
f , i
∗
r , i
∗
q , i
∗
f ) =

(
0, 1− 1

R∗
,

1− 1
R∗

1−M
,

1− 1
R∗

1−M
, 0, 0, 0

)
,

where R∗ is defined in (7) and either zero one or two endemic steady states,206

Ee = (i∗h, s
∗
r , s
∗
q , s
∗
v, u
∗
r , i
∗
q , i
∗
v),

whose existence are determined by the size of the threshold parameter R0 and the value of the parameters207

A1 = 1− ρβs∗r
µαλ0(1−M)

and A2 = s∗r(1−
1

R∗
− s∗r) = s∗2r (R0 − 1). (12)

When Ee exists it can be written in terms of i∗f , the scaled endemic steady state of infectious, fed, mosquitoes.208

Proof. The steady states of the malaria model are found by setting the right hand side of (5) equal to zero209

and solving the resulting system of equations. Some algebra shows that the resulting constant solutions, i∗h,210

s∗r , s
∗
q , s
∗
f , i∗r , i

∗
q , and i∗f , can be written in terms of i∗f as follows.211

i∗h(i∗f ) =
βi∗f

βi∗f + µ
, s∗r =

µ(1− δ(1−M))

σβ
, i∗r = i∗q = i∗f ,

s∗q(i
∗
f ) = s∗f (i∗f ) = s∗r

(
1

1−M

)(
1 +

βi∗f
µ

)
,

(13)

where i∗f is a positive solution to the equation212

i∗2f −A1i
∗
f −A2 = 0, (14)

with A1 and A2 given by (12). Solving for i∗f we obtain213

i∗f1,2 =
A1 ±

√
A2

1 + 4A2

2
,

(15)

whose existence as a real and positive solution is determined by the size and sign of A1 and A2, leading to214

the possibility of zero, one, or two solutions.215

Remark 4.4. From a biological standpoint, Theorem 4.4 states that the following situations are possible.216
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There can be no mosquitoes and thus no malaria. There can be mosquitoes but no malaria. There can217

be mosquitoes and malaria. And lastly, when there are mosquitoes and malaria, there are situations in218

which the infected portion of the human population can fluctuate, sometimes quite a bit, by increasing or219

decreasing the infected mosquito population. The parameters A1 and A2 determine which of these cases220

occurs.221

Remark 4.5. As can be seen in Figure 1, the various possibilities for the number and sizes of endemic222

steady states, depending on the signs of our threshold parameters A1, A2, and ∆ where ∆ = A2
1 + 4A2 are223

as follows:224

1. If A2 > 0, A1 < 0, and ∆ > 0 then there is a unique endemic steady state defined by225

i∗h =
αλ0σβ(1−M)− ρβ(1− δ(1−M)) +

√
∆(αλ0σ(1−M))2

αλ0σβ(1−M)− ρβ(1− δ(1−M)) +
√

∆(αλ0σ(1−M))2 + 2µαλ0σ(1−M)
,

s∗r =
µ(1− δ(1−M))

σβ
,

s∗q = s∗f =
µ(1− δ(1−M))

σβ(1−M)

1 +
β
(
σαλ0(1−M)− ρ(1− δ(1−M)) +

√
∆(αλ0σ(1−M))2

)
2µαλ0σ(1−M)

 ,

i∗r = i∗q = i∗f =
σαλ0(1−M)− ρ(1− δ(1−M)) +

√
∆(αλ0σ(1−M))2

2αλ0σ(1−M)
.

(16)

2. If A2 > 0, A1 = 0, and ∆ > 0 the unique endemic steady state is defined by226

i∗h =
(1− δ(1−M))

√
R0 − 1

(1− δ(1−M))
√

R0 − 1 + σ
,

s∗r =
µ(1− δ(1−M))

σβ
,

s∗q = s∗f =
µ(1− δ(1−M))

σβ(1−M)

(
1 +

(1− δ(1−M))
√

R0 − 1

σ

)
,

i∗r = i∗q = i∗f =
µ(1− δ(1−M))

√
R0 − 1

σβ
.

