Published electronically January 13, 2019

DOI: 10.1137/18S016801

**Authors:** Rachel Han (University of British Columbia) and Chingyi Tsoi (Hong Kong Baptist University)**Sponsor:** Colin Macdonald (University of British Columbia)

**Abstract: **We demonstrate an application of the closest point method to numerically computing the truncated spectrum of the Laplace-Beltrami operator. This is known as the “Shape DNA" and it can be used to identify objects in various applications. We prove a result about the null-eigenvectors of the numerical discretization. We also investigate the effectiveness of the method with respect to invariants of the Shape DNA. Finally we experiment with clustering similar objects via a multi-dimensional scaling algorithm.

Published electronically February 12, 2019

DOI: 10.1137/18S017314

**Author:** Kaitlyn Eekhoff (Calvin College)**Sponsor:** Todd Kapitula (Calvin College)

**Abstract: **Mean-field type ODE models for opinion dynamics often assume that the entire population is comprised of congregators, who are agreeable. On the other hand, a contrarian opinion dynamics ODE model assumes the population has two personality types: congregators, and contrarians, who are disagreeable. In this paper we broadly study how contrarians influence the ability of the population to form a fixed and stable opinion. In particular, we re-examine the dynamics associated with the model introduced by Tanabe and Masuda [12] by looking at how the parameters effect the formation of stable periodic solutions (whose existence implies there is no fixed consensus opinion). Afterwards, we refine and analyze the model under two new hypotheses: (a) the contrarians bow to peer pressure and change their personality type to congregators if a large enough proportion of the entire population agrees on an opinion, and (b) there are zealots associated with one of the opinions. We conclude with a brief discussion on possible extensions of this work.

Published electronically February 18, 2019

DOI: 10.1137/17S016166

**Author: **Brittany Alexander (Texas Tech University)**Sponsor: **Leif Ellingson (Texas Tech University)

**Abstract: **Using a combination of polling data and previous election results, FiveThirtyEight successfully predicted the Electoral College distribution in the presidential election in 2008 with 98% accuracy and in 2012 with 100% accuracy. This study applies a Bayesian analysis of polls, assuming a normal distribution of poll results using a normal conjugate prior. The data were taken from the Huffington Post's Pollster. States were divided into categories based on past results and current demographics. Each category used a different poll source for the prior. This model was originally used to predict the 2016 election, but later it was applied to the poll data for 2008 and 2012. For 2016, the model had 88% accuracy for the 50 states. For 2008 and 2012, the model had the same Electoral College Prediction as FiveThirtyEight. The method of using state and national polls as a prior in election prediction seems promising and further study is needed.

Published electronically March 7, 2019

DOI: 10.1137/18S017077

**Author:** Shengding Sun (The University of North Carolina at Chapel Hill)**Sponsor: **Nancy Rodriguez (The University of North Carolina at Chapel Hill)

**Abstract:** We study the dynamics of smoking behavior of agents with a stochastic lattice-based model, assuming that each agent occupies a node and is influenced by its neighbors. This mechanism is adapted from the PSQ smoking model, which is based on a system of ordinary differential equations. The difference in this model is that, more realistically, potential smokers are only influenced by nearby current smokers, instead of all smokers. In addition, the stochasticity of this model also accounts better for the randomness in real world smoking behavior. It is shown here that the quantitative estimates of this new lattice model are significantly different from the previous numerical results obtained in other works using the ODE model. This suggests that taking locality into account affects the model behavior. The critical exponents of this new lattice smoking model under von Neumann neighborhood condition are calculated and verified to be the same as the classic SIRS epidemic model, which classifies this model as belonging to the directed percolation class. We also consider the model in continuum setting, and solve the system numerically using a particular convolution kernel. To the author's knowledge this is the first time where this widely used and discussed PSQ smoking model is incorporated into the lattice-based setting, and our results show that this changes the quantitative behavior of the PSQ model significantly.

Published electronically March 7, 2019

DOI: 10.1137/18S017260

**Authors:** Jun Hee Kim, Eun Kyung Kwon, and Qian Sha (Carnegie Mellon University)**Sponsor:** Brian Junker (Carnegie Mellon University)