(17)

3. If A2 > 0, A1 > 0, and ∆ > 0 the unique endemic steady state is represented by the equations in (16),227

however, the steady state values will differ numerically since there is a change in the sign of A1.228
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A1

A2

(1) ∆ > 0, 1 endemic steady state

(2) ∆ > 0, 1 endemic steady state →

(3) ∆ > 0, 1 endemic steady state

(4) ∆ > 0, 1 endemic steady state
↓

(5) ∆ > 0, 2 endemic
steady states

(6) ∆ = 0, 1 endemic steady state →← ∆ = 0, no endemic steady states

∆ < 0, no endemic steady state →

∆ < 0, no endemic
steady states

∆ < 0, no endemic
steady states

∆ > 0, no endemic
steady states

∆ > 0, no endemic steady states
↓

Figure 1: The A1, A2 parameter space showing the possible number of endemic steady state solutions to
Equation (5). Note that ∆ = A2

1 + 4A2, the discriminant of Equation (15). Lines which are broken contain
no realistic endemic steady states, while lines which are solid contain realistic endemic steady states. We
note here that the condition R0 > 1 is equivalent to A2 > 0 and R0 < 1 is equivalent to A2 < 0. Here we
can see that by changing the signs of A1, A2, and ∆, all of which depend on M , we can control the number
of realistic endemic steady states. Figure adapted from [7].

264



4. If A2 = 0, A1 > 0, and ∆ > 0 the unique endemic steady state is defined by229

i∗h =
βαλ0σ(1−M)− βρ(1− δ(1−M))

βαλ0σ(1−M)− βρ(1− δ(1−M)) + µαλ0σ(1−M)
,

s∗r =
µ(1− δ(1−M))

σβ
,

s∗q = s∗f =
µ(1− δ(1−M))

σβ(1−M)

(
1 +

β(αλ0σ(1−M)− ρ(1− δ(1−M)))

µαλ0σ(1−M)

)
,

i∗r = i∗q = i∗f =
αλ0σ(1−M)− ρ(1− δ(1−M))

αλ0σ(1−M)
.

(18)

5. If A2 < 0, A1 > 0, and ∆ > 0 the model has feasible endemic steady states defined by230

i∗h1,2 =
αλ0σβ(1−M)− ρβ(1− δ(1−M))±

√
∆(αλ0σ(1−M))2

αλ0σβ(1−M)− ρβ(1− δ(1−M))±
√

∆(αλ0σ(1−M))2 + 2µαλ0σ(1−M)
,

s∗r1,2 =
µ(1− δ(1−M))

σβ
,

s∗q1,2 = s∗f1,2 =
µ(1− δ(1−M))

σβ(1−M)

1 +
β
(
σµαλ0 − ρ((1−M)−1 − δ)±

√
∆(αλ0σ)2

)
2µαλ0σ

 ,

i∗r1,2 = i∗q1,2 = i∗f1,2 =
σαλ0(1−M)− ρ(1− δ(1−M))±

√
∆(αλ0σ(1−M))2

2αλ0σ(1−M)
.

(19)

6. If A2 < 0, A1 > 0, and ∆ = 0 the unique endemic steady state is defined by231

i∗h =
βσαλ0(1−M)− βρ(1− δ(1−M))

σαλ0(1−M)− ρ(1− δ(1−M)) + 2µσαλ0(1−M)
,

s∗r =
µ(1− δ(1−M))

σβ
,

s∗q = s∗f =
µ(1− δ(1−M))

σβ(1−M)

(
1 +

β (σαλ0(1−M)− ρ(1− δ(1−M)))

2µσαλ0(1−M)

)
,

i∗r = i∗q = i∗f =
σαλ0(1−M)− ρ(1− δ(1−M))

2σαλ0(1−M)
.

(20)

Otherwise there exists no endemic steady states. Thus the importance of seeking values of M between zero232

and one which can change A1, A2, and ∆ so that there exists no endemic steady state is clear.233

4.4 Stability of Steady States234

We now analyze the linear stability of the system in (5). We linearize the system about the steady state235

(i∗h, s
∗
r , s
∗
q , s
∗
f , i
∗
r , i
∗
q , i
∗
f ) to obtian:236

265





˙ih

ṡr

ṡq

ṡf

i̇r

i̇q

˙if



=



−(βi∗f + µ) 0 0 0 0 0 β(1− i∗h)

−s∗f (1−M) −1 0 (1− i∗h)(1−M) 0 0 0

0 αλ0(1− 2s∗r) + α −ρ 0 αλ0(1− 2i∗r) 0 0

0 0 γ −γ 0 0 0

σs∗f (1−M) 0 0 σi∗h(1−M) −1 0 δ(1−M)

0 0 0 0 ρ −ρ 0

0 0 0 0 0 ε −ε





ih

sr

sq

sf

ir

iq

if



.237

238

Proposition 4.1. The trivial steady state is linearly stable to small perturbations whenever R∗ ≤ 1 and239

unstable when R∗ > 1.240

Proof. To determine the linear stability of the trivial steady state we find the eigenvalues of the Jacobian241

matrix evaluated at E0 = (0, 0, 0, 0, 0, 0, 0),242

J(E0) =



−µ 0 0 0 0 0 β

0 −1 0 1−M 0 0 0

0 α(λ0 + 1) −ρ 0 αλ0 0 0

0 0 γ −γ 0 0 0

0 0 0 0 −1 0 δ(1−M)

0 0 0 0 ρ −ρ 0

0 0 0 0 0 ε −ε



.243

If k is an eigenvalue of J(E0), k is a solution to the characteristic equation244

(µ+ k)
(
k3 +Xk2 + Y k + Z(1−R∗)

) (
k3 +X1k

2 + Y1k + Z1

)
= 0, (21)

where X,Y, Z are defined in Equation (9) and245

X1 = ερ(1− δ(1−M)), Y1 = ε+ ρ+ 1, Z1 = ερ+ ε+ ρ. (22)

Note that X1 > 0 since 0 ≤ δ < 1 and M < 1.246

We can see that the characteristic equation takes the form of three polynomials, multiplied together. It247
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is clear that Y1Z1 − X1 > 0 so Routh-Hurwitz tells us that the roots of the right hand cubic in (21) have248

negative real parts. Additionally, since µ > 0, (µ + k) has only solutions with negative real parts. Finally,249

Theorem 4.2 with s∗r = 0 tells us the left cubic in Equation (21) has only negative real parts when R∗ ≤ 1250

but has solutions with positive real parts when R∗ > 1. Thus the trivial steady state is unstable to small251

perturbations whenever R∗ > 1, and is stable whenever R∗ ≤ 1.252

Proposition 4.2. When R∗ > 1, the disease free steady state exists and is linearly stable to small perturba-253

tions whenever Y Z −X(R∗ − 1) > 0 and R0 < 1 but can become unstable via Hopf Bifurcation, even when254

R0 < 1 at the point where Y Z − X(R∗ − 1) = 0. The disease free steady state is always linearly unstable255

whenever R0 > 1.256

Proof. To determine the linear stability of the disease free steady state we find the eigenvalues of the Jacobian

matrix evaluated at Edf = (0, s∗r , s
∗
q , s
∗
f , 0, 0, 0). If k is an eigenvalue of

J(Edf ) =



−µ 0 0 0 0 0 β

−s∗f (1−M) −1 0 (1−M) 0 0 0

0 αλ0(1− 2s∗r) + α −ρ 0 αλ0 0 0

0 0 γ −γ 0 0 0

σs∗f (1−M) 0 0 0 −1 0 δ(1−M)

0 0 0 0 ρ −ρ 0

0 0 0 0 0 ε −ε



,

then k is a solution to the characteristic polynomial257

(
k3 +Xk2 + Y k + Z(R∗ − 1)

)
= 0, (23)

or258

(
k4 + (Y1 + µ)k3 + (µY1 + Z1)k2 + (µZ1 + Y1)k +X1µ(1−R0)

)
= 0, (24)

where X,Y, Z are defined in Equation (9) and X1, Y1, Z1 are defined in Equation (22). It can immediately259

be seen that whenever R0 > 1, µ(1 −R0) < 0 and thus there is at least one sign change in the coefficients260
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of the characteristic equation. Hence there is at least one positive real value for k and so Edf is linearly261

unstable to small perturbations whenever R0 > 1. When R0 ≤ 1, µ(1 −R0) ≥ 0, thus all the coefficients262

of Equation (24) are non-negative, so Descartes rule of signs tells us that there are no positive real values k263

which satisfy the characteristic equation. We now use Routh - Hurwitz criteria to show that all solutions to264

(24) have negative real parts whenever R0 ≤ 1. To do this we must show265

(Y1 + µ)(µY1 + Z1)(µZ1 +X1) > (µZ1 +X1)2 + (Y1 + µ)2µX1(1−R∗).
(25)

We subtract the right hand side of Equation (25) from the left hand side and simplify to obtain266

(µZ1 +X1)(Y1Z1 −X1) + (Y1 + µ)2µX1R0 + (Y1 + µ)µ2(Y1Z1 −X1) > 0, since (Y1Z1 −X1) > 0. (26)

Thus any eigenvalues with positive real parts must be generated by Equation (23). This polynomial is the267

same as the polynomial in Equation (9) so the relevant results of Theorem 4.2 carry over and Edf is unstable268

to small perturbations even when R0 < 1 whenever269

λ0(γ) ≥ (γ + ρ+ 1)(γ + ρ+ γρ) + γ(ρ− α)

αγ
and 0 < M < 1− (γ + ρ+ 1)(γ + ρ+ γρ) + γρ

γα(λ0(γ) + 1)
.

270

Remark 4.6. The endemic steady state Ee studied in [7] can be linearly stable to or unstable to small271

perturbations and when instabilities occur, they are oscillatory, caused by a Hopf Bifurcation. For details272

and proof see [7, Proposition 3.10].273

4.5 Backward Bifurcation274

For R0, there exists a threshold value Rbb
0 < 1 such that when R0 < Rbb

0 < 1 or Rbb
0 < R0 < 1 and A1 ≤ 0275

there exists no endemic steady states, but when Rbb
0 < R0 < 1 and A1 > 0 there exists two endemic steady276

states where277

Rbb
0 = 1−

(
A1

2s∗r

)2

= 1−
(
β(σαλ0(1−M)− ρ(1− δ(1−M)))

2µ(1− δ(1−M))αλ0(1−M)

)2

. (27)
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We compute the value of Rbb
0 by setting ∆ = 0. From here we can see that when R0 < Rbb

0 < 1, ∆ < 0278

and thus there are no endemic steady states. Also when Rbb
0 < R0 < 1 and A1 ≤ 0 we can see ∆ > 0 but279

since A1 ≤ 0 there are no endemic steady states. Furthermore, when Rbb
0 < R0 < 1 and A1 > 0 we can see280

∆ > 0 and A2 < 0. In this case there exist two endemic steady states, even though R0 < 1. Thus a control281

method focusing solely on driving R0 below one will not always be effective unless R0 < Rbb
0 < 1. To prove282

the existence of backwards bifurcation, the techniques of [7, Theorem 3.6] could be used.283

4.6 Finding Critical M Values284

If M = 0, the model regresses to its original form in [7]. Additionally, the realistically non feasible case285

of M = 1 is trivial, because it most certainly causes the mosquito population to die out, resulting in the286

trivial steady state. We now develop the following Theorems and Remarks to search for critical values of287

0 < M < 1 such that the mosquito population is not destroyed (i.e. R∗ > 1) but the disease will die out288

(R0 < 1 or R0 < Rbb
0 < 1).289

Remark 4.7. By setting A1, A2, and ∆ each equal to zero, we can solve for M to find the critical values290

0 < MA1 ,MA2 ,M∆ < 1 such that A1, A2, and ∆ change signs. Note that it is possible for A2 and ∆ to291

change signs multiple times. From there we can easily determine the values of M such that A1, A2, and ∆292

are positive, negative, or zero. This method is used in Section 5 where we do some numerical simulations.293

Theorem 4.5. There is a threshold parameter294

MR∗ = 1− ρ

(1 + λ0)α
(28)

such that when M ≥MR∗ , there exists only the trivial steady state E0.295

Proof. Setting R∗ = 1 in Equation (7), we then solve the resulting equation for M to obtain (28). It is296

then clear that M ≥ 1− ρ
(1+λ0)α is equivalent to R∗ ≤ 1 and thus only the trivial steady state exists when297

M ≥MR∗ .298

Theorem 4.6. There is a threshold parameter299

MR0
= 1− µ

s∗fσβ + δµ
, (29)

such that whenever M > MR0
, R0 < 1 and whenever M < MR0

, R0 > 1.300
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Parameter µh rh µv av αv(Nh) p q p1 βh βv

Value Used 1
60∗365

1
80

1
21 .5 .5 .8 .9 .9352 4.4524(10−6) 3.8221(10−6)

Source [19] [20] [21] [20] [9] [7] [7] [7] [7] [7]

Table 3: Realistic parameter values.

Parameter β δ ε σ α γ ρ µ

Value .0377 .7043 .9 1.125 .1276 .7849 1 .0229

Table 4: Nondimensionalized parameter values.

Proof. Setting R0 = 1 in Equation (11), we then solve the resulting equation for M to obtain (29). From301

here it is clear that whenever M > MR0
, R0 < 1 and whenever M < MR0

, R0 > 1.302

Remark 4.8. Whenever A1 > 0, the model (5) undergoes a backward (subcritical) bifurcation at R0 = 1.303

Due to this, it is not so simple to find a bound on M such that malaria is cured. We can find a critical value304

of M as stated in Theorem 4.6 such that R0 is less than 1, but that does not guarantee the disease goes305

away in all cases. The result of Theorem 4.6 are still helpful because whenever R0 > 1, malaria will surely306

persist. Additionally, when A1 ≤ 0, we are in the region with no backwards bifurcation, so driving R0 below307

1 cures the disease. Thus, when M > max(MA1
,MR0

), there exists no endemic steady states. We also note308

that when A2 = 0, R0 = 1 thus MR0 = MA2 .309

Remark 4.9. In the case in which MR0
< M < MA1

, the number of endemic steady states depends on the310

sign of ∆. When ∆ < 0 there exist no endemic steady states, and when ∆ > 0, and A2 < 0 the persistence311

or resolution of malaria depends on the initial values ih(0) and if (0), ir(0), iq(0).312

5 Numerical Simulations313

To illustrate the capabilities of ivermectin we now give an example using realistic values for the original and314

dimensionless parameters in Tables 3 and 4 respectively. In addition, we fix L = 5000, Nh = 100000, and315

vary λ0. For each λ0, we find the critical values MA1
,MA2

= MR0
,MR∗ , and M∆, thus determining whether316

the disease spreads, based on the value of M .317

Figure 2 displays the persistence of the mosquito population and the lack of disease when λ0 = 8. Thus,318

if λ0 is low enough, the disease is not present in the community. However, raising λ0 to 12 results in a high319

level of disease as in Figure 3.320
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Figure 2: When the parameters are as in Tables 3 and 4 with λ0 = 8 and M = 0 we get the values R0 = .6956
and R∗ = 1.1340. Thus the mosquitoes survive and there is no disease, as demonstrated in the plot generated
by the initial condition (ih(0), sr(0), sq(0), sf (0), ir(0), iq(0), if (0)) = (0, 1, 1, 1, 0, 0, 0).
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Figure 3: When the parameters are as in Tables 3 and 4 with λ0 = 12 and M = 0 we get the values
R0 = 2.6948 and R∗ = 1.7552. Thus the mosquitoes survive and malaria is prevalent, as demonstrated in
the plot generated by the initial condition (ih(0), sr(0), sq(0), sf (0), ir(0), iq(0), if (0)) = (.1, 1, 1, 1, .1, .1, .1).

When λ0 = 12, 18, and 100, Figures 4, 5, and 6 respectively display the regions in the M space for which321

ivermectin can curtail the spread of malaria with or without killing the mosquito population. The signs of322

A1, A2, and ∆ as well as the size of R∗ in each region can be seen in Table 5.323
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Region A1 A2 ∆ R∗ Result

(0,A) + + + > 1 Unique endemic steady state

(A,B) + - + > 1 Backward Bifurcation zone

(B,C) + - - > 1 No endemic steady states

(C,D) + - - < 1 Only trivial steady state

(D,E) + - - < 1 Only trivial steady state

(E,1) - - + < 1 Only trivial steady state

Table 5: The resulting steady states when M is in the region listed in the first columns. For a given λ0, the
values of A, B, C, D, and E can be seen in Figures 4, 5, and 6.

0 1

A B C D E

M

Figure 4: The parameters are as in Tables 3 and 4 with λ0 = 12, A = .2219, B = .3538, C = .3972, D = .588,
and E = .8644. The signs of A1, A2, and ∆ as well as the size of R∗ in each region can be seen in Table 5.
The thick region between A and C is the region in which curing malaria with ivermectin may be possible,
without killing the mosquitoes.

0 1

A B C D E

M

Figure 5: The parameters are as in Tables 3 and 4 with λ0 = 18, A = .4112, B = .5037, C = .5875,
D = .6959, and E = .9069. The signs of A1, A2, and ∆ and the size of R∗ in each region are as in Table 5.

0 1

AB

C

D EF

M

Figure 6: The parameters are as in Tables 3 and 4 with λ0 = 100, F = .2149, A = .8512, B = .8767,
C = .9224, D = .9336, and E = .9824. The signs of A1, A2, and ∆ and the size of R∗ in each region are
as in Table 5. When M < F , the model displays oscillatory instability in the steady states due to the Hopf
Bifurcation. However, when M > F , the Hopf Bifurcation does not occur, and the steady state is stable.

The region represented by the thick line between A and C is the region in which eliminating malaria324

with ivermectin may be possible, without killing the mosquitoes. The region to the right of C is the area in325
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which ivermectin can curtail the spread of malaria, but only by killing all the mosquitoes. The area to the326

left of A is the region in which ivermectin will have no effect on the spread of malaria. In Figure 6, F is the327

point in the M space at which a Hopf bifurcation occurs when λ0 = 100.328

Figures 7-10 demonstrate the possible effects of ivermectin in the presence of disease when λ0 = 12.329
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Figure 7: When the parameters are as in Tables 3 and 4 with λ0 = 12 and M = .3 we get the values
R0 = .5493 and R∗ = 1.177. Although R0 < 1, there is still an endemic steady state, as demonstrated in
the plot generated by the initial condition (ih(0), sr(0), sq(0), sf (0), ir(0), iq(0), if (0)) = (.1, 1, 1, 1, .1, .1, .1).
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Figure 8: When the parameters are as in Tables 3 and 4 with λ0 = 12 and M = .3 we get the values
R0 = .5493 and R∗ = 1.177. Although R0 did not change from Figure 7, there is no endemic steady state,
as demonstrated in the plot generated by the initial condition (ih(0), sr(0), sq(0), sf (0), ir(0), iq(0), if (0)) =
(.01, 1, 1, 1, .01, .01, .01). We find the threshold for the initial conditions of ih(0), ir(0), iq(0), and if (0) to
be about .081 when M = .3. That is, when ih(0), ir(0), iq(0), if (0) > .081, the disease flourishes. However,
when ih(0), ir(0), iq(0), if (0) < .081, the disease dies out over time.
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Figure 9: When the parameters are as in Tables 3 and 4 with λ0 = 12 and M = .36 we get the values R0 =
.2121 and R∗ = 1.0671. Thus, the malaria outbreak is curtailed without killing of the entire mosquito popu-
lation. It is however, important to note that the mosquito population is reduced in size, as demonstrated in
the plot generated by the initial condition (ih(0), sr(0), sq(0), sf (0), ir(0), iq(0), if (0)) = (.1, 1, 1, 1, .1, .1, .1).
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Figure 10: When the parameters are as in Tables 3 and 4 with λ0 = 12 and M = .45 we get
the values R0 = −.3147 and R∗ = .9057. Thus, the malaria outbreak is curtailed at the cost of
killing of the entire mosquito population, as demonstrated in the plot generated by the initial condition
(ih(0), sr(0), sq(0), sf (0), ir(0), iq(0), if (0)) = (.1, 1, 1, 1, .1, .1, .1).

When λ0 = 100, numerical simulations demonstrating the oscillations caused by the Hopf bifurcation at330

MHopf = .2149 can be seen in Figures 11 and 12.331
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Figure 11: When the parameters are as in Tables 3 and 4 with λ0 = 100 and M = .2 there are oscillatory
solutions as a result of a Hopf bifurcation at λ0 = 78.2939, as demonstrated in the plot generated by the initial
condition (ih(0), sr(0), sq(0), sf (0), ir(0), iq(0), if (0)) = (0, 1, 1, 1, 0, 0, 0). Here we calculate the eigenvalues
of Equation (10) to be −2.7994, 0.0072 + 1.6157i, and 0.0072− 1.6157i, so we have a periodic orbit.
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Figure 12: When the parameters are as in Tables 3 and 4 with λ0 = 100 and M = .3, the oscillatory solutions
are curtailed because when λ0 = 100, MHopf = .2149 and M > .2149. This is demonstrated in the plot
generated by the initial condition (ih(0), sr(0), sq(0), sf (0), ir(0), iq(0), if (0)) = (0, 1, 1, 1, 0, 0, 0). Here we
calculate the eigenvalues of Equation (10) to be −2.6975, −0.0437 + 1.5271i and −0.0437 + 1.5271i, so we
have a stable equilibrium.
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6 Biological Implications, and Conclusions332

From our system analysis and numerical simulations, we can conclude that there are potentially realistic333

situations in which ivermectin can be used to curtail the spread of malaria. We suggest that ivermectin334

would be particularly useful when combined with other methods of malaria control, such as the reduction of335

breeding sites and use of mosquito nets, since lowering λ0 not only lowers the amount of medication needed,336

but also widens the range of values of M that can be used to cure malaria, without killing the local population337

of mosquitoes. In addition, the existence of backwards bifurcation suggests that early intervention may be338

particularly important when using ivermectin to fight malaria. Our numerical simulations showed that in339

some cases it doesn’t take much medication to curtail the spread of the disease when the initial conditions340

are small enough, but higher levels are needed once the disease has taken hold of a population.341

Our results also suggest that a drug similar to ivermectin, but with a longer half life, could be particularly342

useful. The parameter M loosely represents the percentage of the population with ivermectin present in their343

body at any given time. Ivermectin only stays in a humans blood at a concentration strong enough to kill344

mosquitoes for about two weeks. Due to this, even keeping as little as 30% of the population medicated at345

anytime would be logistically challenging. Thus, if a drug with a similar effect, but a longer half life were to346

be discovered, it would be substantially easier to keep higher percentages of people medicated.347

The presence of osculations in the steady states, which are not produced by seasonal forces, was first348

discovered in [7]. Our adapted model with consideration of the drug ivermectin, shows that there is the349

possibility of eliminating the occurrence of the Hopf bifurcation, and thus eliminating the oscillatory solu-350

tions. In fact, we find that relatively low levels of ivermectin are required to eliminate the occurrence of351

these oscillations.352

The analysis in [7] noted the importance of the parameter λ0 in the control of malaria. The parameter353

λ0 is able to move the solutions to our equation through the A1, A2 parameter space, changing the number354

of endemic steady states to be 0, 1 or 2. We now note, that even in cases where λ0 cannot be changed, or355

lowered sufficiently, certain levels of M can also move us through the A1, A2 space to areas with no endemic356

steady states. Perhaps the most important thing to note is that in some cases we are able to do this without357

lowering R∗ below zero, killing the mosquitoes. Thus we conclude that ivermectin may be use useful tool in358

combating the spread of malaria, particularly in conjunction with other methods, and can curtail the spread359

of malaria without annihilating the local mosquito population.360
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6.1 Further Investigation361

The parameter space of this model is so vast that one could spend substantial time exploring the possible362

outcomes in regards to λ0 and M . In particular, one could search for specific regions in the parameter space363

where malaria can be eliminated by changes in λ0 and M and regions in which it cannot. In addition to364

further numerical study of the parameter space, one could make modifications to the model to make it more365

accurate or study different scenarios. For example, one may wish to investigate a model in which disease366

related deaths are considered in the human population, or in which multiple populations of humans interact.367

In addition, as an anonymous reviewer suggested, one could modify the current model to take into account368

the waning efficiency of the drug over time. The authors of [7] have already written an additional paper [8]369

in which a more intricate model is studied. These modifications could be made to either model, or the model370

in this paper.371
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